商务智能概论
- 格式:doc
- 大小:3.62 MB
- 文档页数:15
商务智能研究综述商务智能,又称商业智能,是指利用各种技术、工具和方法来获取、整理、分析、共享和管理企业数据,并利用得出的数据模式和商务洞察来辅助企业做出决策的一种新型应用软件。
商务智能在企业中扮演着至关重要的角色,给企业提供了沉淀、加工、分析和运营企业数据的能力,有效地提升企业的经营水平和竞争优势。
下面的综述将从商务智能的定义、特点、应用和未来发展趋势等方面,对商务智能进行全面的探讨。
一、商务智能的定义商务智能是指通过数据挖掘、数据分析、数据可视化等技术手段来获取、整理、分析、共享和管理企业数据的一种新型应用软件,其目的是为企业的决策制定提供精确有效的决策支持。
1. 数据处理能力强:商务智能系统拥有强大的数据处理能力,能够对海量数据进行存储、查询、分析和处理。
2. 操作简便灵活:商务智能系统具有简单明了的用户操作界面,企业用户可以根据自身需要灵活定制各类报表和图表等数据可视化工具,快速了解企业数据的变化和趋势。
3. 报表和图表自动化生成:商务智能系统支持报表和图表的自动生成,可以根据用户需求自动分析企业数据,自动生成各种类型的报表和图表,并且支持自定义报表和图表格式。
4. 多维分析能力:商务智能系统具备多维分析能力,能够对企业数据进行丰富多彩的分析,更好地满足企业决策制定的需要。
商务智能在企业中广泛应用于经营管理、市场营销、客户关系管理、供应链管理等领域,并在企业中发挥了重要的作用。
1. 经营管理:商务智能系统可以直观地展现企业的经营状况,帮助企业管理层更好地把握和掌控企业运营,及时制定有效的决策,从而提升企业的竞争力。
2. 市场营销:商务智能系统可以分析市场及客户数据,精确定位目标市场,制定相应的市场策略,提高企业销售额和市场份额。
3. 客户关系管理:商务智能系统可用于客户数据的处理和分析,帮助企业更好地把握客户需求和行为模式,并且制定针对性较强的客户关系管理策略。
4. 供应链管理:商务智能系统可以帮助企业更好地把握物流、库存和采购等供应链环节的情况,从而更好地提高供应链的整体效率和管理水平。
题型:选择10*1分,单选10*1分,填空8*1分,计算4*9分,问答4*9分。
一、商务智能概述1.数据数据是可以记录、通信和能识别的符号,它通过有意义的组合来表达现实世界中的某种实体(具体对象、事件、状态或活动)的特征。
商务智能技术可以分析结构化数据、半结构化数据以及非结构化数据、静态的历史数据和动态数据流等各种类型的数据。
2.3.BI定义定义一:Business Intelligence is a process of turning data into knowledge and knowledge into action for business gain. (Data Warehouse Institute)标准定义:商务智能是企业利用现代信息技术收集、管理和分析结构化和非结构化的商务数据和信息,创造和累计商务知识和见解,改善商务决策水平,采取有效的商务行动,完善各种商务流程,提升各方面商务绩效,增强综合竞争力的智慧和能力。
4.商务智能的结构(1)商务智能的结构主要由两部分组成:数据仓库环境分析环境(2)商务智能主要由三种技术构成:数据仓库(Data Warehouse)联机分析处理(On-line Analysis,OLAP)数据挖掘(Data Mining)在三大技术支柱中,数据仓库是商务智能的基础。
联机分析处理(OLAP)是以海量数据为基础的复杂分析技术。
数据挖掘(Data Mining)是从海量数据中,提取隐含在其中的、人们事先不知道的但又可能有用的信息和知识的过程。
