(完整版)2017年4月闵行区中考数学二模试卷及答案
- 格式:doc
- 大小:377.51 KB
- 文档页数:8
2016学年第二学期闵行区初三模拟考英语试卷2017.4Part 2 Phonetics, Vocabulary and Grammar(第二部分语音、词汇和语法)26. Which of the following underlined parts is different in pronunciation from others ?A. Smoking is harmful to our health.B. There is a warning a sign on the wall .C. Tom is a big fan of cartoon filmsD. My mother bought some fish in the market .27. Kitty is _______honest girl . She never tells lies and we like her very much .A. aB. anC. theD. /28. Some Chinese tourists lost _________lives in Malasin’s boat accident.A. themB. themselvesC. theirD. theirs29. Many young people enjoy drinking coffee while _________prefer to drink tea.A. othersB.otherC. anotherD. the others30. Look , there are so many ________on the farm in the countryside .A. duckB. sheepC. horseD. pig31. All students must wear summer uniforms ________September , early October , late April , May and June .A. inB. byC. atD. of32. Sam’s father travels to Tokyo , the capital of Japan , ________business once a month .A. fromB. aboutC. toD. on33. ---_________is fifteen minus five ?----Fifteen minus five is ten .A. How longB. How soonC. How muchD. How often34. _________interesting it is to welcome the first snow in the Year of the Rooster!A. WhatB. HowC.What aD. What an35. The young dancer from France looks ________in the long skirt .A. happilyB. gentlyC. beautifullyD. lovely36. The two men used to argue with each other to prove who is ________.A. strongB. strongerC. strongestD. the strongest37. The plan ________be discussed any more . We have made our decision .A. musn’tB. can’tC. needn’tD. oughtn’t38. Beijing has made history in winning the bids to host both the summer ________winter Olympic games.A. butB. orC. soD. and39. ___________the training in the wilderness is not easy , I still want to have a try .A. IfB. AlthoughC. WhenD. Until40. The hit show Chinese Poetry Competition on CCTV _________a nationwide popular program since last winter holidays.A. is becomingB. has becomeC. becameD. becomes41. The ceremony of the 89th Oscar(奥斯卡) Awards _______in Los Angeles on February 27, 2017.A. is heldB. was heldC. has heldD. hold42. He’d rather ________the underground to the city center because it’s fast and conventient.A. to takeB. takingC. takesD. take43. Stop _________. It is easier to cut your friends off than help.A. to complainB. complainC. complainingD. complained44. ----I’m so nervous , I’m afraid I can’t remember everything .-----____________.A. Take it easy .B. Don’t say soC. That’s a good ideaD. What a pity !45. -----Thank you so much for helping us with our luggage .-------__________A. The same to youB. I’d love toC. Thank youD. You are welcomeⅢ.Complete the following passage with the words or phrases in the box. Each can only be used once(将下列单词或词组填入空格。
闵行区2017学年第一学期九年级质量调研考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.如图,图中俯角是(A )∠1; (B )∠2; (C )∠3; (D )∠4. 2.下列线段中,能成比例的是(A )3cm 、6cm 、8cm 、9cm ; (B )3cm 、5cm 、6cm 、9cm ; (C )3cm 、6cm 、7cm 、9cm ; (D )3cm 、6cm 、9cm 、18cm . 3.在Rt △ABC 中,∠C = 90º,AB = 4,AC = 1,那么∠B 的余弦值为 (A; (B )14; (C; (D4.在△ABC 中,点D 、E 分别在AB 、AC 的延长线上,下列不能判定DE //BC 的条件是 (A )AB DA AC EA ::=; (B )AB DA BC DE ::=; (C )DB DA EC EA ::=; (D )DB AB EC AC ::=.5.已知抛物线c :322-+=x x y ,将抛物线c 平移得到抛物线,c ,如果两条抛物线, 关于直线1=x 对称,那么下列说法正确的是(A )将抛物线c 沿x 轴向右平移25个单位得到抛物线,c ;(B )将抛物线c 沿x 轴向右平移4个单位得到抛物线,c ;(C )将抛物线c 沿x 轴向右平移27个单位得到抛物线,c ;(D )将抛物线c 沿x 轴向右平移6个单位得到抛物线,c . 6.下列命题中正确的个数是① 直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为524; ② 如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切; ③ 过三点可以确定一个圆; ④ 两圆的公共弦垂直平分连心线.(A )0个; (B )4个; (C )2个; (D )3个.(第1题图)水平线铅垂线二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.如果32=b a ,那么=+-ba ab ▲ .8.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是4,那么另一个 三角形的面积为 ▲ .9.抛物线22(3)4y x =-+的在对称轴的 ▲ 侧的部分上升.(填“左”或“右”) 10.如果二次函数281y x x m =-+-的顶点在x 轴上,那么m = ▲ .11.如果沿一条斜坡向上前进20米,水平高度升高10米,那么这条斜坡的坡比为 ▲ . 12.抛物线2(0)y ax bx c a =++≠上部分点的横坐标x ,纵坐标y 的对应值如下表:x 轴的另一个交点的坐标为 ▲ .13.