梁、板的配筋自动计算
- 格式:xls
- 大小:35.50 KB
- 文档页数:1
板的配筋率规范规定、各类构件配筋率表格、板的构造详图构造钢筋钢筋混凝土结构中,按照构造需要设置的钢筋,相对于受力钢筋而言。
构造钢筋不承受主要的作用力,只起维护、拉结,分布作用。
构造钢筋的类型有:分布筋,箍筋,拉筋,构造腰筋,架立筋等。
混凝土结构设计规范GB 50010-2002 表9.5.1第9.5.1条钢筋混凝土结构构件中纵向受力钢筋的配筋百分率不应小于表9.5.1规定的数值。
钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率(%) 表9.5.1混凝土结构设计规范GB 50010-2002 9.5.2第9.5.2条对卧置于地基上的混凝土板,板中受拉钢筋的最小配筋率可适当降低,但不应小于0.15%。
混凝土结构设计规范GB 50010-2002 9.5.2第9.5.3条预应力混凝土受弯构件中的纵向受拉钢筋配筋率应符合下列要求:M u≥Mcr(9.5.3) 式中Mu--构件的正截面受弯承载力设计值,按本规范公式(7.2.1-1)、(7.2.2-2)或公式(7.2.5)计算,但应取等号,并将M以Mu代替;Mcr--构件的正截面开裂弯矩值,按本规范公式(8.2.3-6)计算。
混凝土结构设计规范GB 50010-2002 10.1.6第10.1.6条当现浇板的受力钢筋与梁平行时,应沿梁长度方向配置间距不大于200mm且与梁垂直的上部构造钢筋,其直径不宜小于8mm,且单位长度内的总截面面积不宜小于板中单位宽度内受力钢筋截面面积的三分之一。
该构造钢筋伸入板内的长度从梁边算起每边不宜小于板计算跨度l0的四分之一(图10.1.6)。
混凝土结构设计规范GB 50010-2002 10.1.7第10.1.7条对与支承结构整体浇筑或嵌固在承重砌体墙内的现浇混凝土板,应沿支承周边配置上部构造钢筋,其直径不宜小于8mm,间距不宜大于200mm,并应符合下列规定:1现浇楼盖周边与混凝土梁或混凝土墙整体浇筑的单向板或双向板,应在板边上部设置垂直于板边的构造钢筋,其截面面积不宜小于板跨中相应方向纵向钢筋截面面积的三分之一;该钢筋自梁边或墙边伸入板内的长度,在单向板中不宜小于受力方向板计算跨度的五分之一;在双向板中不宜小于板短跨方向计算跨度的四分之一;在板角处该钢筋应沿两个垂直方向布置或按放射状布置;当柱角或墙的阳角突出到板内且尺寸较大时,亦应沿柱边或墙阳角边布置构造钢筋,该构造钢筋伸入板内的长度应从柱边或墙边算起。
1 工程概述瓦洪公路(随塘河路~平庄公路)新建工程中的南横河桥为三跨简支预制板梁桥(8m+13m+8m),本计算书为桥墩单桩承载力的验算。
2 基本设计资料2.1 主要设计规范及标准《公路桥涵设计通用规范》(JTG D60 2004)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62 2004)《公路工程抗震设计规范》(JTJ004 89)《公路桥涵地基与基础设计规范》(JTJ024-85)《地基基础设计规范》(上海)(DGJ08-11-1999)《公路设计手册-路基》2.2 荷载标准车道荷载:公路-Ⅱ级设计车道数n车:3人群荷载q人群: 3.0kN/m22.3 桥宽0.3m(栏杆)+3m(人行道)+3.5m(非机动车道)+1m(机非分隔带)+12m(机动车道)+1m(防撞墙)=20.3m2.4 跨径布置8m(边跨)+13m(中跨)+8m(边跨)2.5 斜角顺交7度2.6 材料容重钢筋混凝土γ1:26.0kN/m3沥青混凝土γ2:23.0kN/m32.7 铺装边跨每延米铺装重:q铺边=26×19.8×0.07+23×15.5×0.09=68.121kN/m中跨每延米铺装重:q铺中=26×19.8×0.07+23×15.5×0.09=68.121kN/m2.8 边跨和中跨板梁布置边跨主梁每延米自重:q边=26×(0.396868×2+0.30093×17)=153.648196kN/m中跨主梁每延米自重:q中=26×(0.49818×2+0.39993×17)=202.67442kN/m2.9 桥墩和支座布置桥墩形状见右图B盖梁=21.3/cos(7)=21.4599592822735mB墩柱=0.8mB承台=21.3/cos(7)=21.4599592822735mn墩柱=0mh1=0.1mh2=1.06mh3=0mh4=0mb1=0.65mb2=0.6mb3=0.37mb4=0.32mb5=1.35mb6=0mb7=1.35mb8=0mb9=0.639079422382671mb10=0.675mb11=0.675m盖梁面积A盖梁=1.385m2墩柱面积A墩柱0m2承台面积A承台=0m2盖梁形心距墩底中心e1=-0.0359205776173286m边跨支座距距墩底中心e2=0.255m中跨支点距距墩底中心e3=-0.305m盖梁形心距桩群中心e4=-0.0359205776173286m墩身形心距桩群中心e5=0m边跨支座距桩群中心e6=0.255m中跨支点距桩群中心e7=-0.305m3 