二、决策支持系统1.结构化:数据结构字段含义确定、清晰。
典型的如数据库中的表结构半结构化:具有一定结构,但语义不够确定典型的如HTML网页,有些字段是确定的(title),有些不确定(table) 非结构化:杂乱无章的数据,很难按照一个概念去进行抽取,无规律性2.DSS的产生背景电子数据处理——EDP(Electronic Data Processing)管理信息系统——MIS(Management Information Systems)决策支持系统——DSS(Decision Support Systems)(70年代中期提出)3.DSS的定义决策支持系统(DSS)是以管理科学,运筹学,控制论和行为科学为基础,以计算机技术,仿真技术和信息技术为手段,针对半结构化和非结构化的决策问题,支持决策活动的具有智能作用的人机系统.3.DSS 的构造DSS的构造研究主要解决DSS的组成问题,即组成DSS的部件。
商务智能技术研究综述一、商务智能概述商务智能(BusinessIntelligence,简写成:BI),根据全球第一家信息技术研究和分析公司、国际知名咨询公司——Gartner集团的定义,是指对商业信息的搜集、管理和分析过程,目的是使企业的各级决策者获得知识和洞察力,帮助他们做出对企业更有利的决策。
商业智能可以显着提升企业效率,改善商业表现,目前已经被多个行业的企业所采用,尤其在电信、金融和电子政务等数据信息数量庞大的领域都受到了极大的重视,除此以外,能源、物流、烟草、制造业等也是商业智能大展拳脚的平台。
在大数据指数增长且日趋成为企业战略资产的背景下,人力成本的持续提升和环保压力的加大促使企业增加对BI的需求。
ERP等管理软件的普及和CIO对BI的认可,为BI的发展提供了所需的数据积累和客户基础,而近期国家针对BI的政策扶持也已初现端倪,预计物联网“十二五”规划和智慧城市建设将为BI发展带来全新契机,可以预见,“十二五”时期,BI市场的潜在市场空间将超过300亿。
近几年来,国内BI市场的竞争激烈程度日益攀升,不论是专业的BI产品供应商,还是其他管理软件商,都已采取了频繁快速的举措,甚至是国际供应商都已进入中国市场,多方竞争力已经开始着力抢夺国内市场。
目前,国内BI市场上拥有优势地位的除了IBM、Oracle、微软、SAP等传统国际先进企业外,还有用友、东方国信、浪潮、金蝶、亚信创联等一批国内优秀企业,他们已经打破了国际企业垄断中国市场的局面,且都正以较快的速度成长。
二、商务智能的技术基础而为了实现商务智能,相应的商务智能技术技术也应运而生。
所谓商务智能技术,也即企业利用数据仓库(Data Warehouse)、数据挖掘(Data Mining)、在线分析处理(On-Line Analytical Processing)决策支持系统(Decision Support System)等现有信息系统对企业经营过程中产生的大量结构化和非结构化商务数据和信息进行收集、整理、分析,以便辅助企业做出正确决策,采取有效商务行动,优化商务流程。
商业智能概述
商业智能(Business Intelligence,简称BI),是指利用软件工具
和专业技术对企业组织内的历史性和当前的数据进行分析和建模,以获取
有关企业的决策及行动指南的技术。
它是一种技术,在许多不同的领域都
受到了广泛应用,比如:制造、零售、消费品、金融、保险、汽车、联盟、通信和娱乐等等,它的目的是分析过去的数据,预测未来的趋势,帮助企
业有效地管理资源,增强收入、降低成本,以提高企业的效率和收益。
商业智能技术涉及到数据挖掘、预测分析、知识管理等方面,这些技
术可以帮助管理者更好地了解和管理企业的资源、产品、服务和运营情况,进一步加强企业发展能力。
