模式植物-拟南芥
- 格式:pptx
- 大小:13.42 MB
- 文档页数:48
模式植物拟南芥的去雄和授粉实验
授粉是高等植物有性生殖的关键环节,这一过程包括花粉在柱头细胞上黏附、花粉的水合、花粉管的萌发及伸长等,其中涉及很多复杂而有序的调控机制,近年来人们在这一方面的分子机制研究中已取得诸多进展。
本研究鉴定到拟南芥UPS基因的两个不同位点的T-DNA插入突变体,这两个突变体的杂合体自交后代中杂合体植株数与野生型植株数的比例接近1∶1,没有纯合突变体。
分析杂合体植株与野生型植株互交后代基因型发现,该基因的突变导致雄配子体传递率显著下降。
但是亚历山大染色、DAPI染色和体外萌发实验表明杂合体植株的花粉在形态、活性等方面与野生型植株的花粉相比没有明显差异。
但是柱头表面突变的花粉粒容易被表面活性剂NP-40冲洗掉,突变体的花粉粒不能在柱头上萌发并生长出花粉管。
ups突变体的成熟花药中含有两种结构不同的花粉粒,一种与野生型类似,均匀分布大量电子透明的小液泡,约占花粉的62%。
另一种花粉富含许多大液泡,细胞质的电子密度也明显增大,这类花粉粒的线粒体内膜也变地较为模糊。
表明ups突变导致花粉的液泡和线粒体发育出现异常,可能是突变体花粉粒不能在柱头上萌发的原因。
GUS活性分析及原位杂交结果显示UPS在花粉发育过程中表达,11时期花药(花药开裂前,药室退化为两室)中
的花粉UPS表达量最高,但到花粉成熟散出时,却检测不到UPS的表达。
本研究通过研究UPS在花粉与柱头互作中的作用,进一步补充花粉与柱头相互作用中基因的调控网络,使人们进一步了解雄配子体基因在花粉与柱头互作中的作用。
拟南芥的基因组和功能分析拟南芥(Arabidopsis thaliana)是一种模式植物,因为它的基因组非常小,具有高度保守性和相对简单的生长环境。
这使得拟南芥成为研究植物基因组和生物学机制的理想模型。
拟南芥的基因组已被完整测序,它包含5条染色体和大约1.15亿个DNA碱基对。
与其他植物的基因组相比,拟南芥的基因组非常小,只有其他植物的1/10到1/25之间。
另外,拟南芥的基因组中的重复元件很少,这使得基因识别和注释变得更加容易。
拟南芥的基因组序列被广泛应用于各种基因研究,包括基因功能和表达分析、代谢组学、转录组学、蛋白质组学、细胞和发育生物学、信号转导和整个基因组水平的遗传和表观遗传研究。
通过对拟南芥基因组的分析,可以发现许多基因的拥有相似的序列、结构和功能,这使得预测其他植物的基因功能变得更容易。
另外,可以通过比较拟南芥与其他植物的基因组序列的异同,确定哪些基因是拟南芥特有的,哪些基因是其他植物所共有的。
拟南芥的基因组研究还有助于研究植物发育和适应的机制。
通过研究拟南芥基因组中与植物生长发育相关的基因,可以揭示植物发育的激素调节、蛋白质相互作用和转录因子网络等重要机制。
这些研究为植物育种、生产和药物开发提供了基础。
除了对基因组的研究,拟南芥的功能分析也被广泛应用于基因功能研究。
对拟南芥进行基因功能研究的方法包括T-DNA插入、CRISPR/Cas9基因编辑等。
这些方法允许破坏植物中的特定基因,以确定该基因在植物发育、代谢和适应等方面的重要性。
通过这些方法,已经确定了许多重要基因的作用,如卷心菜素合成途径中的几个关键酶、植物生长素受体、植物抗病性基因等。
这些研究为植物育种、生产和生物技术的开发提供了基础。
拟南芥的基因组和功能分析为植物研究提供了宝贵的工具和资源,也为植物学家和生物技术研究者提供了更深入的理解植物生物学和基因功能的契机。
拟南芥对光周期变化的调节机制研究拟南芥是一种模式植物,因为其生命周期短,易于培育,基因组较小且已知,被广泛应用于植物生物学研究中。
拟南芥也是一种响应光周期变化的光周期植物,这意味着拟南芥在评估季节变化和调节生长发育方面都非常敏感。
光周期变化对植物的生长发育和生殖有着深远的影响,而拟南芥对于研究光周期变化的调节机制非常有价值。