作用效应计算3.1 永久作用效应3.1.1 边跨和中跨主梁自重P边=153.648196×8/2=614.592784kN P中=202.67442×13/2=1317.38373kN 3.1.2 铺装P边铺=68.121×8/2=272.484M边铺纵=272.484×(-0.788545382481173)=-214.866P中铺=68.121×13/2=442.7865M中铺纵=442.7865×(-0.788545382481173)=-349.157253.1.3 人行道板P边人行=4.8×3×8/2=57.6M边人行纵=57.6×(8.35)=480.96P中人行=4.8×3×13/2=93.6M中人行纵=93.6×(8.35)=781.563.1.4 栏杆P边栏杆=3.38×8/2=13.52kN M边栏杆纵=13.52×(10)=135.2kN-m(4)-1单孔加载边跨:2车道Pq边1=2×1×(1+0.45)×(7.875×8/2+172.8)=592.47kN Mq边1纵=592.47×(3.9)=2310.633kN-m 3车道Pq边2=3×0.78×(1+0.45)×(7.875×8/2+172.8)=693.1899kN Mq边2纵=693.1899×(2.35)=1628.996265kN-m 4车道Pq边3=4×0.67×(1+0.45)×(7.875×8/2+172.8)=793.9098kN Mq边3纵=793.9098×(0.800000000000001)=635.12784kN-m 5车道Pq边4=5×0.6×(1+0.45)×(7.875×8/2+172.8)=888.705kN Mq边4纵=888.705×(-0.75)=-666.52875kN-m 中跨:2车道Pq中1=2×1×(1+0.325352902776602)×(7.875×13/2+190.8)=641.437671121306kN Mq中1纵=641.437671121306×(3.9)=2501.60691737309kN-m 3车道Pq中2=3×0.78×(1+0.325352902776602)×(7.875×13/2+190.8)=750.482075211928kN Mq中2纵=750.482075211928×(2.35)=1763.63287674803kN-m 4车道Pq中3=4×0.67×(1+0.325352902776602)×(7.875×13/2+190.8)=859.52647930255k N Mq中3纵=859.52647930255×(0.800000000000001)=687.621183442041kN-m 5车道Pq中4=5×0.6×(1+0.325352902776602)×(7.875×13/2+190.8)=962.156506681959k N Mq中4纵=962.156506681959×(-0.75)=-721.617380011469kN-m (4)-2双孔加载a、 2车道Pq2边1=2×1×(1+0.45)×(7.875×8/2+172.8)=91.35kN Mq2边1纵=91.35×(3.9)=356.265kN-m Pq2中1=2×1×(1+0.325352902776602)×(7.875×13/2)=641.437671121306kN Mq2中1纵=641.437671121306×(3.9)=2501.60691737309kN-m b、3车道Pq2边2=3×0.78×(1+0.45)×(7.875×8/2+172.8)=106.8795kN Mq2边2纵=106.8795×(2.35)=251.166825kN-m Pq2中2=3×0.78×(1+0.325352902776602)×(7.875×13/2)=750.482075211928kN Mq2中2纵=750.482075211928×(2.35)=1763.63287674803kN-m C、4车道Pq2边3=4×0.67×(1+0.45)×(7.875×8/2+172.8)=122.409kN Mq2边3纵=122.409×(0.800000000000001)=97.9272000000001kN-m