海盗分赃问题经典逻辑题
- 格式:docx
- 大小:8.97 KB
- 文档页数:2
“海盗分金币”问题的逻辑推理与延伸归纳(A类)北京化工大学理学院李晓琼摘要:“海盗分金币”问题是一个典型的博弈类问题。
本文通过对此问题的逻辑推理给出答案,并在此基础上做了延伸讨论,同时分析了在改变某一条件后的另一问题。
关键词:海盗分金币;博弈;逻辑;推理1.背景五个海盗抢到了100枚金币,他们决定这么分:1.抽签决定自己的号码:5 4 3 2 1;2.首先,由5号提出分配方案,然后5人共同进行表决,如果有半数或半数以上人同意时,就按照他的提案进行分配,否则5号将被扔入大海喂鲨鱼;3.在5号死后,由4号提出分配方案,然后4人进行表决,如果有半数或半数以上人同意时,就按照他的提案进行分配,否则4号将被扔入大海喂鲨鱼;4.以次类推。
海盗们基于三个因素来做决定:1. 要能存活下来;2. 自己得到的利益最大化;3. 在所有其他条件相同的情况下,优先选择把别人扔出船外。
问题:第一个提出分配方案的海盗怎样分配才能够使自己免于下海且获得最多金币?1.1.分析1)假设只有2号与1号两个人来分配,则2号为了自己利益最大化会提出占有全部金币,而1号无论赞同与反对都不会得到金币。
1号为使自己利益的最大化,会保全3号的生命以求得到金币。
2号的决策是:海盗名称: 2 1得金币数:100 02)假设由3,2,1号三人来分配,则1号只要能得到一枚金币就一定会支持3号的方案。
3号会做出这样的分配方案,自己得99枚金币,1号得1枚金币,而无论2号赞同与反对都不会得到金币,所以2号会保全4号的生命以求得到金币。
3号的决策是:海盗名称: 3 2 1得金币数:99 0 13)假设由4,3,2,1号四个人来分配,4号所提出的方案只要得到其他三人中的任意一人的支持就能保全自身,同时利益最大。
由上一步分析,除非4号分100枚金币给3号,否则就不能确定得到3号的支持。
4号为了利益最大化,他只要得到2,1号至少一人的支持就能保证自己不被处死,且他只需支付一个人金币。
趣味推理题,经典智力题(附解析过程及答案)逻辑推理网智力题1(海盗分金币)——海盗分金币5个海盗抢得100枚金币后,讨论如何进行公正分配。
他们商定的分配原则是:(1)抽签确定各人的分配顺序号码(1,2,3,4,5);(2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人同意,就按照他的方案进行分配,否则就将1号扔进大海喂鲨鱼;(3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人进行表决,当且仅当超过半数的人同意时,才会按照他的提案进行分配,否则也将被扔入大海;(4)依此类推。
这里假设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。
同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢?智力题2(猜牌问题)S 先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。
约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P 先生,把这张牌的花色告诉Q先生。
这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S 先生听到如下的对话:P先生:我不知道这张牌。
Q先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?智力题3(燃绳问题)烧一根不均匀的绳,从头烧到尾总共需要1个小时。
现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?智力题4(乒乓球问题)假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。
条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?智力题5(喝汽水问题)1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?智力题6(分割金条)你让工人为你工作7天,给工人的回报是一根金条。
海盗分金币
故事:五个海盗抢到了100个金币,每一颗都一样的大小和价值连城。
他们决定这么分:
1.抽签决定自己的号码------ [1、2、3、4、5]
2.首先,由1号提出分配方案,然后大家5人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3.如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4.以次类推
条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己免于下海以及自己获得最多的金币呢?。