光周期植物的生长发育受到光周期长度的影响。
光周期是指白天和黑夜的小时数,而这对拟南芥的生长发育有着重要的影响。
在短日照条件下,即白天的小时数少于拟南芥的基本光周期,拟南芥花序发育将被抑制;而在长日照条件下,即白天的小时数超过拟南芥的基本光周期,拟南芥则可以正常开花。
而当光周期接近拟南芥的基本光周期时,其生长发育则对光周期的影响最为敏感。
拟南芥的生长和发育,特别是花序发育,始终受到光周期的制约。
拟南芥的光周期调节机制有着广泛的研究。
在拟南芥中,光周期调节营养生长和发育的方式有两种:一种是通过调节基因表达来实现;另一种则是通过调节植物激素生产和传递来控制。
研究表明,拟南芥的光周期调节机制主要涉及到两个主要的通路:维管素/维管束素(Cytokinin/Gibberellin,CK/GA)和拟南芥素乙醇酸(ethylene)。
CK/GA 通路在拟南芥的光周期调节中起着重要的作用。
CK/GA 通过调整叶绿素生物合成、光合作用和生长素合成,以调节植物的生长和开花。
而在短日照条件下,植物体内维管素含量降低,而拟南芥生长素合成则被抑制,从而阻碍了其花序的发育和开花。
在长日照条件下,植物体内细胞素含量增加,这使得拟南芥花序发育成熟,从而为其开花提供了必要的条件。
与此同时,拟南芥素乙醇酸也参与了光周期调节的过程中。
拟南芥素乙醇酸是一种受制于细胞素的植物激素,它参与抑制细胞分裂、调节植物的生理生化和生长发育。
在不断延长的白天中,拟南芥的素乙醇酸水平逐渐升高,从而调节其生长发育和开花。
总之,光周期作为拟南芥生长发育的一个重要调节因素,对拟南芥的生长发育和生殖有着深远的影响。
拟南芥萌发指标拟南芥萌发指标的研究一、引言拟南芥作为一种重要的模式植物,具有生长周期短、基因组小、易于培养等特点,因此在生物学研究中广泛应用。
了解并掌握拟南芥的萌发指标对于优化农业生产、推动科学研究具有重要意义。
本文将详细介绍拟南芥的萌发指标,包括萌发率、芽长、植株高度等,并通过实验方法与数据分析,探讨其在农业生产、科学研究等领域中的应用。
二、拟南芥的生长特点拟南芥是一种自交不亲和性植物,其种子可以在适宜的温度和水分条件下萌发。
在生长过程中,拟南芥的根系会向土壤中伸展,吸收水分和养分;茎会向上生长,形成植株;叶片会展开进行光合作用。
拟南芥的生长速度较快,因此其萌发指标的变化也相对较快。
三、萌发关键指标1. 萌发率:萌发率是指种子在适宜条件下萌发形成的幼苗所占的比例。
它是评估种子活力的重要指标之一。
2. 芽长:芽长是指幼苗从种皮突破至芽鞘尖端的长度。
它反映了种子的生长潜力和植株的发育状态。
3. 植株高度:植株高度是指幼苗从土壤表面至生长点(即顶部叶鞘)的总长度。
它反映了幼苗的生长速度和健壮程度。
四、实验方法与步骤为了评估拟南芥种子的萌发指标,我们采用了以下实验方法与步骤:1. 准备种子:选择健康、饱满的拟南芥种子,用清水清洗干净,然后用滤纸吸干水分。
2. 设定实验条件:将种子置于适宜的温度(25℃)和湿度(90%)条件下进行萌发。
3. 定期观察记录:在萌发过程中,定期观察种子的萌发情况,记录萌发率、芽长和植株高度等指标。
4. 数据整理与分析:将实验数据整理成表格,并对数据进行统计分析,以评估各萌发指标的变化趋势和相互关系。
五、数据分析与解释通过对实验数据的分析,我们发现拟南芥种子的萌发率、芽长和植株高度等指标在不同时间点上均表现出显著的变化。
其中,萌发率在适宜条件下迅速上升,反映了种子的良好活力;芽长和植株高度也随着时间的推移逐渐增加,表明幼苗正在正常生长。
这些数据为我们提供了关于拟南芥种子萌发过程的直观印象和定量评估。
拟南芥植物基因功能研究拟南芥,是一种小型模式植物,也是植物学家和遗传学家研究植物的重要模型,由于其小、易培养和基因组小且功能多样,拟南芥被广泛应用于植物基因功能研究领域。
基因功能是指基因在生物体内的作用及其调控机制。
而拟南芥基因功能研究这个领域,对于理解生物学的基本规律、开拓新的研究方法和实现绿色农业发展等方面都具有重要作用。