Pq2中3=4×0.67×(1+0.325352902776602)×(7.875×13/2)=859.52647930255kN Mq2中3纵=859.52647930255×(0.800000000000001)=687.621183442041kN-mD、5车道Pq2边4=5×0.6×(1+0.45)×(7.875×8/2+172.8)=137.025kN Mq2边4纵=137.025×(-0.75)=-102.76875kN-m Pq2中4=5×0.6×(1+0.325352902776602)×(7.875×13/2)=962.156506681959kN Mq2中4纵=962.156506681959×(-0.75)=-721.617380011469kN-m3.2.2 汽车制动力一个车道汽车制动力:Tq制动=max{(7.875×(2×8+2×8+13)+172.8)×10%,90}=90kN 按2个桥墩均摊计算Tq2=±(3×0.78×90/2)=±(105.3)kN M制动纵=±(105.3×(2.35))=±(247.455)kN-m 3.2.3 人群荷载P人群=3×3×(8+13)/2=94.5kN M人群纵=94.5×8.35=789.075kN-m 3.3 作用效应汇总3.3.1 永久作用作用在边跨支座上竖向力:Pg1=614.592784+272.484+57.6+13.52+40+19.2+0=1017.396784kN 作用在边跨支座上纵向弯矩:Mgz1=-214.866+480.96+135.2+(-396)+54.72+0=60.0139999999999kN-m作用在中跨支座上竖向力:Pg2=1317.38373+442.7865+93.6+21.97+65+31.2+0=1971.94023kN 作用在中跨支座上纵向弯矩:Mgz2=-349.15725+781.56+219.7+(-643.5)+88.92+0=97.52275kN-m桥墩自重:Pg3=772.773133754668kN 3.3.2 可变作用车道荷载∑xi 2=#NAME?m 2∑yi 2=#NAME?m 2ximax=0m yimax=9.9m桩基根数n桩11根基本组合1Pmax 1#NAME?2#NAME?3#NAME?4#NAME?5#NAME?6#NAME?7#NAME?8#NAME?9#NAME?10#NAME?11#NAME?12#NAME?最大值#NAME?基本组合2Pmax 1#NAME?4.2 桩基承载力计算桩基根数n桩11根桩直径d 0.6m 桩长l 30m 桩周长U 1.88m 桩截面面积A 0.28m 2Σli×гi 813.9kN/m 极限承载力[σR]1300kPa [P]=0.5×(U×Σli×гi+A×σR)-γ×A×l 容许承载力[P]841kN 桩最不利受力Pmx #NAME?kNPmax/[P]#NAME?判定:#NAME?∑∑∑++=2max 2max max i i y i i x x x M y y M n P P。
单向楼板配筋计算单向楼板是指楼板在两个相邻方向上只有一个方向的配筋,通常在住宅建筑中采用。
其计算方法相对简单,主要分为楼板自重计算、楼板活载计算、楼板产生的弯矩计算、楼板配筋计算和计算的验证。
1.楼板自重计算楼板自重计算是指根据楼板的净面积和楼板的材料密度计算楼板的自重。
楼板的净面积就等于楼板的实际面积减去梁的截面积。
楼板的材料密度可以查表获得。
2.楼板活载计算楼板的活载通常由人员、家具、冰箱、洗衣机等引起,可以根据住宅建筑设计规范中给出的活载值进行计算。
3.楼板产生的弯矩计算楼板两个相邻方向上的弯矩计算方法不同。
在较宽的方向上,根据梁和板之间的协同作用,可以将楼板看作连续梁,采用一致均布荷载计算产生的楼板弯矩。
在狭窄的方向上,根据楼板自身的刚度,将楼板看作单自由度系统,根据活载位置的不同计算楼板的弯矩。
楼板配筋计算是指基于受力与弯矩的平衡条件,计算出楼板所需的配筋面积和数量。
楼板的配筋通常包括主筋和腹筋。
主筋用于承受弯矩,而腹筋用于抵抗剪力。
主筋的计算通常采用梁的截面设计原则,根据楼板的弯矩和受压区高度计算出主筋的截面面积和受压区深度。
主筋的间距和直径一般按照规范要求进行选取。
腹筋的计算通常采用最大剪力的方法进行计算,根据楼板的剪力计算出腹筋的截面面积和间距。
腹筋的直径一般按照规范要求进行选取。
5.计算的验证计算结束后,需要对计算结果进行验证。
验证的方法通常有两种,一种是根据楼板配筋的构造推算出楼板的抗弯承载力,与计算得到的弯矩进行比较。
另一种方法是根据楼板的最大剪力和腹筋的抗剪承载力进行比较。
以上就是单向楼板配筋计算的基本步骤。