商业智能系统技术的基本架构有以下几种。
第一种是数据仓库技术,
它是运用数据库技术构建企业组织的历史性和当前的数据仓库,并将历史
数据与当前数据进行整合,以便于更好地理解企业的历史发展和现状。
其
次是数据挖掘技术,它是采用模式识别算法对历史性数据进行深入挖掘,
以找出关联关系和隐藏规律,从而构建业务模型和分析模型,并对企业进
行有效的管理。
商务智能概论实验报告商务智能,这个词听上去就像是高深莫测的科技语言,其实没那么复杂。
想象一下,你在公司里拼命工作,数据在你面前像一堆没头苍蝇似的飞来飞去。
每天面对那些枯燥的数字,真是让人头疼得想撞墙。
不过,别担心,商务智能就是为了让这一切变得简单易懂。
就像开车一样,明明有个导航系统帮你指路,结果你还非要用老式地图,那真是自找麻烦。
商务智能就像那台导航,帮你从繁琐的数据中找到方向,驾驭那些看似混乱的信息。
说到这里,咱们得先搞明白商务智能到底是个什么东西。
它可不是天上掉下来的仙丹,而是一个综合了数据分析、数据挖掘、数据可视化等一系列技术的大礼包。
你可以把它想成是一个强大的工具箱,里面有各种各样的工具,能帮你从大量的数据中提取出有价值的信息。
就像寻宝一样,你需要花点时间去翻找,才能找到那颗闪闪发光的宝石。
通过这些工具,你可以更好地了解市场、客户和竞争对手,简直就像一位智慧的顾问,让你在商战中始终占得先机。
我知道,有些人一听到“数据分析”就像看到数学题一样心慌。
但商务智能的魅力就在于它的直观和简单。
举个例子,很多商务智能工具都有那种炫酷的图表功能,数据一输入,瞬间变成五颜六色的饼图、柱状图。
看着这些图表,谁会再觉得数据乏味呢?就像在餐桌上,色香味俱全的菜肴总是能勾起人的食欲。
你看看这边的销售数据,哎呀,这个季度的销售额突然上升,想必是产品火了。
再看看那边的客户反馈,嘿,原来大家都在夸这个服务好,难怪生意越来越红火。
商务智能不仅能帮你看清大局,还是个好帮手呢。
想象一下,你作为一个小公司的老板,每天忙得像个陀螺,根本没时间关注每一个细节。
这时候,商务智能就像是你的得力助手,帮你监测销售趋势、客户行为,让你随时掌握公司的动态。
你只需要在工具上点点鼠标,数据就会乖乖地呈现在你面前。
真是省时省力,心里踏实得很。
有了这些数据支持,你在做决策时就能底气十足,不用再像过去那样摸着石头过河,生怕走错一步。
商务智能不仅仅是简单的图表和数据,它还有更深的意义。
商务智能方法与应用笔记摘要:一、商务智能的概述1.定义与发展历程2.商务智能的关键要素二、商务智能方法论1.数据挖掘技术2.数据仓库与数据建模3.数据可视化与报告三、商务智能应用场景1.销售与营销2.供应链管理3.客户关系管理4.人力资源管理四、实战案例分析1.亚马逊的推荐系统2.阿里巴巴的大数据决策3.企业级商务智能解决方案五、商务智能的未来发展趋势1.人工智能与机器学习的融合2.大数据技术的不断创新3.云计算与边缘计算的支持正文:一、商务智能的概述商务智能(Business Intelligence,简称BI)是一种通过运用先进的技术、方法和工具,对企业的海量数据进行挖掘、分析、可视化,从而为企业决策提供依据和指导的过程。
商务智能的发展历程可以追溯到20世纪50年代,随着信息技术的发展,商务智能逐渐成为企业竞争力的重要组成部分。
商务智能的关键要素包括数据采集、数据存储、数据处理、数据分析和数据可视化。
二、商务智能方法论1.数据挖掘技术:数据挖掘是从大量数据中提取有价值信息的过程。
常见数据挖掘方法包括分类、聚类、关联规则挖掘、时间序列分析和文本挖掘等。
2.数据仓库与数据建模:数据仓库是用于存储、管理、分析大量结构化和半结构化数据的系统。