一、拟南芥基因组研究的目的1.发现新基因同人类基因组一样,拟南芥基因组虽然只有25,000个基因,但包含了植物生命中各个关键环节中的基因,例如开花、果实发育、细胞分裂和形态构成等。
拟南芥也被视为是研究其他植物领域的垫脚石,拟南芥基因组研究的一个目的就是通过在其基因组中发现新基因,对于扩大人类对植物基因工程的认知具有重要意义。
2.揭示基因调控机制在拟南芥中,基因的调控是非常复杂的,包括转录和后转录调控。
这些调节机制的研究,能够让我们更进一步地了解到,不同的基因所在的生物体部分是如何相互作用的,那会使我们有机会研究这些交互可能会导致的不良病状。
3.寻找抗病基因病原体和虫害对植物的危害,一直是植物学家们所担心的一个问题,而找出植物的制药基因,能够从分子基础上开展对植物抵抗病原体的研究,也能够为解决粮食安全问题提供更多的资源。
二、拟南芥基因功能研究方法由于拟南芥基因组具有可塑性和许多实验工具,开展拟南芥的基因功能研究显得异常的简单。
目前,关于拟南芥功能的研究方法,主要包括以下几种:1. 整合遗传和基因组学方法先通过遗传学方法,确定目标基因,再进一步使用基因组学技术确立其在基因组上的位置。
这种方法的优点在于定位准确,可以将与给定特征相关的基因数量缩小到较小的范围。
2.基因敲除技术基因敲除是利用RNA 骨架扰动小分子介导的细胞自身保护机制,通过基因克隆进行敲除,破坏载体、导致细胞死亡的一种方法。
该方法将基因关掉,根据有没有出现问题来了解基因起了哪些作用。
3.遗传页面显微镜遗传页面显微镜用于观察拟南芥基因生成物的进化变化,以及基因功能的变化,为了更好地确定基因的发生方式和发生地点。
拟南芥作为模式植物的生物学研究近年来,拟南芥(Arabidopsis thaliana)作为模式植物在生物学领域得到了广泛应用,被誉为“植物界的小鼠”。
拟南芥不仅长得小巧玲珑,生长周期短,而且基因组完全测序,基因、蛋白质相互作用关系和生命过程得以较为完整地研究。
本文将从拟南芥的基本特征,其重要性及应用领域、拟南芥重要的生命过程研究、拟南芥基因和基因组研究等方面进行阐述。
一、拟南芥的基本特征与应用背景拟南芥是一种小型双子叶植物,生长周期为6周左右,在2月左右可以开始种植,到4月底即可形成完整的植株。
它的体型较小,只有20~25cm高,通常在实验室中以种子的形式进行繁殖和种植,研究人员可以在一个小生长舱中同时培育多个拟南芥植株,在不同条件下进行研究。
这些特点使拟南芥成为了理想的研究对象,成为了许多遗传学、生物学和生命科学实验室中的重要实验材料。
利用拟南芥进行生物学研究的典型应用有:发掘新基因、获得新信号途径、了解蛋白质互作和调节、解析生长发育过程、药物发现和创新等。
基于基因和生命科学的研究日益深入,机理的解析和发现正波及到其他领域,拟南芥的作用也因此被赋予越来越重要的价值。
二、拟南芥的生命过程研究研究拟南芥的生活过程,可以深入了解植物的形态构造,生长发育过程、生物功能及其实现机制。
拟南芥的主要发育过程包括种子萌发、茎叶生长、坐果发育及成熟等。
其中种子萌发是拟南芥生命周期中的第一个重要生命过程。
种子萌发过程中与植物的干细胞和分化状态相关的基因也得到了广泛的研究。
例如,与植物根发育有关的基因MSMs,在拟南芥的生长中已被证明是非常重要的基因之一。
MSMs基因没有被完全表达,它通过抑制大部分细胞分化,使得未分化的细胞在生长中不断繁殖。
另外,拟南芥花部的结构也是研究重要的一部分。
拟南芥属于十字花科,花中包含着可供探究的遗传变异和繁殖机制。
现代遗传学的研究证实,在拟南芥的花部有许多性状与基因程度的相互关系,使科学家能够深入探究基因和生命的奥秘,同时为育种学和环境学提供了理论基础。
拟南芥在植物基因学中的作用植物基因学研究的开展,为我们理解植物生长和发育的分子机制提供了基础。
而拟南芥,作为植物基因学中的重要模式生物,在这方面发挥了重要的作用。