在实际计算中,还应该考虑楼板的现浇混凝土强度、配筋率等因素。
此外,需要注意的是,楼板的受力分析应该细化到板的每一根梁的受力情况,以确保楼板在受到荷载时不发生破坏。
pkpm柱配筋计算摘要:1.PKPM 软件简介2.柱配筋计算的重要性3.PKPM 柱配筋计算的基本步骤4.PKPM 柱配筋计算的注意事项5.PKPM 柱配筋计算的实际应用案例正文:1.PKPM 软件简介PKPM(Powerful Kernel-based Planar Management)是一款我国自主研发的建筑结构设计与分析软件。
该软件凭借其强大的计算能力、丰富的功能和易用的操作界面,在建筑结构设计与分析领域取得了广泛的应用,成为了我国建筑行业不可或缺的重要工具。
2.柱配筋计算的重要性在建筑结构设计中,柱是承载楼板、屋顶和梁等荷载的关键构件。
柱的配筋计算是保证柱具有足够承载力和抗震性能的重要环节。
合理的柱配筋设计不仅可以确保结构的安全性、稳定性和耐久性,还能节约材料、降低成本,提高经济效益。
3.PKPM 柱配筋计算的基本步骤(1)创建模型:首先,在PKPM 软件中建立建筑模型,包括柱、梁、板等构件的几何尺寸和材料属性。
(2)设定荷载:根据设计要求,输入柱所承受的荷载,如楼板荷载、屋面荷载和地震作用等。
(3)计算内力:PKPM 软件会自动计算柱在各种荷载作用下的内力,如弯矩、剪力等。
(4)配置钢筋:根据计算结果,按照规范要求配置钢筋,包括钢筋的种类、规格、间距和锚固长度等。
(5)检查校核:完成柱配筋设计后,需要对设计结果进行检查和校核,确保设计满足规范要求。
4.PKPM 柱配筋计算的注意事项(1)正确选择模型:根据实际工程需求,选择合适的建筑模型和材料属性。
(2)准确输入荷载:确保输入的荷载数据准确无误,以免影响计算结果。
(3)合理配置钢筋:在配置钢筋时,应遵循规范要求,确保钢筋具有足够的抗拉强度和抗震性能。
(4)认真检查校核:完成设计后,要认真检查设计结果,确保设计满足规范要求。
5.PKPM 柱配筋计算的实际应用案例某五层框架结构住宅楼,柱网尺寸为6m×6m,柱截面尺寸为400mm×400mm。
梁板柱配筋规范要求1. 梁的截面应设计为长方形或T形,截面宽度不宜小于300mm,高度不宜小于截面厚度的6倍。
2.梁的配筋应满足受力要求,梁底筋应足够,不得小于梁顶筋总面积的50%。
3. 梁的主筋与箍筋的间距一般不应超过250mm,箍筋应沿梁的全长布置。
4.梁的端部和支座处应设置必要的加强筋和传力钢筋。
1. 板的截面应设计为矩形或T形,截面宽度不宜小于板厚的6倍,高度不应小于板厚的50mm。
2.板的配筋应满足受力要求,板底筋应足够,不得小于板顶筋总面积的50%。
3. 板的主筋与箍筋的间距一般不应超过300mm,箍筋应沿板的全长布置。
4.板的边缘处应设置必要的加强筋和传力钢筋。
1.柱的截面应为正方形、长方形或圆形,截面尺寸应满足承受受力的要求。
2.柱的配筋应满足受力要求,主筋应沿柱的全长布置,不得少于横向主筋总面积的30%。
3. 纵向主筋和箍筋的间距一般不应超过250mm,箍筋应沿柱的全长布置。
4.柱的底部和顶部应设置必要的加强筋和传力钢筋。
四、配筋要求的计算和验算在进行梁板柱配筋设计时,需要进行配筋的计算和验算。
计算过程中需要考虑结构的受力情况,材料的强度和要求,以及相关配筋规范的要求。
配筋计算包括确定筋材的截面积、数量和布置等,需要满足构件的受力要求和规范的要求。
验算是指通过计算和分析验证设计的配筋方案是否满足结构的强度和稳定性要求。
在进行配筋设计时,需要考虑以下几个方面:1.构件的截面形状和尺寸:根据结构的受力分析确定构件的截面形状和尺寸,确定梁板柱的截面尺寸和布置。
2.材料的强度和特性:根据结构材料的强度和特性,确定配筋的材料和规格。
通常使用的钢筋的强度等级有HRB335、HRB400和HRB500等。
3.受力分析和设计:通过受力分析计算出梁板柱在工作状态下的受力和变形情况,确定所需的配筋量和布置方式。
4.配筋布置和间距:根据配筋规范的要求和受力分析结果,确定配筋材料的布置方式和间距。
包括纵向主筋和箍筋的布置,以及配筋的间距和要求。
关于盈建科结构计算模块——YJK-A[2.0.3]中“弹性板与梁协调时考虑梁向下相对偏移”功能的使用探讨发布时间:2021-12-03T06:09:25.313Z 来源:《建筑实践》2021年22期8月作者:吴超[导读] 本文以盈建科软件前处理的“弹性板与梁协调时考虑梁向下相对偏移”功能为研究对象进行研究分析吴超中船第九设计研究院工程有限公司上海 200082摘要:本文以盈建科软件前处理的“弹性板与梁协调时考虑梁向下相对偏移”功能为研究对象进行研究分析。