如图,矩形ABCD 中,点E 在边DC 上,且AD = 8,AB = AE = 17,那么=∠AEB tan ▲ .14.已知在直角坐标平面内,以点P (1,2)为圆心,r 为半径画圆,⊙P 与坐标轴恰好有三个交点,那么r 的取值是 ▲ .15.半径分别为20cm 与15cm 的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB 的长为24cm ,那么圆心距O 1O 2的长为 ▲ cm .16.如图,在△ABC 中,AD 是中线,G 是重心,=,AC =b ,那么向量BG 关于a r 、b r的分解式为 ▲ . 17.如图,在Rt △ABC 中,∠ACB=90º,CD 是高,如果∠A=α,AC = 4,那么BD = ▲ .(用锐角α的三角比表示)18.如图,在等腰△ABC 中,AB = AC ,∠B =30º.以点B 为旋转中心,旋转30º,点A 、C 分别落在点A'、C'处,直线AC 、A'C'交于点D ,那么ADAC 的值为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)如图在平面直角坐标系xOy 中,O 为坐标原点,点 A 的坐标为(-1,2),点B 在第一象限,且OB ⊥OA , OB =2OA ,求经过A 、B 、O 三点的二次函数解析式.ADC(第13题图)E A BC DGE (第16题图)BDCA(第17题图)(第18题图)AB(第19题图)20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,已知向量a r 、b r和p u r ,求作:(1)向量132a b -+r r. (2)向量p u r 分别在a r 、b r方向上的分向量. 21.(本题共2小题,每小题5分,满分10分)如图,已知OC 是⊙O 半径,点P 在⊙O 的直径BA 的延长线上,且OC ⊥PC ,垂足为C .弦CD 垂直平分半径AO ,垂足为E ,P A = 6.求:(1)⊙O 的半径; (2)求弦CD 的长.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)歼-20(英文:Chengdu J-20,绰号:威龙,北约命名:Fire Fang )是我国自主研发的一款单座、双发动机并具备高隐身性、高态势感知、高机动性等能力的第五代战斗机。
本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。
可作学习材料,切勿做其他用途。
更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。
闵行区2017学年第二学期九年级质量调研考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各式中,二次单项式是 (A )21x +;(B )213xy ;(C )2xy ;(D )21()2-.2.下列运算结果正确的是 (A )222()a b a b +=+; (B )2323a a a +=; (C )325a a a ⋅=;(D )112(0)2a a a-=≠. 3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在 (A )第一、三象限; (B )第二、四象限; (C )第一、二象限;(D )第三、四象限. 4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 (A )平均数;(B )中位数;(C )众数;(D )方差. 5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 (A )当AB = BC 时,四边形ABCD 是菱形; (B )当AC ⊥BD 时,四边形ABCD 是菱形; (C )当∠ABC = 90o 时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:21+2-= ▲ .8.在实数范围内分解因式:243x -= ▲ .91的解是 ▲ .10.已知关于x 的方程230x x m --=没有实数根,那么m 的取值范围是 ▲ .11.已知直线(0)y kx b k =+≠与直线13y x =-平行,且截距为5,那么这条直线的解析式为 ▲ .12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小杰过马路时,恰巧是绿灯的概率是 ▲ .13.已知一个40个数据的样本,把它分成6组,第一组到第四组的频数分别是10、5、7、6,第五组的频率是0.1,那么第六组的频数是 ▲ .14.如图,已知在矩形ABCD 中,点E 在边AD 上,且AE = 2ED .设BA a =uu r r ,BC b =uu u r r ,那么CE =uu u r▲ (用a r 、b r的式子表示).15.如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足1a 与2a 互为相反数,1b 与2b 相等,1c 与2c 互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数232y x x =-+-的“亚旋转函数”为 ▲ .16.如果正n 边形的中心角为2α,边长为5,那么它的边心距为 ▲ .(用锐角α的三角比表示) 17.如图,一辆小汽车在公路l 上由东向西行驶,已知测速探头M 到公路l 的距离MN 为9米,测得此车从点A 行驶到点B 所用的时间为0.6秒,并测得点A 的俯角为30o ,点B 的俯角为60o .那么此车从A 到B 的平均速度为 ▲ 米/秒.1.732≈1.414≈) 18.在直角梯形ABCD 中,AB // CD ,∠DAB = 90o ,AB = 12,DC = 7,5cos 13ABC ∠=,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)120183(1)2cos45+8-+--o.20.(本题满分10分)解方程组:221;20.y x x xy y -=⎧⎨--=⎩21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o ,1tan 2ABC ∠=. (1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.A B D C (第14题图)E ABD C(第18题图)AB M N (第17题图) l22.(本题满分10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多14小时,求自行车的平均速度? 23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =-+与x 轴交于 点A 和点B (1,0),与y 轴相交于点C (0,3). (1)求抛物线的解析式和顶点D 的坐标; (2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为底的等腰三角形,求Q 点的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分) 如图,已知在Rt △ABC 中,∠ACB = 90o ,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;(2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.ABEGCF D(第23题图)(第24题图)CC ED闵行区2017学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.A ;4.B ;5.D ;6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.5; 8.2x x -(; 9.1x =; 10.94m <-; 11.153y x =-+; 12.512; 13.8; 14.13a b -r r ; 15.2132y x x =+-; 16.5cot 2α(或52tan α);17.17.3; 18.12.三、解答题:(本大题共7题,满分78分) 19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)20.解:由②得:20x y -=,+0x y =…………………………………………(2分)原方程组可化为120y x x y -=⎧⎨-=⎩,1y x x y -=⎧⎨+=⎩………………………………(2分)解得原方程组的解为21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩…………………………………(5分)∴原方程组的解是21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩……………………………………(1分)21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分)∴AB ==1分)∵90BAC ∠=o ,1tan 2ABC ∠=,∴AC =.