在本篇文章中,我们将详细探讨拟南芥在植物基因学中的作用。
一、拟南芥介绍拟南芥(Arabidopsis thaliana)是一种十字花科灌木草本植物,是目前最常用的模式植物之一。
它的生长周期短,易于培养,基因组大小适当,具有遗传多样性和组织学上的可编辑性,这些特点使得拟南芥成为植物基因学研究的优秀模式生物。
二、拟南芥在基因组学研究中的作用拟南芥的基因组大小适宜,基因数量相对较少,并且已经完成了基因组测序。
这为拟南芥的基因功能研究提供了可靠的基础。
通过对拟南芥的基因组序列进行分析和注释,我们可以很好地了解拟南芥的基因组结构和调控机制。
在此基础上,可以更深入地研究植物的发育特点和疾病防治。
例如,在拟南芥的基因组研究中,一个叫做AGAMOUS(AG)的基因被发现对于植物花器官的发育非常关键。
研究发现,在拟南芥中去除AG基因会导致雄蕊变成花瓣,从而改变花的发育。
这一实验为植物的发育研究提供了参考,也为基因工程提供了应用方向。
三、拟南芥在植物信号转导研究中的作用植物对环境的适应和应激响应是通过信号转导途径来完成的。
而拟南芥中的信号转导研究则为我们提供了研究植物内部信号传递机制的有益工具。
目前,对于拟南芥的许多信号转导途径已经被解析。
例如,在植物内源性小分子激素的研究中,IAA是一个重要的分子。
研究发现,拟南芥中的IAA调控基因家族在花芽分化等遗传过程中发挥了关键作用。
这些发现可以为其他植物信号途径的研究提供理论指导。
四、拟南芥在基因表达分析研究中的作用拟南芥中广泛应用的转录组学和蛋白质组学分析技术,则为我们提供了一种研究植物与环境相互作用的途径。
通过对拟南芥各器官和在不同环境条件下的组织的基因表达的监测,我们可以更加深入地了解植物生长和发育的调控机制。
拟南芥详细资料大全拟南芥(Arabidopsis thaliana)又名鼠耳芥,阿拉伯芥,阿拉伯草。
属被子植物门,双子叶植物纲,十字花科植物,拟南芥基因组大约为12500万碱基对和5对染色体。
基本介绍•中文学名:拟南芥•拉丁学名:Arabidopsis thaliana (L.) Heynh.•别称:鼠耳芥•二名法:Arabidopsis thaliana (L.) Heynh.•界:植物界•门:被子植物门•纲:双子叶植物纲•亚纲:五桠果亚纲•目:山柑目•科:十字花科•族:南芥族•属:拟南芥属•种:拟南芥•分布区域:全球除少量地区外均广泛分布形态特征,主要价值,栽培技术,温室中生长,无菌培养,病虫害及防治, 形态特征一年生细弱草本,高20-35厘米,被单毛与分枝毛。
茎不分枝或自中上部分枝,下部有时为淡紫白色,茎上常有纵槽,上部无毛,下部被单毛,偶杂有2叉毛。
基生叶莲座状,倒卵形或匙形,长1-5厘米,宽3-15毫米,顶端钝圆或略急尖,基部渐窄成柄,边缘有少数不明显的齿,两面均有2-3叉毛;茎生叶无柄,披针形,条形、长圆形或椭圆形,长5-15 (-50) 毫米,宽1-2 (-10) 毫米。
花序为疏松的总状花序,结果时可伸长达20厘米;萼片长圆卵形,长约1.5毫米,顶端钝、外轮的基部成囊状,外面无毛或有少数单毛;花瓣白色,长圆条形,长2-3毫米,先端钝圆,基部线形。
角果长10-14毫米,宽不到1毫米,果瓣两端钝或钝圆,有1中脉与稀疏的网状脉,多为桔黄色或淡紫色;果梗伸展,长3-6毫米。
种子每室1行,种子卵形、小、红褐色。
花期4-6月。
我国内蒙、新疆、陕西、甘肃、西藏、山东、江苏、安徽、湖北、四川、云南等省区均有发现。
拟南芥的优点是植株小、结子多。
拟南芥是自花受粉植物,基因高度纯合,用理化因素处理突变率很高,容易获得各种代谢功能的缺陷型。
主要价值由于有上述这些优点,所以拟南芥是进行遗传学研究的好材料,被科学家誉为“植物中的果蝇”。
拟南芥培养方法的进展研究拟南芥( Arabidopsis thaliana) 是十字花科拟南芥属植物, 虽然没有经济价值, 但具有生育期短, 植株个体小及基因组小等特点, 因而长期以来一直被用来作为分子生物学和传统遗传学研究的模式实验材料, 作为高等植物中具有最少基因组的物种,在科学研究中的地位也是极为重要得。