研究发现,该功能可以合理正确地表示梁板相对受力关系。
在不考虑刚性楼板假定的情况下,勾选该功能可以合理的减少梁支座配筋。
关键词:计算原理;配筋量;使用建议一、概述在盈建科的建筑结构计算模块——YJK-A[2.0.3](下文简称为YJK)前处理及计算-计算控制信息-控制信息中,有“弹性板与梁协调时考虑梁向下相对偏移”这一功能(下文简称该功能)可供用户选择勾选。
该功能勾选之后,梁跨中弯矩和支座弯矩明显减少,并在梁内产生较大的轴力。
本文就此功能原理进行探讨。
二、YJK模型与Midas Gen模型计算结果对比分析1.YJK建模概述在YJK中建立单层结构模型:(1)田字形柱网:X向:8m+7m;Y向:5m+6m;(2)柱截面:600mm*600mm;(3)梁截面:400mm*800mm,无次梁,无梁柱偏心;(4)板厚:200mm;(5)混凝土强度:C30;(6)层高:3300mm;(7)荷载:自动计算现浇板自重;恒载:10kN/m2;无活载;现浇楼板自重扣除与梁墙重叠部分;(8)前处理部分计算参数:板元细分最大控制长度:0.3m;弹性板荷载计算方式:有限元计算;考虑梁端刚域:勾选;梁与弹性板变形协调:勾选;梁墙自重扣除与梁柱重叠部分:勾选;2.YJK计算结果对比注:(1)不勾选该功能,梁内轴力很小,可忽略不计,表内不列出。
(2)括号内为勾选构件前处理及计算—计算参数—构件设计信息—“矩形混凝土梁按考虑楼板翼缘的T形梁配筋”的计算结果。
顶板、底板计算以及配筋原则顶板(⽆梁楼盖)计算以及配筋原则说明:该原则仅适⽤采⽤SLABCAD软件计算⽆梁楼盖的相关问题,包括⼈防与⾮⼈防顶板。
⼀、计算参数的确定1、单元最⼤边长(亦即⽹格划分长度,mm):取1000mm(超⼤地下室顶板可以放宽到1200mm)2、楼板类型:板柱楼板3、采⽤的单元:板弯曲单元(只算板的⾯外弯剪)4、单元形成之后不可漏掉计算板。
如果出现漏板现象,解决办法如下:返回PMCAD,并且在漏板处增加虚梁。
5、板顶设计弯矩调整系数:取1.07、板底设计弯矩放⼤系数:取1.08、⽆梁楼盖的板在特殊定义⾥定义为弹性板6.⼆、计算结果读取原则说明:计算结果读取原则已经向PKPM官⽅技术⽀持沟通,如下读取结果原则可⾏,⼀旦采⽤SLABCAD进⾏计算分析,必须采⽤SLABCAD计算结果。
1、柱帽部分(以X⽅向⾯筋为例,Y⽅向同理)直接读取X⽅向上边与下边六个值的均值,亦即:21.22、28.21、24.44、20.17、25.97、20.16此六个数值的均值,为23.362、柱上板带底筋直接读取柱上板带范围内均值,亦即:13.46、14.38、11.55、11.05、11.46、11.02此六个数值的均值,为:12.15注:不可取该范围内的任何最⼤值!三、配筋原则.说明:均采⽤最⼩配筋率进⾏钢筋通长配置。
1、当柱帽处附加钢筋直径不⼤(直径⼩于等于16)时,不推荐采⽤柱上板带和跨中板带分开配置钢筋的原则进⾏配筋。
采⽤钢筋通长配置的⽅法进⾏配筋原则:按照最⼩配筋率双层双向配置,不⾜处附加钢筋。
(适⽤于⾮⼈防⽆梁楼盖)2、当柱帽处附加钢筋直径较⼤(与通长筋相差三个及三个规格以上)时,可以采⽤柱上板带与跨中板带分开配置钢筋。
需要注意的是:所选⽤的钢筋直径与间距不能够⼀味图⽅便⽽能够包络住所有配筋要求,进⽽造成浪费。
防⽔板计算以及配筋原则说明:该原则仅适⽤采⽤JCCAD防⽔板抗浮计算软件计算⽆梁楼盖的相关问题。
PKPM楼板计算1.计算都是以房间、考虑四边支撑按静力计算手册查表独立计算。
目前主要应用两种计算方法:弹性和塑性分析法。
弹性分析法:当四周与梁整体现浇的板按弹性方法时,所得弯矩可以折减。
中间跨跨中与支座可折减20%,边跨跨中及自楼板边缘算起的第二支座,当Lb/L小于1.5时折减20%,当Lb/L 在1.5~2.0之间折减10%。
(L为垂直楼板边缘方向的长度,Lb为沿楼板边缘方向的长度)。
角区格不应折减。
上述折减的原因是板支座由于负弯矩作用上皮开裂,板跨中由于正弯矩作用下皮开裂,在荷载作用下,产生板平面内的推力,此推力对板的承载能力是有利的。
塑性分析法:北京建筑设计研究院采用塑性算法已经有50年历史,未出安全问题。
直接承受动力荷载作用和要求不出现裂缝的构件不能考虑塑性设计,考虑塑性设计结构中的钢筋应有足够的延性(伸长率),采用热扎钢筋而不宜采用冷加工钢筋。
采用塑性设计进行承载力计算时,还应满足正常使用极限状态(挠度、裂缝)的要求,并采取有效的构造措施加以保证。
2.PKPM中现浇板计算有自动计算、活载不利布置算法和连续板串算法。
自动计算对规则板按计算手册查表的方法计算,对凸形不规则板块,程序用边界元法计算,对凹形不规则板块,程序用有限元发计算,程序自动识别板的形状类型并选相应的计算方法。