过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分)(2)11522ABC S AB AC ∆=⋅=⨯=.………………………………(1分)∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分)∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)22.解:设自行车的平均速度是x 千米/时.………………………………………(1分)根据题意,列方程得7.57.51154x x -=+;……………………………………(3分)化简得:2154500x x +-=;………………………………………………(2分) 解得:115x =,230x =-;…………………………………………………(2分)经检验,115x =是原方程的根,且符合题意,230x =-不符合题意舍去.(1分)答:自行车的平均速度是15千米/时.………………………………………(1分)23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BF BC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠F AB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)24.解:(1)把B (1,0)和C (0,3)代入22y ax x c =-+中,得9603a c c ++=⎧⎨=⎩,解得13a c =-⎧⎨=⎩.……………………………………(2分)∴抛物线的解析式是:223y x x =--+.……………………………(1分) ∴顶点坐标D (-1,4).……………………………………………(1分) (2)令0y =,则2230x x --+=,13x =-,21x =,∴A (-3,0)∴3OA OC ==,∴∠CAO =∠OCA .…………………………………(1分)在Rt BOC ∆中,1tan 3OB OCB OC ∠==.………………………………(1分)∵AC =DC =AD =, ∴2220AC DC +=,220AD =;∴222AC DC AD +=,ACD ∆是直角三角形且90ACD ∠=o ,∴1tan 3DC DAC AC ∠==,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC =∠OCB .…………………(1分) ∴DAC CAO BCO OCA ∠+∠=∠+∠,即DAB ACB ∠=∠.……………………………………………………(1分) (3)令(Q x ,)y 且满足223y x x =--+,(3A -,0),(1D -,4)∵ADQ ∆是以AD 为底的等腰三角形,∴22QD QA =,即2222(3)(1)(4)x y x y ++=++-,化简得:220x y -+=.………………………………………………(1分) 由222023x y y x x -+=⎧⎨=--+⎩,……………………………………………………(1分)解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩.∴点Q的坐标是⎝⎭,⎝⎭.…(2分)25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H ,易得:35EH x =,45BH x =,15FH x =.…………………………(1分)在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD . ∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE是公共边,∴BEH BEG∆∆≌.∴35EH EG GD x===.在Rt△CEA中,∵AC = 6,8BC=,tan tan AC CECAE ABCBC AC∠=∠==,∴66339tan822CE AC CAE⨯⨯=⋅∠===.……………………………(1分)∴9169782222BE=-=-=.……………………………………………(1分)∴6672125525ED EG x===⨯=.……………………………………(1分)(3)四边形ABDC不可能为直角梯形.…………………………………(1分)①当CD∥AB时,如果四边形ABDC是直角梯形,只可能∠ABD =∠CDB = 90o.在Rt△CBD中,∵8BC=,∴32cos5CD BC BCD=⋅∠=,24sin5BD BC BCD BE =⋅∠==∴321651025CDAB==,32853245CEBE-==∴CD CE AB BE≠.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形.…………………………(2分)②当AC∥BD时,如果四边形ABDC只可能∠ACD =∠CDB = 90o.∵AC∥BD,∠ACB = 90o,∴∠ACB =∠CBD = 90o.∴∠ABD =∠ACB +∠BCD > 90o.与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC不可能为直角梯形.…………………………(2分)。
2016-2017年上海市闵行区高三4月质量调研考试(二模)数学一、填空题:共12题1.方程的解是.【答案】【解析】本题考查对数函数.,即,解得.即方程的解是.2.已知集合则. 【答案】【解析】本题考查集合的基本运算.由题意得;而,所以.3.若复数是虚数单位),且为纯虚数,则实数= . 【答案】【解析】本题考查复数的概念与运算.=,其为纯虚数,所以,解得=1.4.直线(为参数)对应的普通方程是.【答案】【解析】本题考查直线的参数方程.削去参数,可得;即直线对应的普通方程是.5.若,且,则的值为.【答案】16【解析】本题考查二项式定理.展开式的通项公式,令,可得;令,可得;而,即,解得;即展开式的通项公式,令,可得.【备注】二项展开式的通项公式:.6.某空间几何体的三视图如图所示,则该几何体的侧面积是.【答案】【解析】本题考查三视图,空间几何体的表面积.由三视图可得该空间几何体为圆锥;该几何体的侧面积.7.若函数在区间上有零点,则实数的取值范围是.【答案】【解析】本题考查函数与方程.因为函数在区间上有零点,则=,解得.即实数的取值范围是.8.在约束条件下,目标函数的最大值为.【答案】【解析】本题考查线性规划问题.画出可行域,如图四边形所示;,,,.当过点时,目标函数取得最大值.9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学的路上到第二个路口时第一次遇到红灯的概率是.【答案】【解析】本题考查互斥事件的概率.由题意得所求的概率=.10.已知椭圆,其左、右焦点分别为.若此椭圆上存在点,使到直线的距离是与的等差中项,则的最大值为.【答案】【解析】本题考查椭圆的标准方程与几何性质,等差数列.由题意得:该椭圆为焦点在轴的椭圆,且;而到直线的距离是与的等差中项,所以到准线的距离,即;而,即,解得;而,所以,解得.即的最大值为.【备注】椭圆,,焦点..11.已知定点,动点在圆上,点关于直线的对称点为,向量是坐标原点,则的取值范围是.【答案】【解析】本题考查平面向量的数量积、平面向量的线性运算.令,而点关于直线的对称点为,所以,;而,所以;而,所以;所以,=;而动点在圆上,所以,所以,即,所以的取值范围是.12.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和___.【答案】【解析】本题考数列的概念与求和.由题意得若,则,所以,且上述每项均在数列中;所以,,,,即=====1;所以,所以. 二、选择题:共4题13.设分别是两条异面直线的方向向量,向量的夹角的取值范围为所成的角的取值范围为,则“”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】本题考查充要条件,两直线的位置关系.由题意得,;所以“”是“”的必要不充分条件.选C.14.将函数图象上的点向左平移个单位,得到点,若位于函数的图象上,则A.的最小值为B.的最小值为C.的最小值为D.的最小值为【答案】A【解析】本题考查三角函数的图象与性质.由题意得,排除B,D;平移后,而位于函数的图象上,所以,而,则的最小值为,排除C.选A.15.某条公共汽车线路收支差额与乘客量的函数关系如下图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)【答案】B【解析】本题考查函数的图像与性质.令车票价格为,支出费用为,则收支差额();若按建议(Ⅰ),令减少后的支出费用为,,则,则其对应的为图①;若按建议(Ⅱ),令提高后的车票价格为,,则,则其对应的为图③;所以①反映了建议(Ⅰ),③反映了建议(Ⅱ).选B.16.