为了与国际接轨, 近年来国内已引入了拟南芥作为实验材料。
室内培养不仅可以得到试验所需的材料,也可以打破自然条件的限制对拟南芥进行各种诱导,为拟南芥新品种的培养和种性的改良提供便利条件,掌握拟南芥室内培养技术对顺利开展植物发育生物学的研究具有重要的意义。
但是, 拟南芥属于较难培养的植物,许多因素制约着它的正常生长和发育,比如,拟南芥种子特别小, 幼苗很弱, 易夭折, 给它的培养带来一定的困难。
目前,国内很少有实验室具备国外人工气候室培养拟南芥的全方位调控条件, 在拟南芥培养方面存在成活率低、培养周期长等问题。
因此, 掌握拟南芥的培养技术非常重要。
拟南芥室内培养方法研究拟南芥室内培养一般从种子春化开始,经历消毒、育苗、移栽、后期管理、种子收集及保存等阶段。
通常采用水培和土培两种方法。
1种子的春化春化作用(verna lization)是某些高等植物具备成花能力所必需的,即通过适当长度和强度的冷处理诱导开花抑制蛋白基因沉默,从而使植物具备开花能力.近年来的研究已经表明春化过程中特定抑制蛋白表达沉默的原因部分是由于染色体上特定位点的组氨酸的共价修饰. 种子播前需在湿润条件下置4℃冰箱内低温处理3~4 d,对于已在冰箱内保存一个月以上的种子可不必低温处理。
2种子的消毒拟南芥种子的消毒主要是用次氯酸钠溶液和酒精,不同浓度的溶液对种子上的病毒和细菌有不同的杀灭作用,结合文献资料,在本人第二课堂的实验中(《拟南芥三种培养方法的比较》),对比了三种不同的消毒方法,探索消毒方法旨在寻找出一种对拟南芥种子伤害最小,并且最有效的消毒方法。
神奇的拟南芥拟南芥与油菜、萝卜、卷心菜等同为十字花科植物,向下细分为鼠耳芥属。
拟南芥又名鼠耳芥、阿拉伯芥、阿拉伯草,拉丁文名为Arabidopsis thaliala (L.) Heynh。
拟南芥作为一种草本植物广泛分布于欧亚大陆和非洲西北部。
在我国的内蒙、新疆、陕西、甘肃、西藏、山东、江苏、安徽、湖北、四川、云南等省区均有生长。
我国古人常将身边的一些卑微、低贱之物“视若草芥”,拟南芥早先也就是一种无声无息、名不见经传的小草。
拟南芥既不好吃、也不好看,对人类毫无经济价值。
但近一百年来,随着生物学和经典遗传学的蓬勃发展,科学家们逐渐注意到它的研究价值。
长期以来,科学家一直希望在植物中找到像动物中的黑腹果蝇(Drosophila melanogaster)那样繁殖快、易于在实验室培养、适于遗传操作的实验材料,进而从根本上改变植物遗传学研究的长期落后状况。
拟南芥植株较小(一个8cm见方的培养钵可种植4-10株)、生长周期短(从发芽到开花约4-6周)、结实多(每株植物可产生数千粒种子)。
拟南芥的形态特征分明(图1),莲座叶着生在植株基部,呈倒卵形或匙形;茎生叶无柄,呈批针形或线形。
侧枝着生在叶腋基部,主茎及侧枝顶部生有总状花序,四片白色匙形花瓣,四强雄蕊。
长角果线形,长约1-1.5cm,每个果荚可着生50-60粒种子。
这些特点使得拟南芥的突变表型易于观察,为突变体筛选提供了便利。
拟南芥是典型的自交繁殖植物,易于保持遗传稳定性。
同时,可以方便的进行人工杂交,利于遗传研究。
拟南芥的另一个优点是易于转化。
经过不断的实践,浸花法(floral tip)已成为拟南芥转化最常用的方法。
对生长5-6周已抽苔的拟南芥打顶来促进侧枝生长(图2A),待花序大量产生时将其在含有转化辅助剂silwet和蔗糖的农杆菌溶液中浸泡几分钟(图2B),3-4周后对转化植株收种子(图2C)。
在含有合适抗生素的平板上对种子进行筛选,能够健康生长的幼苗为转基因植株(图2D)。
拟南芥生活史实验报告拟南芥(Arabidopsis thaliana)是一种被广泛用于植物研究的模式植物。
它是一种小型草本植物,具有实验操作简便、短生命周期以及基因组序列已被测序等优点,因此被广泛用于生物学研究。