程序只能对规则板显示计算书,而对不规则板不能显示计算书。
对于板底内力取该板块跨中之内力,支座内力则取其两侧板块分别计算后的较大值。
规则板的计算实质是查表计算,而表格中所涉及的边界条件,在一个边界上必须是唯一的。
对边界条件的选择,普遍的设计人员边缘梁处按简支边界考虑。
理想的简支支座很少,一般板在支撑边缘总有一定的约束。
尽管设计计算时可取为简支边而认为支座弯矩为0,但在板受力变形时仍将产生一定的弯矩,并在板边形成裂缝。
有资深人士认为应该按嵌固考虑,个人认为荷载不大时可按简支考虑,适当加大配筋。
当选择塑性算法时只针对规则板长宽比≤2适用,当为不规则或长宽比大于2时,程序自动按弹性算法。
pkpm计算出的梁、板配筋需要注意的地方1、最重要的要用wpj文件对配筋,配筋面积要满足裂缝要求。
2、要满足抗震规范6.3.6-6.3.5条3、图面美光,无重叠现象1.板。
板图要注意漏画支座筋。
软件在一个房间的一边上不管有几段墙只画一根筋,好多时是少的。
用布支座筋,检查每段墙。
不规则板要用有限元软件较对计算结果. 还要注意不要漏了构造负筋,如挑板中伸出了个别挑梁。
注意异形板的幅射筋不要丢了。
2.,短梁200,短墙300要避免,实为节点之距存在的梁墙,软件对此没输出结果,忽略了它的存在,但真实结构如果存在它是起作用的,要作另算。
3.裙房层数等于增加了加强层,转换层号等于定义了薄弱层。
4.梁输出结果中扭纵筋配腰后并入上下纵筋和扭箍筋的二倍和剪筋之和为全截面配筋,且要符合扭筋布置要求。
5.质心和整体振动图是控制结构动力特性,与烈度无关。
侧移图,变型图内力图是设定烈度下的地振反应与烈度相关。
6.梁要原位,集中,逐梁逐跨认真复对。
注意名称和标注方法与平法的一致性,注意构件定位标注7.柱要注意改筋,方便施工,注意定位标示。
8.墙要注意构造.注意忽略了的短墙验算,注意表达上的技巧和与平法的一致性。
9.基础梁上部筋可以逐跨不同规格。
但要要求在其柱两侧三分之一跨范围受拉搭接。
以满足规范对上部筋贯通要求。
10.不同结构段不要用相同构件编号,以免工地搞混。
11.墙结构要尽量简化,如果受力复杂的墙可以舍掉它。
12.有墙的结构一定要有一部分连梁,耗能梁的需要。
13.框剪的墙上设暗梁。
14.一根梁宽要一致,方便施工。
除能拉通的节点负筋,都要原位注写。
挑梁要原位注写,对计算结果查对,生成的图可能不是根部的。
图纸上的每一个字付要像图板上画图一样认真检查。
15.LTCAD生成的梯梁配筋不对。
16.JCCAD生成的条基轴线关系不对,地基梁箍筋等不合理。
17.PKPM图全是在图纸空间,DWG图全是在模型空间,比例问题按此关系处理。
18.TSZ中用一个比例画各图块,画好后用变比例命令实现多比例绘图。
板0.4%一0.8%,矩形粱0.6%~1.5%,T形梁0.9%一1.8%,如取其平均值.则板为0.6%,矩形梁为1.05%,T形粱为1.35%一般情况下,粱板的配筋率应尽可能用其经济配筋率的平均值、但由于各种原因,不可能都如愿以偿、故经济配筋率的核心范围,建义扳取0.5%~0.7%,矩形粱取0.85%~1.25%,T形粱取1.1%~1.6%。
为了不使截面配筋过于拥挤,全部纵筋配筋率不宜超过0.05。
对于仓库、贮仓、料斗等贮料荷载经常占总荷载较大部分的结构物,若柱中纵向配筋率过大,在长期贮料突然卸载时,会使柱中混凝土出现拉应力甚至开裂。
若柱中的纵筋和混凝土之间有很强的黏结应力时,则能同时产生纵向裂缝,这种裂缝更为危险。
为了防止出现这种情况,要控制柱的配筋率,对于筒仓柱的全部配筋率不应大于0.02。
从经济和施工方面来考虑,一般常用的配筋率范围为0.005~0.02。
常用框架结构设计板、梁、柱的经济取值一、单向板肋梁楼板。
1、主梁:经济跨度一般为6~9米,截面高度为跨度的1/14~1/8,宽度为梁高的1/3~1/2;2、次梁:经济跨度(即主梁的间距)一般为4~7米,截面高度为次梁跨度的1/28~1/12,宽度为梁高的1/3~1/2。
3、板:经济跨度(即次梁的间距)一般为1.8~3.0米,板厚不小于其跨度的1/40,一般为70~100㎜。
二、井字梁楼板(正交式或斜交式)。
井字梁楼板梁的跨度可达30米,板的跨度一般为3米左右。
三、经济配筋率:1:板:0.4%一0.8%,如取其平均值.则板为0.6%;2:矩形粱:0.6%~1.5%,矩形梁平均值为1.05%,T形梁0.9%一1.8%,T形粱平均值为1.35%。
一般情况下,粱板的配筋率应尽可能用其经济配筋率的平均值、但由于各种原因,不可能都如愿以偿、故经济配筋率的核心范围,建义扳取0.5%~0.7%,矩形粱取0.85%~1.25%,T形粱取1.1%~1.6%。