设函数的定义域是,对于以下四个命题:(1)若是奇函数,则也是奇函数;(2)若是周期函数,则也是周期函数;(3)若是单调递减函数,则也是单调递减函数;(4)若函数存在反函数,且函数有零点,则函数也有零点.其中正确的命题共有A.1个B.2个C.3个D.4个【答案】C【解析】本题考查函数的性质,函数与方程.(1)因为是奇函数,所以;则==,所以也是奇函数,即(1)正确;(2)因为是周期函数,所以;则=,所以也是周期函数,即(2)正确;(3)因为是单调递减函数,所以是单调递增函数,即(3)错误;(4)若函数存在反函数,且函数有零点,即与有交点,则交点一定在上,所以与亦有交点,即函数也有零点.(4)正确;所以正确的命题有(1)(2)(4),共有3个.选C.三、解答题:共5题17.直三棱柱中,底面为等腰直角三角形,,是侧棱上一点,设.(1)若,求的值;(2)若,求直线与平面所成的角.【答案】(1)以为坐标原点,以射线、、分别为、、轴,建立空间直角坐标系,如图所示,则,由得,即解得.(2) 解法一:此时;设平面的一个法向量为由得,所以设直线与平面所成的角为,则,所以所以直线与平面所成的角为解法二:联结,则,平面,,平面,所以是直线与平面所成的角;在中,,所以所以所以直线与平面所成的角为【解析】本题考查线面垂直,空间向量的应用.(1)建立恰当的空间直角坐标系,,而,所以,解得.(2),求得平面的法向量,求得,所以直线与平面所成的角为.18.设函数,函数的图象与函数的图象关于轴对称.(1)若,求的值;(2)若存在,使不等式成立,求实数的取值范围.【答案】(1)由得,所以(舍)或,所以.(2)由得,而,当且仅当时取等号所以,所以.【解析】本题考查指数函数、反函数.(1)由得,解得.(2)由得;而,所以,即.19.如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.(1)若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和AC 的长度分别为多少米?(2)在(1)的条件下,建直线通道还需要多少钱?【答案】(1)设长为米,长为米;依题意得,即,=当且仅当,即时等号成立,所以当的面积最大时,和AC的长度分别为750米和1500米(2)在(1)的条件下,因为.由得=,元所以,建水上通道还需要万元.解法二:在中,在中,=在中,元所以,建水上通道还需要万元.解法三:以A为原点,以AB为轴建立平面直角坐标系,则,即,设由,求得,所以所以,元所以,建水上通道还需要万元.【解析】本题考查解三角形,正余弦定理,三角形的面积公式.(1)设长为米,长为米;依题意得,=,即时等号成立,所以当的面积最大时,和AC的长度分别为750米和1500米;(2)由余弦定理得,,在中,,元,所以建水上通道还需要万元.20.设直线与抛物线相交于不同两点,与圆相切于点,且为线段的中点.(1)若是正三角形(为坐标原点),求此三角形的边长;(2)若,求直线的方程;(3)试对进行讨论,请你写出符合条件的直线的条数(只需直接写出结果). 【答案】(1)设的边长为,则的坐标为所以所以此三角形的边长为.(2)设直线当时,符合题意当时,=,,,舍去综上所述,直线的方程为:(3)时,共2条;时,共4条;时,共1条.【解析】本题考查抛物线的标准方程,直线与圆锥曲线的位置关系.(1)设的边长为,由题意得解得.(2)当时,符合题意;当时,联立方程,套用根与系数的关系求得:,舍去;综上所述,直线的方程为.(3)时,共2条;时,共4条;时,共1条.21.已知是上的奇函数,,且对任意都成立.(1)求、的值;(2)设,求数列的递推公式和通项公式;(3)记,求的值.【答案】(1)对等式,令,所以令,所以(2)取,可得,即,所以而所以数列的递推公式为故所以数列的通项公式为.(3)由(2)代入得++++=则【解析】本题考查函数的性质,数列的通项与求和.(1)令;令,求得;(2)取得,而累乘得.(3)由(2)代入得,,所以.。
2017年上海市闵行区高考数学二模试卷一、填空题(本题共12小题,满分54分)1.方程log3(2x+1)=2的解是.2.已知集合M={x||x+1|≤1},N=﹣{﹣1,0,1},那么M∩N=.3.若复数z1=a+2i,a2=2+i(i是虚数单位),且z1z2为纯虚数,则实数a=.4.直线(t为参数)对应的普通方程是.5.若(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),且b=4c,则a的值为.6.某空间几何体的三视图如图所示,则该几何体的侧面积是7.若函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点,则实数a的取值范围是.8.在约束条件|x+1|+|y﹣2|≤3下,目标函数z=x+2y的最大值为.9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯的概率是.10.已知椭圆x2+=1(0<b<1),其左、右焦点分别为F1、F2,|F1F2|=2c.若此椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,则b的最大值为.11.已知定点A(1,1)、动点P在圆x2+y2=1上,点P关于直线y=x的对称点为P′,向量=,O是坐标原点,则||的取值范围是.12.已知递增数列{a n}共有2017项,且各项均不为零,a2017=1,如果从{a n}中任取两项a i,a j,当i<j时,a j﹣a i仍是数列{a n}中的项,则数列{a n}的各项和S2017=.二、填空题(本大题共4小题,每小题5分,共20分)13.设、分别是两条异面直线l1、l2的方向向量,向量、的夹角的取值范围为A.l1、l2所成的角的取值范围为B,则“a∈A”是“a∈B”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件14.将函数y=sin(x﹣)图象上的点P(,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为15.某条公共汽车线路收支差额y与乘客量x的函数关系如图所示(收支差额=车票收入﹣支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则()A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)16.设函数y=f(x)的定义域是R,对于以下四个命题:(1)若y=f(x)是奇函数,则y=f(f(x))也是奇函数;(2)若y=f(x)是周期函数,则y=f(f(x))也是周期函数;(3)若y=f(x)是单调递减函数,则y=f(f(x))也是单调递减函数;(4)若函数y=f(x)存在反函数y=f﹣1(x),且函数y=f(x)﹣f﹣1(x)有零点,则函数y=f(x)﹣x也有零点.其中正确的命题共有()A.1个 B.2个 C.3个 D.4个三、解答题(本大题共5小题,共76分)17.(14分)直三棱柱ABC﹣A1B1C1中,底面ABC为等腰三角形,AB⊥AC,AB=AC=2,AA1=4,M是侧棱CC1上一点,设MC=h.(1)若BM⊥A1C,求h的值;(2)若h=2,求直线BA1与平面ABM所成的角.18.(14分)设函数f(x)=2x,函数g(x)的图象与函数f(x)的图象关于y 轴对称.(1)若f(x)=4g(x)+3,求x的值;(2)若存在x∈[0,4],使不等式f(a+x)﹣g(﹣2x)≥3成立,求实数a的取值范围.19.(14分)如图所示,∠PAQ是某海湾旅游区的一角,其中∠PAQ=120°,为了营造更加优美的旅游环境,旅游区管委员会决定在直线海岸AP和AQ上分别修建观光长廊AB和AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价为120万元,同时在线段BC上靠近点B 的三等分点D处建一个观光平台,并建水上直线通道AD(平台大小忽略不计),水上通道的造价是1000元/米.(1)若规划在三角形ABC区域内开发水上游乐项目,要求△ABC的面积最大,那么AB和AC的长度分别为多少米?(2)在(1)的条件下,建直线通道AD还需要多少钱?20.(16分)设直线l 与抛物线y 2=4x 相交于不同两点A 、B ,与圆(x ﹣5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.(1)若△AOB 是正三角形(O 为坐标原点),求此三角形的边长; (2)若r=4,求直线l 的方程;(3)试对r ∈(0,+∞)进行讨论,请你写出符合条件的直线l 的条数(只需直接写出结果)21.(18分)已知y=f (x )是R 上的奇函数,f (﹣1)=﹣1,且对任意x ∈(﹣∞,0),f (x )=f ()都成立.(1)求f (﹣)、f (﹣)的值;(2)设a n =f ()(n ∈N*),求数列{a n }的递推公式和通项公式;(3)记T n =a 1a n +a 2a n ﹣1+a 3a n ﹣2+…+a n a 1,求的值.2017年上海市闵行区高考数学二模试卷参考答案与试题解析一、填空题(本题共12小题,满分54分)1.