海盗分金题目:5名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。
这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。
如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。
否则提出方案的海盗将被扔到海里,然后下一名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。
他们当然也不愿意自己被扔到海里。
所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。
此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。
这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。
这是一伙每人都只为自己打算的海盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?一、经济学上的“海盗分金”模型经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
假定“每人海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
简单的博弈论—海盗分金经济学上有个“海盗分金”模型:是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,投票要超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼。
假设前提假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
现实生活中也有类似的“海盗分金”的例子如在企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。
海盗分赃问题有5个海盗抢到100颗宝石,在如何分赃的问题上争吵不休。
于是他们决定:(1)抽签决定个人的号码[1,2,3,4,5]。
(2)由1号提出分配方案。
然后5人表决,如果方案超过半数同意就被通过,否则就把1号丢入大海。
(3)1号死后,由2号提出分配方案。
然后4人表决,当且仅当超过半数同意时方案通过,否则就把2号丢入大海。
(4)以此类推,直到找到一个大多数人能接受的方案。
如果只剩下5号,他一人获得全部宝石。
现在假定每个强盗都是足够理智能判断得失的“理性人”。
为了避免不必要的争执,我们还假定每个方案都能顺利表决并按照约定规则执行。
那么,如果你是第一个海盗,你该如何提出分配方案使自己的收益最大化?这道题十分复杂,很多人的答案都是错误的。
为了叙述方便,我先公布正确答案,然后再作分析。
严酷的分配规则给人的第一印象是:如果我抽到了1号,那将是一件十分不幸的事。
因为作为第一个提出分配方案的人,能活下去的机会微乎其微。
即使1颗宝石都不要,全部都给其余4人,分配方案也有可能被大家反对,只有死路一条。
如果你也这样想,那么答案会大大出乎你的意料:1号海盗留给3号1颗宝石,留给5号2颗宝石,自己独得97颗。
分配方案可以写成[97,0,1,0,2]。
只要你没有被吓倒,不妨站在剩下4人的角度分析:显然,5号是最不合作的,因为他没有死亡的威胁,从直觉上说,每扔下一个对手他就离获得全部宝石更近一步。
4号正好相反,他的生存机会完全取决于前面有人活着,因此4号值得争取。
3号对前面2位的命运完全不在乎,因为轮到他提出方案时,他只需要得到4号的支持再加上自己一票即可通过。
那么2号呢?他需要得到3票才能活命......现在,你有思路了吧!下面我将通过严格的逻辑思维去推想他们的决定。
5号的策略最简单:巴不得把所有人扔下海(这并不是说他将对每个分配方案投反对票,他也会考虑别人的方案通过的情况,因为他是足够理智能判断得失的“理性人”。
)再看4号。
强盗分金问题:题目:五个强盗抢得100枚金币,他们决定: 1、抽签决定各人的号码(1,2,3,4,5);2、由1号提出分配方案,然后5人表决,当且仅当超过半数同意方案被通过,否则他将被扔入大海喂鲨鱼;3、1号死后,由2号提方案,4人表决,当且仅当超过半数同意时方案通过,否则2号同样被扔入大海;4、依次类推......假定“每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”分析:强盗一强盗二强盗三强盗四强盗五第一步 0 100第二步 100 0 0第三步 98 0 1 1第四步 97 0 1 0 297 0 1 2 0在搞理论的人看来,“强盗分金”其实是一个高度简化和抽象的模型(非数理模型),但无疑以现实为基础。
在“强盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