利用 PKPM进行多层框架构造设计的主要步骤(3)十三、履行 PMCAD主菜单 5,画构造平面图第一确立要画的楼层号1、选择“1改正楼板配筋参数”,对各项参数进行确认和改正。
支座受力钢筋最小直径:8板散布钢筋的最大间距:250双向板计算方法:弹性算法边沿 xx 支座算法:梁截面刚度相对楼板较大时“按固端计算”,不然“按简支计算”有错层楼板算法:错层较大时“按简支计算”,错层较小时“按固端计算” 能否依据裂痕宽度自动选筋:选择“打勾”,同意裂痕宽度取默认0.3mm使用矩形连续板跨中弯矩算法:选择“打勾”钢筋级别:所有采纳一级钢钢筋放大系数:取默认值钢筋强度设计值:取默认值钢筋级配表:依据工程状况增(删)级配表,给出适合的钢筋级配。
2、选择“2改正界限条件”,先显示界限条件,再依据工程实质状况,对楼板界限条件逐一进行调整。
主假如不切合在楼板配筋参数中定义的边沿梁支座算法的地方,要在此改正界限条件。
3、履行“4画平面图参数改正”,确立适合的图纸号、比率尺。
“板钢筋要编号”:此项控制楼板钢筋标明方式。
选择“打勾”,同样的钢筋编同一个号,只在此中的一根上标明钢筋级配及尺寸;选择“不打勾”,图上的每根钢筋均要标明钢筋的级配及尺寸。
本工程要求不画钢筋表,板钢筋均不编号,钢筋不用简化标明,柱“涂黑”,梁线选择“虚线”。
4、履行“0持续”,查察楼板计算结果图形。
1)履行“2现浇板计算配筋图”,生成板计算配筋图BAS*.T。
2)履行“6现浇板裂痕宽度图”,查察有否裂痕宽度超限。
知足,则进行下一步绘施工图;不然,应选择“返回PM 主菜单”改正板厚,按上述步骤从头计算。
5、履行“0进入画图”,绘制楼板施工图PM*.T。
1)履行“画板钢筋”,选择“自动布筋”。
此时可有 2 种选择:“按楼板合并结果配筋”,则只在样板间内布筋,其余与之编号同样的房间均采纳同样配筋;若不合并,则每个房间的配筋均按实质配筋在图上表达。
选择“通长配筋”->“板底配筋”,对相邻几个配筋同样的连续房间实现板底贯穿配筋,即钢筋不在中间支座断开并锚固。
钢筋混凝土结构计算1.结构形式确定:首先确定楼板的结构形式,如采用板梁结构、薄板结构或双向板结构等。
2.荷载计算:进行楼板的荷载计算,包括楼板自重、活荷载和附加荷载等。
根据建筑规范和设计要求,计算得出楼板上的荷载。
3.结构分析:进行楼板的结构分析,主要包括静力分析和动力分析。
-静力分析:根据荷载计算结果,进行静力平衡方程求解,确定楼板内力、弯矩和剪力大小及位置。
-动力分析:如果楼房位于地震区域,需要进行动力分析,考虑地震作用对楼板的影响。
4.梁与板的计算:根据楼板的结构形式,进行梁与板的计算。
-梁的计算:根据梁的自重、楼板荷载和梁自身承载力等参数,计算梁的截面尺寸和配筋。
-板的计算:根据楼板的自重、活荷载和板自身承载力等参数,计算板的截面尺寸和配筋。
5.钢筋配筋:根据楼板的受力情况和截面尺寸,进行钢筋的配筋计算。
-弯曲受力区域:通过计算得出楼板的截面尺寸和弯矩大小,确定弯曲受力区域,然后计算该区域所需的主筋和箍筋的截面尺寸和配筋率。
-剪切受力区域:通过计算得出楼板的截面尺寸和剪力大小,确定剪切受力区域,然后计算该区域所需的剪力筋的截面尺寸和配筋率。
6.构件设计:根据梁和板的计算结果,进行构件的设计。
-梁设计:根据梁的截面尺寸和配筋率,设计梁的构造和受力情况。
-板设计:根据板的截面尺寸和配筋率,设计板的构造和受力情况。
7.变形计算:对楼板结构的变形进行计算,包括挠度、位移等。
-挠度计算:根据楼板截面刚度、荷载大小和材料力学性质,计算楼板的弯曲挠度。
-位移计算:根据楼板的受力情况和结构形式,计算楼板的位移。
8.安全评估:根据梁和板的计算结果,进行结构的安全评估。
-承载力:通过计算得出楼板的承载力,与设计要求进行对比,判断结构是否满足要求。
-变形:根据变形计算结果,进行结构的变形评估,判断结构变形是否满足规范要求。
这些步骤是钢筋混凝土结构计算的基本流程,具体计算过程会根据设计要求和规范进行调整。
同时,计算中需使用专业软件进行力学计算和结构设计,以提高计算精度和效率。
PKPM的板配筋计算不足问题多年工作实践中屡次出现板配筋满足设计及施工要求的情况下,出现板开裂的现象。
深入研究之后发现PKPM计算中并未考虑板支座的位移,即未考虑支撑梁的挠度变形影响,导致板弯矩计算不足。
就板配筋的计算原理进行分析,得出板配筋偏小而开裂的原因,并给出合理有效的方法进行解决。
标签:板配筋不足;板开裂;超静定结构;支座位移;弯矩板开裂在工程中并不鲜见,如板四角板面开裂,板底开裂等。
当设计与施工任何一项不合理均可能造成其结果。
如设计荷载考虑不足,板厚取值不够,施工不符合要求,养护不足等。