方程log3(2x+1)=2的解是x=4.【考点】4H:对数的运算性质.【分析】把对数方程化为指数方程,进而解出.【解答】解:方程log3(2x+1)=2化为:2x+1=32,解得x=4.经过验证满足条件.∴原方程的解为:x=4.故答案为:x=4.【点评】本题考查了对数方程化为指数方程,考查了推理能力与计算能力,属于基础题.2.已知集合M={x||x+1|≤1},N=﹣{﹣1,0,1},那么M∩N={﹣1,0} .【考点】1E:交集及其运算.【分析】根据绝对值不等式的解法求出集合M,进而根据交集的定义求出其交集可得答案.【解答】解:分析可得,M为不等式|x+1|≤1的解集,则M={x|﹣2≤x≤0},N={﹣1,0,1},故集合M∩N={﹣1,0},故答案为:{﹣1,0}.【点评】本题考查集合的交集运算,首先分析集合的元素,再求集合的交集,属于基础题.3.若复数z1=a+2i,a2=2+i(i是虚数单位),且z1z2为纯虚数,则实数a=1.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数z1=a+2i,a2=2+i(i是虚数单位),且z1z2=(a+2i)(2+i)=2a﹣2+(4+a)i为纯虚数,∴2a﹣2=0,4+a≠0,解得实数a=1.故答案为:1.【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.4.直线(t为参数)对应的普通方程是x+y﹣1=0.【考点】QJ:直线的参数方程.【分析】利用加减消元法消去参数t,即可得到直线的普通方程.【解答】解:两个方程相加得x+y﹣1=0,故答案为:x+y﹣1=0.【点评】本题考查了参数方程与普通方程的转化,属于基础题.5.若(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),且b=4c,则a的值为16.【考点】DB:二项式系数的性质.【分析】利用(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),可得:c=2n,b=2n﹣1=n•2n﹣1,又b=4c,解得n.即可得出a.【解答】解:由(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),可得:c=2n,b=2n﹣1=n•2n﹣1,又b=4c,∴n•2n﹣1=4×2n,解得n=8.∴a==16.故答案为:16.【点评】本题考查了二项式定理的展开式及其应用,考查了推理能力与计算能力,属于基础题.6.某空间几何体的三视图如图所示,则该几何体的侧面积是4π【考点】L!:由三视图求面积、体积.【分析】观察三视图.得到这个几何体为圆锥,圆锥的高为6,底面圆的直径为4,再利用勾股定理计算出母线长,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式求解.【解答】解:这个几何体为圆锥,圆锥的高为6,底面圆的直径为4,所以圆锥的母线长==2,所以该几何体的侧面积=•4π•2=4π.故答案为:4π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.7.若函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点,则实数a的取值范围是[﹣,1] .【考点】52:函数零点的判定定理.【分析】函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点⇔方程x+a=在区间[0,1]上有解.⇔函数y=x+a,y=的图象在区间[0,1]上有交点.如图在同一坐标系内画出函数y=x+a,y=的图象,结合图象可得【解答】解:函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点⇔方程x+a=在区间[0,1]上有解.⇔函数y=x+a,y=的图象在区间[0,1]上有交点.如图在同一坐标系内画出函数y=x+a,y=的图象,结合图象可得:0+a≤()0,且1+a≥()1⇒﹣≤a≤1实数a的取值范围是[﹣,1]故答案为:[﹣,1],【点评】本题考查了函数的零点,函数与方程思想、数形结合思想,属于中档题.8.在约束条件|x+1|+|y﹣2|≤3下,目标函数z=x+2y的最大值为9.【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【解答】解:由z=x+2y得y=x+z,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x由图象可知当直线经过点A(﹣1,5)时,直线在y轴的截距最大,此时z也最大,代入目标函数z=﹣1+2×5=9,即目标函数的最大值为9;故答案为:9.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯的概率是.【考点】CF:几何概型.【分析】这名学生在上学路上,在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯是指事件“这名学生在第一个路口没有遇到红灯,且在乙路口遇到红灯”,从而可求概率.【解答】解:在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯,即第一个路口遇到绿灯,第二个路口遇到红灯,由相互独立事件的同时发生得到所以概率为;故答案为:.【点评】本题以实际问题为载体,考查相互独立事件的概率,考查学生分析解决问题的能力.10.已知椭圆x2+=1(0<b<1),其左、右焦点分别为F1、F2,|F1F2|=2c.若此椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,则b的最大值为.【考点】K4:椭圆的简单性质.【分析】利用椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,求出P的横坐标,进而可得c的范围,即可得出结论.【解答】解:设P(x,y),则∵椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,∴|PF1|+|PF2|=2(﹣x)=2a,∴x=﹣a,∴﹣a≤﹣a≤a,∴≤2a=2,∴c,∴1﹣b2≥,∵0<b<1,∴0<b≤.∴b的最大值为.故答案为.【点评】本题考查椭圆的定义,等差中项的应用,考查学生的计算能力,属于中档题.11.已知定点A(1,1)、动点P在圆x2+y2=1上,点P关于直线y=x的对称点为P′,向量=,O是坐标原点,则||的取值范围是[,] .【考点】J9:直线与圆的位置关系.【分析】用坐标表示出||,利用直线与圆的位置关系,即可求出||的取值范围.【解答】解:设P(x,y),则P′(y,x),∵=,∴Q(y+1,x+1),∴=(y﹣x+1,x﹣y+1),∴||=,设t=x﹣y,则∵x2+y2=1,∴≤1,∴|t|,∴||=∈[,].故答案为[,].【点评】本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.12.已知递增数列{a n}共有2017项,且各项均不为零,a2017=1,如果从{a n}中任取两项a i,a j,当i<j时,a j﹣a i仍是数列{a n}中的项,则数列{a n}的各项和S2017= 1009.【考点】8E:数列的求和.【分析】递增数列{a n}共有2017项,且各项均不为零,a2017=1,可得0<a1<a2<…<a2016<a2017=1,又a1<0,可得1﹣a1>1,因此0<a2017﹣a2016<a2017﹣a2015<…<a2017﹣a1<1,根据上述每项均在数列{a n}中,可得a2017﹣a2016=a1,a2017﹣a2015=a2,…,a2017﹣a1=a2016.进而得出答案.【解答】解:∵递增数列{a n}共有2017项,且各项均不为零,a2017=1,∴0<a1<a2<…<a2016<a2017=1,若a1<0,则1﹣a1>1,∴0<a2017﹣a2016<a2017﹣a2015<…<a2017﹣a1<1,且上述每项均在数列{a n}中,∴a2017﹣a2016=a1,a2017﹣a2015=a2,…,a2017﹣a1=a2016.即a2016+a1=a2015+a2=…=a1+a2016=a2017=1.数列{a n}的各项和2S2017=2017+1.S2017=1009.故答案为:1009.【点评】本题考查了数列递推关系、数列的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.设、分别是两条异面直线l1、l2的方向向量,向量、的夹角的取值范围为A.l1、l2所成的角的取值范围为B,则“a∈A”是“a∈B”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】分别求出A、B的范围根据集合的包含关系判断即可.【解答】解:向量、的夹角的取值范围为A,故A∈[0,π],l1、l2所成的角的取值范围为B,则B=[0,],故“a∈A”是“a∈B”必要不充分条件,故选:C.