想一想历朝历代的农民起义,想一想绵延起不断的宫廷斗争,想一想我们这个时代比比皆是的结盟与背叛,想一想企业内部的明争暗斗,想一想办公室脚下使绊的政治,哪一个得胜者不是采用的类似“强盗分金”的办法?为什么革命者总是找穷苦人,因为他们是最失意的人。
为什么恐怖分子拉登在沙特阿拉伯没有市场,在阿富汗却大受欢迎,因为阿富汗是全球化的弃儿。
为什么企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,难道不是因为公司里的小人物好收买,而二号人物却总是野心勃勃地想着取而代之......(主要看对方是否有收益)还可以举出许许多多的例证来。
比如,国际交易中的先发优势和后发劣势。
1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。
这不正是全球化过程中先进国家先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利。
博弈论经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
答案:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。
1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。
一个逆向归纳法的经典例子,其原型来自I.Stewart在《科学美国人》杂志上的一篇文章《凶残海盗的逻辑》。
这个例子曾经被微软公司作为招募员工的面试题目。
话说有五个海盗抢来了100枚金币,大家决定分赃的方式是:由海盗1提出一种分配方案,如果同意这种方案的人数达到半数,那么该提议就通过并付诸实践;若同意这种方案的人数未达半数,则提议不能通过且提议人将被扔进大海喂鲨鱼,然后由接下来的海盗继续重复提议过程。
假设每个海盗都聪明绝顶,也不互相合作,并且每个海盗都想尽可能多的得到金币,那么,第一个提议的海盗将怎样提议既可以使得提议被通过又可以最大限度得到金币呢?使用逆向归纳法可以求解如下:●首先,考虑只剩下最后的海盗5,显然他会分给自己100枚,并且赞成自己●再回到只剩下海盗4和海盗5的决策,海盗4可以分给自己100枚并赞成自己;海盗5被分得0枚,即使反对也无用。
●回到海盗3,海盗3可以分给海盗5一枚得到海盗5的同意;分给自己99枚,自己也同意;分给海盗4零枚,海盗4反对但无用。
●回到海盗2,海盗2可以分给海盗4一枚得到海盗4的同意;分给自己99枚,自己也同意;海盗3,5分得0枚,他们会反对但反对没有用。
●回到海盗1,他可以分给海盗3,5各一枚,获得海盗3,5的同意;分给自己98,自己也同意;分给海盗2,4各零枚,他们会反对但反对没有作用。
因此,这个海盗分赃的问题答案是(98,0,1,0,1):海盗1提出分给自己98枚,分给海盗2,4各零枚,分给海盗3,5各一枚,该提议会被通过。
因为海盗1,3,5会投赞成票。
对于上述海盗分赃问题,我们还可以演化出不同的版本。
比如说:(1)如果要求包括提议海盗在内的所有海盗过半数(超过1/2)同意才能使提议通过,那么海盗1应该怎么提方案?(2)如果要求提议海盗之外的海盗过半数同意才能通过,那么海盗1又该怎样提出方案?(3)或者海盗的数目增加到10个,100个,海盗1又怎么提方案?答案:变种问题(1)中,海盗1提出的分配方案是(97,0,1,2,0)或(97,0,1,0,2);变种问题(2)中,海盗1提出的方案应是(97,0,1,1,1);变种问题(3)中,奇数号海盗各得一枚,偶数号海盗不得金币。
故事:五个海盗抢到了100个金币,每一颗都一样的大小和价值连城。
他们决定这么分:1.抽签决定自己的号码 ------ [1、2、3、4、5]2.首先,由1号提出分配方案,然后大家5人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3.如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4.以次类推条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己免于下海以及自己获得最多的金币呢?--------------------------------------------------------------------------------此题公认的标准答案是:1号海盗分给3号1枚金币,4号或5号2枚金币,自己则独得97枚金币,即分配方案为(97,0,1,2,0)或(97,0,1,0,2)。
现来看如下各人的理性分析:首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。
哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。
因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。