本次实验旨在观察和研究拟南芥的生活史,并了解其生命周期的各个阶段以及相关调控。
1.实验目的:a.了解拟南芥的生命周期和生活史;b.观察拟南芥的不同发育阶段,并记录相关生理和形态特征;c.探索拟南芥生命周期的调控。
2.实验材料和方法:a.实验材料:拟南芥种子、生长基质、生长室、显微镜等;b.实验步骤:i.种子处理:将拟南芥种子浸泡在含2%次氯酸钠溶液中,进行表面消毒处理;ii. 种子萌发:将种子播种到生长基质上,放置于恒温恒湿的生长室中;iii. 观察和记录:每天观察拟南芥的生长情况,记录相关生理和形态特征;iv. 提取DNA:从不同发育阶段的拟南芥中提取DNA,用于后续分子生物学分析;v.数据统计和分析:对观察结果进行统计分析。
3.实验结果:a.种子萌发期:种子在适宜的温湿条件下,经历吸水、胚乳膨大、胚根伸长等过程,最终发芽;b.幼苗期:胚根从种子中伸出,幼苗逐渐长高,真叶开始出现;c.生长发育期:幼苗进一步生长发育,形成花茎,花蕾慢慢形成;d.开花期:花蕾逐渐开放,花粉和花蜜形成;e.结实期:花粉经过传粉作用,与雌蕊结合,形成果实,种子逐渐成熟;f.成熟期:种子完全成熟,果实变干,种子可以进行收获和保存。
4.实验讨论和结论:a.本次实验观察到了拟南芥完整的生活史,从种子萌发到种子成熟;b.拟南芥在不同发育阶段具有明显的形态和生理特征,可以通过这些特征进行鉴定和分类;c.拟南芥生命周期受到多种内外因素的调控,包括光照、温度、水分、激素等;d.下一步可以通过分子生物学方法,如基因表达分析和转录组学研究,深入探究拟南芥生命周期的调控机制。
总之,本次实验成功地观察到了拟南芥的生活史,并记录了其各个发育阶段的生理和形态特征。
姓名沈一鸣班级生技3班同组人无科目遗传学实验题目拟南芥T-DNA插入突变体的鉴定组别无—————————————————————————————————————————————————————一、实验目的1. 学习用PCR方法检测生物遗传差异;2. 了解植物T-DNA插入突变体的鉴定原理。
二、实验原理拟南芥(Arabidopsis thaliana):十字花科,植物遗传学、发育生物学和分子生物学的模式植物拟南芥特点:1)植株形态个体小,高度只有30cm左右;2)生长周期快,从播种到收获种子一般只需8周左右;3)种子多,每株可产生数千粒种子;4)形态特征简单,生命力强,用普通培养基就可作人工培养;5)遗传转化简单,转化效率高;6)基因组小,只有5对染色体,125MB;7)在2000年,拟南芥成为第一个基因组被完整测序的植物突变体是遗传学研究的最重要材料。
自然突变突变体的获得人工诱变拟南芥诱变常用方法:EMS诱变、T-DNA插入突变、激活标签由于T-DNA插入突变体便于对突变基因进行追踪,目前拟南芥、水稻中已经有大量的T-DNA插入突变体;SALK中心提供的拟南芥T-DNA插入突变体超过十万种。
T-DNA插入突变原理:Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移,插入植物染色体DNA中,Ti质粒上的这一段能转移的DNA被叫做T-DNA(transferred DNA )。
人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,获得转基因植株。
T-DNA插入到植物染色体上的什么位置,是随机的。
如果T-DNA插入某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。
所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。
T-DNA大多为单拷贝插入,使其利于进行遗传分析。
用PCR方法鉴定T-DNA插入纯合突变体:农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA插入的纯合突变体,杂合突变体,和野生型。
拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative,2000)。
同时,拟南芥属十字花科(Cruciferae),具有高等植物的一般特点,拟南芥研究中所获得结果很容易用于其它高级植物包括农作物的研究,产生重大的经济效益,特殊是十字花科中还有许多主要的经济作物,与人类的出产生涯亲密相关,因此目前拟南芥的研究越来越多地受到国际植物学及各国政府的器重。
从遗传学的观点来看,基因克隆的途径可概括为正向遗传学和反向遗传学两种。
正向遗传学道路指的是通过被克隆基因的产物或表示型突变去进行;反向遗传学门路则指的是根据被克隆基因在染色体上的位置来实现。
固然一些模式生物(如拟南芥)的基因组测序已经完成,但还有40%的基因(在拟南芥中)的功能仍是未知的。
一、图位克隆概述图位克隆(map-based cloning)又称定位克隆(positional cloning),1986年首先由剑桥大学的Alan Coulson提出(Coulson等,1986),用该方法分离基因是依据目的基因在染色体上的地位进行的,无需预先知道基因的DNA序列,也无需预先晓得其抒发产物的有关信息。
它是通过火析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基本。
近几年来跟着拟南芥基因组测序工作的实现,各种分子标记的日趋丰盛和各种数据库的完美,在拟南芥中克隆一个基因所需要的尽力已经大大减少了。
目前完成整个拟南芥的图位克隆过程大约需要一年时间。
在这个过程中,我们从筛选突变体开端,逐步找到和表型相关的基因。
这和反向遗传学的方法正好相反。
图位克隆能实现,关键在于全基因组测序打算的完成和各种分子标记的发现。
这些数据被贮存在专门的数据库中(表1)(Lukowitz等,2000)。
在拟南芥中的图位克隆,在很大程度上得益于对Col-0生态型测序的完成,因为它是在研究拟南芥时最常用的生态型。
拟南芥的一般生物学特性拟南芥是一种小型的十字花科植物,也称为芜菁。
它原产于欧洲和西亚,现已被广泛地用于模拟研究许多其他植物的生长和发育以及适应环境变化的机制。
1. 型:拟南芥在野外可以长成高达1米左右的高大植物,但通常情况下是生长在10-50cm的范围内。
在实验室中,拟南芥会被维持在特定环境条件下,通常是在小型容器中,以便进行精确的实验。
2. 生长:拟南芥的生长速度非常快,它需要大量的光照和营养来维持其生命活动。
它的生长周期是短暂的,通常在种子发芽之后,经过6-8周的时间就可以开始开花结籽。
这种生长周期的快速是拟南芥能够成为许多实验室实验植物的理由之一。
3. 生殖:拟南芥的繁殖很容易,主要是因为它有数百个种子形成在每一个果实中。
这些种子可以通过空气或水传播,也可以在土壤中存活和繁殖。
4. 受精:拟南芥是被昆虫和风传播结成果实的。
在受精后,拟南芥的果实通常每个都有两个种籽。
5. 基因组:拟南芥的基因组非常小,包含大约2.5亿个碱基对,其中只有14个染色体。
这使得拟南芥成为一种受欢迎的模式生物,不仅是因为其生长速度快,繁殖容易,而且是因为它的基因组相对简单,容易分析。
6. 发育:拟南芥的发育非常规范和完整,孢子萌发后可观察到各种生长和分化过程。
因此,它是研究多种基础和应用问题的理想植物,例如细胞和组织形成,信号传递和发育调节等。
7. 遗传:拟南芥的遗传特性被广泛地研究,主要是因为它是一种自交不亲缘杂合优势的植物,意味着所有的后代都是遗传上相同的。
这减小了异质性过程对基因型的影响,而且可以让研究者更方便的控制他们的杂交结果。
总的来说,拟南芥的生物学特性非常适合于许多植物学家和生物学家使用,为科学研究提供了一个重要的基础花园。
它是一种容易使用和操作的植物,不仅可以为基础研究提供有用的信息,也可以用于农业和环境应用研究的重大问题。