【点评】本题考查了角的范围,考查集合的包含关系,是一道基础题.14.将函数y=sin(x﹣)图象上的点P(,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】将x=代入得:t=,进而求出平移后P′的坐标,进而得到s的最小值.【解答】解:将x=代入得:t=sin=,进而求出平移后P′的坐标,将函数y=sin(x﹣)图象上的点P(,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=±+2kπ,k∈Z,则s=±+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.【点评】本题考查的知识点是函数y=Asin(ωx+φ)(A>0,ω>0)的图象和性质,难度中档.15.某条公共汽车线路收支差额y与乘客量x的函数关系如图所示(收支差额=车票收入﹣支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则()A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)【考点】3O:函数的图象.【分析】设目前函数为y=kx﹣b,得出建议后的函数,比较建议前后的斜率与截距即可得出答案.【解答】解:设目前车票价格为k,支出费用为b,则y=kx﹣b(k>0),若按建议(I)减少支出费用,设减少后的支出费用为b1(b1<b),则y=kx﹣b1,∴图①反映了建议(I);若提高车票价格,设提高后的车票价格为k1(k1>k),则y=k1x﹣b,∴图③反映了建议(II).故选B.【点评】本题考查了函数图象的变换,属于中档题.16.设函数y=f(x)的定义域是R,对于以下四个命题:(1)若y=f(x)是奇函数,则y=f(f(x))也是奇函数;(2)若y=f(x)是周期函数,则y=f(f(x))也是周期函数;(3)若y=f(x)是单调递减函数,则y=f(f(x))也是单调递减函数;(4)若函数y=f(x)存在反函数y=f﹣1(x),且函数y=f(x)﹣f﹣1(x)有零点,则函数y=f(x)﹣x也有零点.其中正确的命题共有()A.1个 B.2个 C.3个 D.4个【考点】3K:函数奇偶性的判断.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:(1)若y=f(x)是奇函数,则f(﹣x)=﹣f(x),∴f(f(﹣x))=f(﹣f(x))=﹣f(f(x)),也是奇函数,正确;(2)若y=f(x)是周期函数,则f(x+T)=f(x),f(f(x+T))=f(f(x))也是周期函数,正确;(3)若y=f(x)是单调递减函数,则y=f(f(x))是单调递增函数,不正确;(4)若函数y=f(x)存在反函数y=f﹣1(x),且函数y=f(x)﹣f﹣1(x)有零点,即y=f(x)与y=f﹣1(x)有交点,则函数y=f(x)﹣x也有零点,正确.故选C.【点评】本题考查函数的性质,考查反函数,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共5小题,共76分)17.(14分)(2017•松江区二模)直三棱柱ABC﹣A1B1C1中,底面ABC为等腰三角形,AB⊥AC,AB=AC=2,AA1=4,M是侧棱CC1上一点,设MC=h.(1)若BM⊥A1C,求h的值;(2)若h=2,求直线BA1与平面ABM所成的角.【考点】MI:直线与平面所成的角;LO:空间中直线与直线之间的位置关系.【分析】(1)以A为坐标原点,以射线AB、AC、AA1分别为x、y、z轴建立空间直角坐标系,利用=0,求h的值;(2)求出平面ABM的一个法向量,利用夹角公式,求直线BA1与平面ABM所成的角.【解答】解:(1)以A为坐标原点,以射线AB、AC、AA1分别为x、y、z轴建立空间直角坐标系,如图所示,则B(2,0,0),M(0,2,h),A1(0,0,4),C(0,2,0)=(﹣2,2,h),=(0,2,﹣4)由BM⊥A1C得,=0,即2×2﹣4h=0解得h=1;(2)M(0,2,2),=(2,0,0),=(0,2,2),=(﹣2,0,4),设平面ABM的一个法向量为=(x,y,z),则,取=(0,1,﹣1),设直线BA1与平面ABM所成的角为θ,则sinθ=||=,∴直线BA1与平面ABM所成的角为arcsin.【点评】本题考查棱柱的结构特征,直线与平面所成的角,考查转化思想,计算能力,是中档题.18.(14分)(2017•松江区二模)设函数f(x)=2x,函数g(x)的图象与函数f(x)的图象关于y轴对称.(1)若f(x)=4g(x)+3,求x的值;(2)若存在x∈[0,4],使不等式f(a+x)﹣g(﹣2x)≥3成立,求实数a的取值范围.【考点】3R:函数恒成立问题;3T:函数的值.【分析】(1)依题意知2x=4•2﹣x+3,整理得:22x﹣3•2x﹣4=0,解之即可求得x 的值;(2)由f(a+x)﹣g(﹣2x)≥3得2a+x﹣22x≥3,移项可得2a+x≥22x+3⇒2a≥2x+3•2﹣x,利用基本不等式可得2x+3•2﹣x≥2,当且仅当2x=3•2﹣x,即x=log43时取等号,继而可求得实数a的取值范围.【解答】解:(1)由f(x)=4g(x)+3得2x=4•2﹣x+3.…2分整理得:22x﹣3•2x﹣4=0,所以2x=4或2x=﹣1(舍).…4分所以x=2.…6分(2)由f(a+x)﹣g(﹣2x)≥3得2a+x﹣22x≥3…8分即2a+x≥22x+3⇒2a≥2x+3•2﹣x…10分而2x+3•2﹣x≥2,当且仅当2x=3•2﹣x,即x=log43∈[0,4]时取等号,…12分所以2a≥2,所以a≥1+log23.…14分【点评】本题考查函数恒成立问题,考查等价转化思想与函数与方程思想,考查基本不等式的应用,属于中档题.19.(14分)(2017•松江区二模)如图所示,∠PAQ是某海湾旅游区的一角,其中∠PAQ=120°,为了营造更加优美的旅游环境,旅游区管委员会决定在直线海岸AP和AQ上分别修建观光长廊AB和AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价为120万元,同时在线段BC上靠近点B的三等分点D处建一个观光平台,并建水上直线通道AD(平台大小忽略不计),水上通道的造价是1000元/米.(1)若规划在三角形ABC区域内开发水上游乐项目,要求△ABC的面积最大,那么AB和AC的长度分别为多少米?(2)在(1)的条件下,建直线通道AD还需要多少钱?【考点】HU:解三角形的实际应用.【分析】(1)设AB=xm,AC=ym,则800x+400y=1200000,即2x+y=3000,表示面积,利用基本不等式,可得结论;(2)利用向量方法,求出AD,即可得出结论.【解答】解:(1)设AB=xm,AC=ym,则800x+400y=1200000,即2x+y=3000,S△ABC====281250m3,当且仅当2x=y,即x=750m,y=1500m时等号成立,∴△ABC的面积最大,那么AB和AC的长度分别为750米和1500米;(2)在(1)的条件下,=+,∴==250000,∴||=500,∴1000×500=500000元,即建直线通道AD还需要50万元.【点评】本题考查三角形中面积的求法,考查向量知识的运用,考查化简整理的运算能力,属于中档题.20.(16分)(2017•松江区二模)设直线l与抛物线y2=4x相交于不同两点A、B,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.(1)若△AOB是正三角形(O为坐标原点),求此三角形的边长;(2)若r=4,求直线l的方程;(3)试对r∈(0,+∞)进行讨论,请你写出符合条件的直线l的条数(只需直接写出结果)【考点】K8:抛物线的简单性质.【分析】(1)若△AOB是正三角形(O为坐标原点),求出A的坐标,即可求此三角形的边长;(2)若r=4,设直线l:x=ky+b,分类讨论,即可求直线l的方程;(3)根据直线与圆的位置关系,可得结论.【解答】解:(1)设△AOB的边长为a,则A(a,),∴,∴;(2)设直线l:x=ky+b,k=0时,x=1,x=9符合题意;k≠0时,方程联立可得y2﹣4ky﹣4b=0,设A(x1,y1),B(x2,y2),则y1+y2=4k,x1+x2=4k2+2b,∴M(2k2+b,2k),∵k AB•k OM=﹣1,∴k OM==﹣k,∴b=3﹣2k2,∴△=16(k2+b)>0,∴0<k2<3,∵4=r==2,∴k2=3∉(0,3),舍去,综上所述,直线l的方程为x=1,x=9;(3)2<r<4时,直线l有4条;r∈(0,2]∪[4,5)时,2条;r∈[5,+∞),1条.【点评】本题考查直线与抛物线、圆的位置关系的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.21.(18分)(2017•闵行区二模)已知y=f(x)是R上的奇函数,f(﹣1)=﹣1,且对任意x∈(﹣∞,0),f(x)=f()都成立.(1)求f(﹣)、f(﹣)的值;(2)设a n=f()(n∈N*),求数列{a n}的递推公式和通项公式;(3)记T n=a1a n+a2a n﹣1+a3a n﹣2+…+a n a1,求的值.【考点】8H:数列递推式;8E:数列的求和.【分析】(1)对等式f(x)=f(),令x=﹣1,则f(﹣1)=﹣,可得,f(﹣)=﹣.令x=﹣,可得f(﹣)=﹣2=2,解得.=a n,利(2)令x=﹣,则=﹣n,=,可得a n+1用a n=••…••a1,即可得出a n.(3)T n=a1a n+a2a n﹣1+a3a n﹣2+…+a n a1=++…+==.进而得出.【解答】解:(1)对等式f(x)=f(),令x=﹣1,则f(﹣1)=﹣=﹣1,可得=1,∴f(﹣)=﹣=﹣1.令x=﹣,可得f(﹣)=﹣2=2=﹣1,解得=﹣.=a n,(2)令x=﹣,则=﹣n,∴=,∴a n+1又a 1=f (1)=﹣f (1)=1.∴a n =••…••a 1=•…•1×1=.∴a n =.(3)T n =a 1a n +a 2a n ﹣1+a 3a n ﹣2+…+a n a 1=++…+==.∴T n +1=.∴==0.【点评】本题考查了函数关系式、数列递推关系、“累乘求积“方法、排列与组合计算公式、二项式定理,考查了推理能力与计算能力,属于难题.。