有10名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品,这是一些讲民主的海盗,也就是遵循少数服从多数原则,他们按照习惯的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗包括提出方案者本人就此方案进行表决;如果半数以上(含半数)的海盗赞同这一方案,那么这一方案就获得通过并按照这一方案,进行战利品的分配;否则,提出方案的海盗将被扔进海里,然后剩余海盗中最厉害的海盗又重复上述过程。。。。。。 当然,所有的海盗都不想看到他们朝夕相处的同伙被扔进大海,但是如果让他们进行投票选择的话,他们还是会尽可能投使自己得一笔现金那一类方案的票,同时他们也不愿意自己被扔进大海。所有这些海盗都是有理性的,而且知道其他的海盗也是有理性的。另外,没有两名海盗是同等厉害的,因为这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信其同伙会遵守关于共享金块的安排,因为这是一伙每个人都只为自己利益打算的海盗。那么,最厉害的一名海盗应该提出什么样的分配方案才能使自己获得最多的金子呢? 考虑到分析的便利,这里按照这些海盗能力的差异给他们编上序号。最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,依此类推,最厉害的海盗就会是最大的编号10了,而方案的提出就将倒过来从上至下地进行。 分析此类策略游戏可以运用倒推法,即从结尾出发倒退回去。游戏结束时,比较容易知道哪种决策有利而哪种决策不利。确定了这一点后,就可以运用在倒数第二次决策上,依此类推。如果从游戏的开头出发进行分析,那么或许走不了多远就会进行不下去。因为所有的战略决策都是要确定:“如果我这样做,那么下一个人会怎样做?”因此,在某个海盗以下的海盗所做的决定对此海盗来说是很重要的,而在此海盗之前的海盗所做的决定并不重要,因为你反正对这些决定也已经无能为力。 因此,游戏的出发点应该是游戏进行到只剩两名海盗,即1号海盗和2号海盗的时候。这时最厉害的海盗是2号,而他的最佳分配方案一目了然:100块金子全归他一人所有,1号海盗什么也得不到。由于他自己肯定为这个方案投赞成票,这样就占了总数的一半,因此该方案获得通过。 现在加上3号海盗。1号海盗知道,如果3号的方案被否决,那么最后将只剩2个海盗,而1号讲肯定一无所获,另外,3号也明白1号了解这一形势。因此,只要3号的分配方案,给1号一点儿甜头使他不至于空手而归,那么不论3号提出什么样的分配方案,1号都将投赞成票。因此3号需要分出尽可能少的一点金子来收买1号海盗,这样就有了下面的分配方案:3号海盗分得99块金子,2号海盗一无所获,1号海盗得1块金子。 现在加上4号海盗,4号海盗的策略也差不多。他需要有半数以上的支持票,因此同3号一样也需要再找一个人做同谋。他可以给同谋的最低贿赂是一块金子,在这里,他可以用这块金子来收买2号海盗。因为如果4号被否决而3号的方案得以通过,则2号将一文不名。因此,4号的分配方案就是:99块金子归自己,3号一块也得不到,2号一块金子,1号也是1块也得不到。 5号海盗的策略略有不同。他需要收买另两名海盗,因此至少得用两块金子来贿赂,才能使自己的方案得到采纳。他的分配方案应该是:98块金子归自己,1块金子给3号,1块金子给1号。 这一分析过程可以按照上述思路继续进行下去。每个分配方案都是唯一确定的,它可以让提出这个方案的海盗获得尽可能多的金子,同时又保证该方案肯定能获得通过。照这一模式进行下去,10号海盗提出的方案将是96块金子归自己所有,其它编号为偶数的海盗各得一块金子,而编号为奇数的海盗则什么也得不到。这样,10海盗的分配难题得以解决。 如果把这一问题扩大到500名海盗的情形,即500名海盗瓜分100块金子。显然,类似的规律依然成立,至少是在一定范围内成立。事实上,前面所述的规律知道第200号海盗都成立。200号海盗的方案将是:从1到199号的所有奇数号的海盗都将一无所获,而从2到198号的所有偶数号海盗将各得1块金子,剩下的1块金子归200号海盗自己所有。 这样看来,上述论证方法到200号之后就不再适用了,因为201号拿不出更多的金子来收买其他海盗。但是即使分不到金子,201号至少还希望自己不会被扔进海里,因此他可以这样分配:给1到199号的所有奇数号海盗每人1块金子,自己则一块也不要。202号海盗同样别无选择,只能1块金子都不要了,他必须把这100块金子全部用来收买100名海盗,而且这100名海盗还必须是那些按照201号方案将一无所获的人。 由于这样的海盗有101名,因此202号的方案将不再是唯一的,因为贿赂方案有101种。203号海盗必须获得102张赞成票,但他显然没有足够的金子去收买101名同伙。因此,无论提出什么样的分配方案,他都注定会被扔进大海。不过,尽管203号注定死路一条,但并不是说他在游戏进程中不起任何作用。 相反,204号海盗知道,203号海盗为了能保住姓名,就必须避免由他自己来提出分配方案这样一种局面,因此,不管204号海盗提出什么样的方案,203号都一定会投赞成票。