然而多年工作实践中出现多个工程在满足设计及施工要求的情况下,出现板开裂的现象。
深入研究之后发现PKPM板配筋计算方法不够完备。
其中并未考虑板支座的位移,即未考虑支撑梁的挠度变形影响。
本文研究中,板的简化计算,取每米板带作为研究对象,单跨板简化为两边固定结构。
PKPM板计算中仅考虑了荷载作用下板的受力,未考虑板支座梁的竖向位移。
对于支撑于主梁上的次梁,其最大位移应为主梁相应位置的位移加上次梁本身受荷变形产生的挠度。
当主梁产生的位移较小,且板两端次梁的挠度变形差距不大时,计算差异不大,板配筋足以抗裂,但当主梁产生的位移较大,且板两端次梁挠度变形差异过大时,板两端产生的位移差则不能忽略。
因此由板端梁竖向位移差产生的板面弯矩应予以考虑。
本文将就板配筋的计算原理进行详细分析,得出板配筋偏小而开裂的原因,并且给出并给出合理有效的方法进行解决。
1PKPM中板配筋计算方法本文利用PKPM建立模型进行计算分析,如图1。
图1结构平面布置图(1)板块1设计条件:边界条件(左端/下端/右端/上端):铰支/铰支/固定/铰支/。
荷载:永久荷载标准值:g=4.70 kN/m2;可变荷载标准值:q =2.00 kN/m2;计算跨度Lx =3000 mm ;计算跨度Ly =8000 mm;板厚H = 100 mm;砼强度等级:C30;钢筋强度等级:HRB270。
PKPM(2005)楼板计算常见问题详解1.计算都是以房间、考虑四边支撑按静力计算手册查表独立计算。
目前主要应用两种计算方法:弹性和塑性分析法。
弹性分析法:当四周与梁整体现浇的板按弹性方法时,所得弯矩可以折减。
中间跨跨中与支座可折减20%,边跨跨中及自楼板边缘算起的第二支座,当Lb/L 小于1.5时折减20%,当Lb/L在1.5~2.0之间折减10%。
(L为垂直楼板边缘方向的长度,Lb为沿楼板边缘方向的长度)。
角区格不应折减。
上述折减的原因是板支座由于负弯矩作用上皮开裂,板跨中由于正弯矩作用下皮开裂,在荷载作用下,产生板平面内的推力,此推力对板的承载能力是有利的。
塑性分析法:北京建筑设计研究院采用塑性算法已经有50年历史,未出安全问题。
直接承受动力荷载作用和要求不出现裂缝的构件不能考虑塑性设计,考虑塑性设计结构中的钢筋应有足够的延性(伸长率),采用热扎钢筋而不宜采用冷加工钢筋。
采用塑性设计进行承载力计算时,还应满足正常使用极限状态(挠度、裂缝)的要求,并采取有效的构造措施加以保证。
2.PKPM中现浇板计算有自动计算、活载不利布置算法和连续板串算法。
自动计算对规则板按计算手册查表的方法计算,对凸形不规则板块,程序用边界元法计算,对凹形不规则板块,程序用有限元发计算,程序自动识别板的形状类型并选相应的计算方法。
程序只能对规则板显示计算书,而对不规则板不能显示计算书。
对于板底内力取该板块跨中之内力,支座内力则取其两侧板块分别计算后的较大值。
规则板的计算实质是查表计算,而表格中所涉及的边界条件,在一个边界上必须是唯一的。
对边界条件的选择,普遍的设计人员边缘梁处按简支边界考虑。
理想的简支支座很少,一般板在支撑边缘总有一定的约束。
尽管设计计算时可取为简支边而认为支座弯矩为0,但在板受力变形时仍将产生一定的弯矩,并在板边形成裂缝。
有资深人士认为应该按嵌固考虑,个人认为荷载不大时可按简支考虑,适当加大配筋。
当选择塑性算法时只针对规则板长宽比≤2适用,当为不规则或长宽比大于2时,程序自动按弹性算法。
构件配筋计算:砼:C30钢筋:HRB335
b=600mm板宽h=1100mm板厚
h0=1037.5mm板的有效高度c=50mm保护层厚度
fc=14.3N/mm2砼轴心抗压强度ftk =2.01N/mm2砼轴心抗拉强度
fy=300N/mm2钢筋抗拉强度Es=2.0E+05N/mm2钢筋弹性模量
M=1296.00kN·m弯矩设计值Mk=960.00kN·m弯矩标准值
αs=0.140(αs=M×106/fcbh02)ξ=0.15(ξ=1-SQRT(1-2×αs))
As=4506mm2实际配筋:14φ25钢筋面积As=6872mm2ρ=1.04%(ρ=As/bh)x=240.29mmξbh0=564.4mmx ≤ξbh0,受压区高度满足要求裂缝验算:ρte=0.021(ρte=As/0.5bh)αcr=2.1σsk=154.76N/mm2(σsk=Mk×106/0.87h0As)ψ=0.695(ψ=1.1-0.65ftk/ρteσsk)ωmax=0.216mm(ωmax=αcrψσsk(1.9c+0.08d/ρte)/Es)梁跨中说明:除红字部分需要根据实际填写外,其余均不需改动。梁配筋及裂缝计算受拉钢筋面积(As=ξfcbh0/fy)