数据建模是将现实世界中的业务问题抽象为数学模型,并利用计算机程序进行求解的过程。
3.数据可视化与报告:数据可视化是将数据以图表、图形等形式展示,使数据更加直观易懂。
数据报告则是将分析结果以文字、图表等形式呈现给用户。
三、商务智能应用场景1.销售与营销:通过分析客户行为、购买习惯等数据,为企业制定精准的营销策略和促销活动提供支持。
2.供应链管理:通过对供应链各环节的数据进行分析,实现对库存、物流、供应商等环节的优化管理。
3.客户关系管理:通过对客户数据的分析,提高客户满意度、忠诚度和维系率。
4.人力资源管理:通过对员工招聘、培训、绩效等方面的数据进行分析,优化人力资源配置。
《商务智能概论》
实验报告
实验名称:数据仓库、关联分析操作实验姓名:员亚亚3150521022
李柯萌3150521019
何鸿佳3150521017
陈洁3150521015
陈晓庆3150521016
指导教师:段刚龙
实验日期:2017-5-3
一.实验目的与任务:
1.了解关联分析算法的实际应用方法。
2.创建“购物篮”关联分析数据表,挖掘关联模型。
二.实验时间:2学时
三.实验步骤:
1.创建“数据挖掘实验”数据库。
2.在数据库中建立与“购物篮”相关的表(与实际相比,表的结构和内容作了适当简化),以及主键与参照约束:
销售单表(销售单号,销售时间,收款员,其它)
销售单明细(销售单号,商品名称,销售数量,销售单价)
3.向各表中输入部分数据。
注意:输入的数据要有一定的代表性,不需要的数据可以不输入。
4.创建一个名称为“购物篮分析”的项目,并定义数据源、定义数据源视图。
5.创建关联挖掘结构。
在“资源管理器”中选“挖掘机构”中的“新建挖掘结构”。
然后按照提示操作。
四、实验过程
如下图所示为构建完成的数据库:
下图所示为销售单表
如下图所示为销售单表的内容
如下图,为销售单明细表:
如下图为销售单明细表内容:
创建一个名称为“购物篮分析”的项目,并定义数据源、定义数据源视图。
如下图为构建数据源:
如下图为数据源构建向导:
如下图为模拟信息:
如下图为完成向导后的界面:
数据源建立完成后如下图:
下一步为新建数据源视图(右键数据源视图):
数据源视图向导,按照提示点击下一步:
数据源视图“选择表和视图”中将需要的表选入并点击下一步:
图1.8.3数据源视图完成向导,点击完成按钮:
数据源视图建成后,会有如下界面显示(箭头表示表间的约束):
构建挖掘结构(右键挖掘结构,并选择新建挖掘结构):
在“资源管理器”中选“挖掘机构”中的“新建挖掘结构”。
然后按照提示操作数据挖掘向导中选择定义方法“从现有关系数据库或数据仓库”,并“下一步”:
数据挖掘向导选用关联规则创建数据挖掘结构(选择下图中圈出的选项)即“关联规则”,并点击下一步:
指定表类型(相应的事例和嵌套按照下图中进行勾选),并点击下一步:
指定定型数据,并点击下一步:
完成向导,点击完成按钮:
挖掘结构构建完成
如下图所示部署模型,显示部署成功
后根据下图提示设置参数,设置完成后点击“部署”:
处理挖掘模型过程界面如下:
如下图显示处理进度,处理成功后并点击关闭:
如下图查看挖掘模型规则:
如下图所示查看挖掘模型项集:
如下图查看网络依赖关系
五:数据仓库与数据挖掘学习心得
这次数据挖掘实验结束了,期间我们小组明确分工并积极去完成,虽然有点辛苦,但我感觉充实而有收获感!,以后处理问题也会有更加发散的思路
通过数据仓库与数据挖掘的这门课的学习,掌握了数据仓库与数据挖掘的一些基础知识和基本概念,了解了数据仓库与数据库的区别过该次实验,使我对数据库的操作熟练,今我会多做实验,使我在实际操作过程中学得更好!。