这样,204号海盗总算可以捡到一条命:他可以得到自己的1票、203号的一票以及另外100名被收买的海盗的赞成票,刚好达到保命所需的一半票数。获得金子的海盗,必定属于根据202号海盗的方案肯定会一无所获的那101(书上写的是101,我觉得是102,因为按照202号的方案,202号自己也没有金子,所以也可以给他块金子,收买他)名海盗的行列。 205名海盗的命运又将怎么样呢?他恐怕没有那么走运。他不能指望203号和204号支持他的方案,因为如果他们投票反对205号方案,就可以看到205号被扔进海里,而他们自己的性命却仍然能够保全,自己的地位也在海盗中上升了一名。这样,无论205号海盗提出什么方案,他都活不了命。 206号海盗的命运也是这样,他肯定可以得到205号的支持,但这不足以救他一命。同样,207号海盗需要104张赞成票,除了他售卖的100张赞成票以及他自己的1张赞成票之外,他还需3张赞成票才能免于一死。他可以获得205号和206号的支持,但还差1张票是无论如何也弄不到了,因此207号海盗的命运也是被扔进大海里。 可是,208号海盗却又时来运转了。他需要104张赞成票,而205号、206号、207号都会支持他,加上他自己一票及收买的100票,他得以过关保命。获得他贿赂的必定属于那些根据204号海盗方案肯定将一无所获的人,候选人包括2到200号中所有的偶数号海盗,及201、203、204号。 现在,出现了一条新的并在此之后会持续有效的规律:那些方案能过关的海盗的分配方案全都是把金子用来收买100名同伙而自己一点儿都得不到,他们相隔的距离越来越远,而在他们之间的海盗则无论提什么样的方案都会被扔进大海,因此为了保命,他们必会投票支持比他们厉害的海盗提出的任何分配方案。得以避免葬身鱼腹的海盗包括201、202、204、208、216、232、264、328、456号,也就是其号码等于200加上2的某一方阵的海盗。 那么,哪些海盗是获得贿赂的人呢?分配贿赂的方法不是唯一的,其中一种方法是让201号海盗把贿赂分给1到199号的所有奇数编号的海盗,让202号分给2到200号所有偶数编号的海盗,然后是让204号贿赂奇数编号的海盗,208号贿赂偶数编号的海盗,依此类推,也就是轮流贿赂奇数编号和偶数编号的海盗。 到最后,结果就是当500名海盗运用最优策略来分金子时,头44名海盗必死无疑,而456号海盗则给从1到199号所有奇数编号的海盗每人分1块金子,这样问题就解决了。由于这些海盗所实行的那种民主制度的规束,造成了他们当中最厉害的一批海盗葬身大海;那些没有分到一点儿金子的海盗却也会觉得自己比较幸运,因为虽然没有分到抢来的金子,但总可以保全性命;只有最怯懦的200名海盗有可能分得一份战利品,而他们之中又有一半的人能真正得到一块金子。看来,这真是怯懦者得到财富啊。
博弈论:海盗分金——怯懦者得到财富博弈论:海盗分金——怯懦者得到财富一、基础案例:有10名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。
这是一些讲民主的海盗,也就是遵循少数服从多数的原则,他们按照习惯的方式分配:最厉害的一名海盗提出分配方案,然后所有的海盗包括提出方案者本人就此方案进行表决。
如果半数以上(含半数)的海盗赞同这一方案,那么这一方案就获得通过并按照这一方案进行战利品的分配;否则提出方案的海盗将被扔进海里,然后剩余海盗中最厉害的海盗又重复上述过程……二、案例分析:考虑到分析的便利,这里按照这些海盗能力的差异给他们编上号。
最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,依此类推,最厉害的海盗就是最大的编号10了,而方案的提出就将倒过来从上至下地进行。
分析此类策略游戏可以运用倒推法,即从结尾出发倒推回去。
假设现在只有1号海盗,分配方案一目了然,金子全归他;有两名海盗即1号和2号,2号肯定会投自己的票,方案通过,金子全归2号;有1号、2号和3号,3号肯定投自己的票,若2号投3号的票,则方案通过,金子全归3号,自己什么都捞不到。
因为2号知道,若3号方案没通过,金子则必然全是自己的,1号什么也得不到。
面对这种情况,3号必须贿赂一名海盗,这名海盗就是1号,3号必须至少拿出1块金子贿赂1号海盗。
有1号、2号、3号和4号海盗分赃。
4号海盗要找一名海盗来投自己的票。
选3号?3号海盗不会干,因为3号认为投4号海盗的票,自己最多得到1块金子,而不投,有可能得到99块金子。
所以4号会选择2号来贿赂,因为4号海盗提出的方案没通过的话,2号海盗将一文不名。
依此类推,我们制作一个表格来表示海盗们的贿赂方案。
从上面知道,每个分配方案都是唯一确定的,它可以让提出这个方案的海盗获得尽可能多的金子,同时保证该方案肯定能获得通过。
照这一模式下去,10号海盗提出的方案有94块归自己所有,而编号为基数的海盗将什么也得不到。
船上有5个海盗,要分抢来的100枚金币。
自然,这样的问题他们是由投票来解决的。