闵行区2017年中考二模数学试卷 2017.4.12一、选择题:(本大题共6题,每题4分,共24分) 1、下列计算正确的是( )(A )235()a a = (B )236()a a = (C )532a a a ÷= (D )22(2)4a a a += 2、下列二次根式中,与2是同类二次根式的是( )(A )12(B )4 (C )12 (D )243、已知a b >,且c 是非零实数,那么下列结论一定正确的是( ) (A )ac bc < (B )22ac bc < (C )ac bc > (D )22ac bc >4、某居民小区开展节约用水活动,3月份各户用水量比2月份有所下降,不同节水量的户数统计如下表所示:节水量(立方米)1 2 3 户数2012060那么3月份平均每户节水量是( )(A )1.9立方米 (B )2.2立方米 (C )33.33立方米 (D )66.67立方米 5、如图,已知向量a ,b ,c ,那么下列结论正确的是( )(A )a b c += (B )b c a += (C )a c b += (D )a c b +=- 6、下列关于圆的切线的说法正确的是( ) (A )垂直于圆的半径的直线是圆的切线 (B )与圆只有一个公共点的射线是圆的切线 (C )经过半径一端且垂直于半径的直线是圆的切线(D )如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线二、填空题(本大题共12题,每题4分,满分48分)7、计算:32-= .8、在实数范围内分解因式:=-23a a . 9、 函数2-=x xy 的定义域是 .10、方程134=-x 的解是 .11、如果关于x 的方程()03222=++-m x m x 有两个不相等的实数根,那么取值m 范围是 . 12、将抛物线132++=x x y 向下平移两个单位,那么所得抛物线的表达式为 .13、将分别写有“创建”、“文明”、“城市”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建文明城市”的概率为 .14、某校随机抽取80名同学进行关于“创全”的调查问卷,通过调查发现其中76人对“创全”了解的比较全面,由此可以估计全校的1500名学生中,对于“创全”了解的比较全面的学生约有 人. 15、在梯形ABCD 中,BC AD //,F 、E 分别是变边CD AB 、的中点,如果6=AD ,10=EF ,那么=BC .16、如图,已知在圆O 中,半径OC 垂直于弦AB ,垂足为点D ,如果13=OC ,24=AB ,那么=OD .17、如图,在三角形ABC 中,点D 在边AC 上,∠=ABD ∠ACB ,如果,5,5,4===∆∆CD S ABD S BCD 那么=AB 米.18、如图,在︒=∠∆90C ABC Rt 中,,,6,8==BC AC 点上,、分别在边、AC AB E D 将翻折,沿直线DE ADE ∆点A 的对应点在边AB 上,联结C A ',如果==BD AA C A 那么,''.三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 计算:122111894821--+-+20.(本题满分10分)解方程:2226444y x x xy y -⎧⎨++=⎩=21.(本题共2小题,其中第(1)小题4分,第(2)小题6分,满分10分)在直角坐标系xOy 中,函数()120y x x=>的图像上点A 的纵坐标是横坐标的3倍。
闵行区2016学年第二学期九年级质量调研考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.下列计算正确的(A )235()a a =; (B )236a a a ⋅=; (C )532a a a ÷=; (D )22(2)4a a a +=. 2是同类二次根式的是(A; (B(C(D3.已知a > b ,且c 为非零实数,那么下列结论一定正确的是(A )ac bc <; (B )22ac bc <; (C )ac bc >; (D )22ac bc >. 4.某居民小区开展节约用水活动,3月份各户用水量比2月份有所下降,不同节水量的户数统计如下表所示:(A )1.9立方米; (B )2.2立方米: (C )33.33立方米; (D )66.67立方米.5.如图,已知向量a r 、b r 、c r,那么下列结论正确的是 (A )+a b c =r r r ; (B )b c a +=r r r ; (C )a c b +=r r r ; (D )a c b +=-r r r . 6.下列关于圆的切线的说法正确的是 (A )垂直于圆的半径的直线是圆的切线; (B )与圆只有一个公共点的射线是圆的切线;(C )经过半径一端且垂直于半径的直线是圆的切线;(D )如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:2= ▲ .8.在实数范围内分解因式:324a a - ▲ .a rb rc r(第5题图)9.函数2xy x =-的定义域是 ▲ . 101=的解是 ▲ .11.如果关于x 的方程222(3)0x m x m -++=有两个不相等的实数根,那么m 的取值范围是 ▲ .12.将抛物线231y x x =++向下平移2个单位,那么所得抛物线的表达式为 ▲ . 13.将分别写有“创建”、“文明”、“城市”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建文明城市”的概率是 ▲ .14.某校随机抽取80名同学进行关于“创全”的调查问卷,通过调查发现其中76人对 “创全”了解的比较全面,由此可以估计全校的1500名同学中,对于“创全”了解 的比较全面的约有 ▲ 人.15.在梯形ABCD 中,AD // BC , E 、F 分别是边AB 、CD 的中点.如果AD = 6, EF = 10,那么BC = ▲ .16.如图,已知在⊙O 中,半径OC 垂直于弦AB ,垂足为点D .如果OC = 13,AB = 24,那么OD = ▲ .17.如图,在△ABC 中,点D 在边AC 上,∠ABD =∠ACB .如果4ABD S ∆=,5BCD S ∆=,CD = 5,那么AB = ▲ 米. 18.如图,在Rt △ABC 中,∠C = 90º,AC = 8,BC = 6,点D 、E 分别在边AB 、AC 上.将△ADE 沿直线DE 翻折,点A 的对应点A ′在边AB 上,联结A ′C .如果A ′C = A ′A ,那么BD = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)129-. 20.(本题满分10分)解方程:2226,44 4.y x x x y y -=⎧⎨++=⎩A B C D (第17题图) A B O C D (第16题图) AB C (第18题图)21.(本题共2小题,其中第(1)小题4分,第(2)小题6分,满分10分)在直角坐标系xOy 中,函数12y x=(x > 0)的图像上点A 的纵坐标是横坐标的3倍.(1)求点A 的坐标;(2)设一次函数y k x b =+(0b ≠)的图像经过点A ,且与y 轴相交于点B .如果OA = AB ,求这个一次函数的解析式.22.(本题共2小题,其中第(1)小题4分,第(2)小题6分,满分10分) 小明与班级数学兴趣小组的同学在学校操场上测得旗杆BC 在地面上的影长AB 为12米.同一时刻,测得小明在地面的影长为2.4米,小明的身高为1.6米. (1)求旗杆BC 的高度;(2)兴趣小组活动一段时间后,小明站在A 、B 两点之间的D 处(A 、D 、B 三点在一条直线上),测得旗杆BC 的顶端C 的仰角为α,且tan 0.8α=,求此时小明与旗杆之间的距离.23.(本题共2小题,其中第(1)小题5分,第(2)小题7分,满分12分) 如图,在△ABC 中,∠C = 90°,点D 为边BC 上一点,点E 为边AB 的中点,过点A 作AF // BC ,交DE 的延长线于点F ,联结BF . (1)求证:四边形ADBF 是平行四边形;(2)当∠ADF =∠BDF 时,求证:22BD BC BE ⋅=.A B C (第22题图)AFBDCE(第23题图)24.