投票的规则如下:先由最凶残的海盗来提出分配方案,然后大家一人一票表决,如果有50%以上的海盗同意这个方案,那么就以此方案分配,如果少于或者等于50%的海盗同意,那么这个提出方案的海盗就将被丢到海里去喂鱼,然后由剩下的海盗中最凶残的那个海盗提出方案,依此类推。
怎么分金币才能使最最最最最最最最最最凶残的海盗收益最大而且不被丢海里?哎!给你详细解答一下。
先审题:意思是超过半数。
就是第一个人提出后算上自己必须够3个人同意。
而且要满足三个特点:1:保命最要紧!2:得到金币要最大化。
3,尽可能的多害死人!倒推:先分析5号,5号如果想拿100个金币的话,那只有剩下4,5两个人的时候,4不管出什么建议,5予以否决,将4扔到海里,独吞100金币。
可是4号不是傻子。
他不希望出现只剩他俩的局面,不然就算给对方100个金币,自己小命都难保,所以期待3活着并且支持3。
3知道4的小九九,即使一个子也不给4号,4号也说不出啥来,毕竟能保命最重要,3号给的提议是3号:100个,4号:0个,5号:0个。
4号只能干瞪眼同意。
5一个人反对没用,可是3能撑到他投票吗?3能投票的前提是1,2都得死。
2号肯定不乐意不想死,那么假如轮到2号分配的话,他会怎么分?3号希望2号死,3号独吞金币。
5号是最狠毒的,谁提意见他都会反对,解释一下:谁也威胁不到5的性命,因为不管反对与否,他是最后一个表决,前面4位不可能等到他的意见,5号当然希望死的越多越好,但死了人自己拿不到钱5号也不干!所以5号一个劲的喊oh,NO,NO,NO。
那么问题出来了,3号他提出分配方法的时候。
5号意见起不了决定性作用,因为4号挺着3号,可轮到2号提意见,那么!!3号肯定反对,前面说过了,2号挂了3号他才能分到100个! 2号不管怎么分,即使一个也不要全给3号,3号肯定也不同意,3号还想杀人呢,2号就想玩阴的,呵呵,决定分给4号1个,5号一个,自己98个,这样在金钱的利诱下,4号会同意,为啥呢?如果等3号分我一个子也没有,挺2号!5号也会有这样的心理,与其等到3号出意见,老子还不如同意2号的呢。
题目为:五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城。
他们决定这么分:抽签决定自己的号码(1、2、3、4、5),首先,由1号提出分配方案,然后大家表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔进大海喂鲨鱼。
如果1号死后,再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼依此类推条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?为什么?答案:
2号和3号有积极性让1号死,以便自己得到更多。
所以,1号无奈之下,可能只有自己得0,而给2和3各50颗。
但事实证明,这种做法依然不可行。
为什么呢?
因为我们要先看4号和5号的反应才行。
很显然,如果最后只剩下4和5,这无论4提出怎样的方案,5号都会坚决反对。
即使4号提出自己要0,而把100颗钻石都给5,5也不会答应――因为5号愿意看到4号死掉。
这样,5号最后顺利得到100颗钻石——因此,4的方案绝对无法获得半数以上通过,如果轮到4号分配,4号只有死,只有死!
由此可见,4号绝对不会允许自己来分。
他注定是一个弱者中的弱者,他必须同意3号的任何方案!或者1号2号的合理方案。
可见,如果1号2号死掉了,轮到3号分,3号可以说:我自己100颗,4号5号0颗,同意的请举手!这时候,4号为了不死,只好举手,而5号暴跳如雷地反对,但是没有用。
因为3个人里面有2个人同意啊,通过率%,大于50%!
由此可见,当轮到3号分配的时候,他自己100颗,4和5都是0。
因此,4和5不会允许轮到3来分。
如果2号能够给4和5一些利益,他们是会同意的。
比如2的分配方案是:98,0,1,1,那么,3的反对无效。
4和5都能得到1,比3号来分配的时候只能得到0要好得多,所以他们不得不同意。
由此看来,2号的最大利益是98。
1号要收买2号,是不可能的。
在这种情况下,1号可以给4号和5号每人2颗,自己收买他们。
这样,2号和3号反对是无效的。
因此,1号的一种分配方案是:96,0,0,2,2。
这是不是最佳方案呢?再想一想,1号也可以不给4号和5号各2个,而只需要1个就搞定了3号,因为如果轮到2号来分配,2号是可以不给3号的,3号的得益只有0。
所以,能得到1个,3号也该很满意了。
所以,最后的解应该是:97,0,1,2,0。
好,再倒推。
假设1号提出了97,0,1,0,2的方案,1号自己赞成。
2和4反对。
3∶2,关键就在于3号和5号会不会反对。
假设3号反对,杀掉1号,2号来分配,3自己只能得到0。
显然,3号不划算,他不会反对。
如果5号反对,轮到2号、3号、4号来分配,5号自己最多只能得到1。
所以,3号和5号与其各得到0和1,还不如现在的1和2。
正确的答案应该是:1号分配,依次是:97,0,1,0,2;或者是:97,0,1,2,0。