(本题共3小题,其中每小题各4分,满分12分)如图,在平面直角坐标系xOy中,抛物线2(1)3y x m x m=--+经过点A(1-,0),且与y轴相交于点B.(1)求这条抛物线的表达式及点B的坐标;(2)设点C是所求抛物线上一点,线段BC与x轴正半轴相交于点D.如果35 BDCD=,求点C的坐标;(3)在(2)条件下,联结AB.求∠ABC的度数.25.(本题共3小题,其中第(1)小题各4分,第(2)、(3)小题各5分,满分14分)如图,在梯形ABCD中,AD // BC,∠B = 90°,AB = 4,BC = 9,AD = 6.点E、F 分别在边AD、BC上,且BF = 2DE,联结FE.FE的延长线与CD的延长线相交于点P.设DE = x,PEy EF=.(1)求y关于x的函数解析式,并写出函数的定义域;(2)当以ED为半径的⊙E与以FB为半径的⊙F外切时,求x的值;(3)当△AEF∽△PED时,求x的值.O xy(第24题图)AB CDEFP(第25题图)AB CD(备用图)闵行区2016学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.A ; 3.D ; 4.B ; 5.D ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.2-8.2(4)a a -;9.2x ≠;10.x = 1;11.32m >-;12.231y x x =+-;13.16;14.1425;15.14;16.5;17.6;18.152.三、解答题:(本大题共7题,满分78分) 19.解:原式231)=+…………………………………………… (8分)0=.……………………………………………………………………(2分)20.解:由②得 2(2)4x y +=.即得 22x y +=,22x y +=-.…………………………………………(2分) 原方程组化为 26,22y x x y -=⎧⎨+=⎩; 26,2 2.y x x y -=⎧⎨+=-⎩………………………………………………(4分) 解得原方程组的解是111,4x y =-⎧⎨=⎩; 222,2.x y =-⎧⎨=⎩…………………………………………………………(4分)21.解:(1)由题意,可设点A 的横坐标为a ,则坐标系为3a .∴ 123a a=。
…………………………………………………………(2分)解得 12a =,22a =-(不合题意,舍去)。
……………………… (1分)点A 的坐标为A (2,6).……………………………………………(1分) (2)当 x = 0时,得 y k x b b =+=.∴ 点B 的坐标为B (0,b ).………………………………………(1分) 由 OA = AB ,利用两点间的距离公式, 得1分) 解得 112b =,20b =(不合题意,舍去).…………………………(1分) 即得 12y k x =+.∵ 函数12y k x =+的图像经过点A (2,6), ∴ 2126k +=.解得 3k =-.…………………………………………………………(2分)∴ 所求一次函数的解析式为312y x =-+.………………………(1分)22.解:(1)由题意,得121.62.4BC =.……………………………………………(2分) 解得 BC = 8.…………………………………………………………(1分) 答:旗杆高度为8米.…………………………………………………(1分) (2)如图,DE ⊥AC ,且DE = 1.6(米).过点E 作EF ⊥BC ,垂足为点F .则 BF = DE = 1.6(米). ∴ CF = 8 -1.6 = 6.4(米).…………………………………………(2分)在Rt △AEF 中,由题意,得 tan tan 0.8CFCEF EFα∠===.……(1分)∴ 6.480.80.8CF EF ===(米).………………………………………(2分) 即得 BD = 8(米).答:此时小明与旗杆之间的距离为8米.……………………………(1分)23.证明:(1)∵ AF // BC ,∴ ∠AFE =∠BDE .………………………………(1分)∵ 点E 是边AB 的中点,∴ AE = BE . ………………………(1分) 在△AFE 和△BDE 中,∵ ∠AFE =∠BDE ,∠AEF =∠BED ,AE = BE , ∴ △AFE ≌△BDE (A.A.S ).∴ AF = BD .………………………………………………………(2分) 又∵ AF // BD ,∴ 四边形ADBF 是平行四边形.……………(1分) (2)∵ ∠ADF =∠BDF ,∠AFD =∠BDF ,∴ ∠ADF =∠AFD .∴ AD = AF .………………………………………………………(1分) 又∵ 四边形ADBF 是平行四边形, ∴ 四边形ADBF 是菱形.…………………………………………(1分) ∴ DF ⊥AB ,即得 ∠BED = 90°. ∵ ∠C = 90°,∴ ∠BED =∠C .又∵ ∠DBE =∠ABC ,∴ △BDE ∽△ABC .…………………(2分)∴ BD BE AB BC=,即得 BD BC BE AB ⋅=⋅.………………………(1分) ∵ 点E 为边AB 的中点,∴ 2AB BE =.∴ 22BD BC BE ⋅=.………………………………………………(2分)24.解:(1)由抛物线2(1)3y x m x m =--+经过点A (1-,0),得 1130m m +-+=.…………………………………………………(1分) 解得 1m =-.…………………………………………………………(1分) ∴ 所求抛物线的表达式为223y x x =--.…………………………(1分) 当 x = 0时,得 3y =-.点B 坐标为(0,3-).………………………………………………(1分)(2)过点C 作CE ⊥x 轴,垂足为点E .则 CE // OB .∴ 35OB BD CE CD ==.…………………………………(1分)∵ 点B 坐标为(0,3-),∴ OB = 3.∴ CE = 5,即得点C 的纵坐标为5.………………………………(1分) 由点C 是抛物线223y x x =--上一点,得 2235x x --=.解得 14x =,22x =-(不合题意,舍去).…………………………(1分) ∴ 点C 坐标为(4,5).……………………………………………(1分) (3)联结AC ,交y 轴于点F .由A (-1,0),C (4,5),得 AE = CE = 5. 又由 ∠AEC = 90°,得 ∠CAE =∠AFO = 45°.即得 OA = OF = 1.…………………………………………………(1分)利用两点间距离公式,得 AB ==AF ==AC =1分)∴AF AB ==,AB AC ==.∴AF AB AB AC =…………………………………………………(1分) 又∵ ∠BAF =∠CAB ,∴ △ABF ∽△ABC . ∴ ∠ABC =∠AFB = 45°.……………………………………………(1分)25.解:(1)∵ BF = 2DE ,DE = x ,∴ BF = 2x .又∵ BC = 9,∴ 92CF x =-.……………………………………(1分)∵ AD // BC ,∴ PE DEPF CF=. 又∵ PEy EF =,∴921x y x y =-+.………………………………(1分) ∴ 所求函数解析式为93xy x=-.…………………………………(1分) 函数定义域为03x <<.………………………………………………(1分) (2)过点E 作EG ⊥BC ,垂足为点G .则 EG = AB = 4,6AE BG x ==-. ∴ 6263FG x x x =--=-.…………………………………………(1分)在Rt △EFG 中,利用勾股定理,得 EF =1分) ∵ ⊙E 与⊙F 外切,∴ ED +BF = EF .…………………………(1分)即得 2x x +=………………………………………(1分)解得 139x =.…………………………………………………………(1分) (3)∵ ∠AEF =∠PED ,∴ 当△AEF ∽△PED 时,有两种情况:…(1分)(ⅰ)当∠EAF =∠PDE 时,得 AF // PD .∴ PE DEEF AE=.∴6xy x=-,即得693x x x x =--. 解得 132x =,20x =(不合题意,舍去).…………………………(2分) (ⅱ)当∠EAF =∠P 时,则 ∠AFE =∠PDE .过点E 作EM // CD ,交边BC 于点M . 则 93FM x =-.∵ DE // CF ,∴ △PDE ∽△PCF . 又∵ EM // PC ,∴ △EFM ∽△FCP . ∴ △AEF ∽△EFM .∴ AE EFEF FM =,即得 =.解得 1x =20x <(舍去).…………………(2分)∴ 当△AEF ∽△PDE 时,32x =.。