泵与泵站 第二章第6节 离心泵装置的性能曲线
- 格式:ppt
- 大小:2.17 MB
- 文档页数:29
离心泵的性能参数与特性曲线(精)离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
离心泵的曲线
离心泵的曲线是用来描述离心泵性能的一种图形表示。
它展示了离心泵在不同工况下的流量、扬程和效率之间的关系。
通常,离心泵的曲线包括以下几个主要参数:
1. 流量-Q:表示单位时间内通过泵的液体体积。
通常以立方米每小时(m³/h)或升每秒(L/s)来表示。
2. 扬程-H:表示泵能够提供的压力。
通常以米(m)为单位。
3. 效率-η:表示泵转化输入功率为输出功率的能力。
通常以百分比形式表示。
离心泵的曲线通常由以下几条线组成:
1. H-Q曲线(等速曲线):在恒定转速下,流量与扬程之间的关系曲线。
当流量增大时,扬程会逐渐降低。
2. η-Q曲线(效率曲线):在恒定转速下,效率与流量之间的关系曲线。
通常在设计流量附近效率较高,而在低流量和高流量处效率较低。
3. NPSHr曲线(净正吸入头曲线):表示给定流量下泵要求的最低净正吸入头。
当净正吸入头低于该值时,泵可能会产生气穴或性能下降。
4. NPSHa曲线(净正吸入头可利用余量曲线):表示给定流量下实际系统提供的净正吸入头与NPSHr之间的差值。
当可利用余量大于零时,系统运行正常。
不同型号和尺寸的离心泵有不同的曲线特征,根据具体工程要求选择合适的泵型和工作点是非常重要的。
关于离心水泵性能曲线与参数!一、关于离心水泵参数之间必须遵从的关系:1、能量关系:机械能守恒原理:功率N ∝扬程H ³流量Q2、流体动力学原理:A、阻力矩M正比流速v的平方:M ∝ v^2B、速度头与水头的转换关系(流速v的平方与扬程H的转换关系):v^2 /2∝gHC、流量与管网阻力R的关系:H ∝流量Q^23、运动学关系:线速度与角速度成正比 v ∝ω4、功能关系:A、功率N = 转矩M³角速度ωB、功率N ∝角速度ω的立方:N ∝ω^3二、各种曲线:1、流量-扬程曲线(Q-H)2、流量-功率曲线(Q-N)3、流量-效率曲线(Q-η)4、流量-气蚀余量曲线(Q-(NPSH)r)5、意义:A、性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值;B、这一组参数称为工作状态,简称工况或工况点;C、离心泵取高效率点工况称为最佳工况点;D、最佳工况点一般为设计工况点;E、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近;F、在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。
要分清几个过程的前提条件:1、管网曲线一定时:1)系统压力增大,流量增大,压力与流量的平方成正比,即H ∝流量Q^22)是一个系统功率增大的过程,或者说泵机转速提高的过程,变频频率升高的过程; 3)管网曲线是一个二次曲线;4)就相当于电路电阻R一定,电压变化、电流变化、功率变化的情况;2、改变管网曲线,增大流量:1)相关物理过程例如打开出水龙头时;2)改变管网曲线减小管网阻力R,系统流量增大,压力减小很少认为恒定,3)压力恒定,系统流量与功率成正比,流量增大,功率增大,电机转子转速在稳定区速度梢微降低,负荷增大;4)这就是泵的实际运行状态,流量大,功率大,流量小功率小,例如风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小;5)风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小,此时转子转速在稳定区速度梢微升高,负荷减轻;6)如果这时改变出水管径,就等于改变流量,改变电机运行功率,这就是改变出水管径改变流量的原理;7)相当于电路的电压不变,电阻R变化时,电流、功率变化的情况;3、泵机功率不变:1)相关物理过程如灭火水枪;2)用减小出水管截面,增大管网阻力R,减小流量、增大压力,泵机功率不变;3)目的在于增大压力,增大出口水流速度等;4)也是管网改造,减小流量、增大扬程、不增大系统功率的方法的原理;5)这个过程H-Q曲线,是上翘的双曲线形,流量与压力反比降低,或压力与流量反比升高的曲线;6)这个过程相当于恒流源电路中,外电路变阻器的电阻增大时,电流减小、电压升高、功率不变的情形;1、管网曲线一定时:这种运行情况适宜封闭式流体循环系统;2、改变管网曲线,调节流量:1)这是大部分风机、供水泵的正常工作状态;2)在这种状态下运行时,忽略压力的变化既恒压;3)在这种状态下运行时,流量与电机输出功率成正比,既风门大功率大、风门小功率小,所以用风门调节风量大小并不浪费电。
离心泵的特性曲线及其应用离心泵一般都有扬程曲线(Q-H)、效率曲线(Q-η)、功率曲线(Q-Pa)、汽蚀曲线(Q-NPSHr)。
不过液下泵没有汽蚀曲线(Q-NPSHr)。
离心泵的特性曲线如下图所示:(泵性能曲线图)泵的运行工况是泵的扬程曲线与装置曲线的交点。
所以说,泵的运行工况不只取决于泵的扬程曲线,同时也与装置曲线有关。
泵运行工况的调节1、改变装置曲线来改变泵的运行工况点,如下图所示:(改变装置曲线调节泵的运行工况)可通过改变装置阻力改变装置曲线的形状。
上图中,假定开始泵在工况点2运行,当关小出口阀门时,装置曲线由2变为1,泵的运行工况点相应由工况点2变为1,泵的流量减少,扬程增加;当加大出口阀门开度时,装置曲线由2变为3,泵的运行工况点相应由工况点2变为3,泵的流量增加、扬程降低。
2、改变扬程曲线来改变泵的运行工况点,如下图所示:(改变扬程曲线调节泵的运行工况)不同的泵有不同的扬程曲线,同一台泵可通过改变叶轮直径、改变转速等方法来改变泵的扬程曲线。
上图中,假定泵的叶轮直径为D1时对应泵性能曲线1、运行工况点1;当叶轮直径切削至D2和D3时,其性能曲线变为2、3,工况点也变为2、3,对应流量减少,扬程降低。
当降低泵的转速时,情况类似。
3、同时改变装置曲线和扬程曲线改变泵的运行工况点。
当采用上面一种方法不足以满足使用要求时,可以同时改变装置曲线和扬程曲线来调节泵的运行工况点,以到达理想的运行工况点。
医学基础知识500考点1产后心脏负担最重的时期是:产后72 小时2原发性肝癌最常见的主要体征是:肝不规则肿大3 血管玻璃样变性常见于:良性高血压病的细动脉4 微血检的土要成分是:纤维素5 淤血常见的原因中没有:动脉栓塞6 炎症渗出病变错误的是:所有渗出的白细胞都具有吞噬作用7 急性炎症局部组织变红的主要原因是:血管扩张,血流加快8 畸胎瘤不是恶性肿瘤9 高血压心脏病的病变特征:左心室向心性肥大13 慢性支气管炎鼓主要病因是:长期吸烟14 诊断慢支急性发作伴细菌感染主要依据是:痰量较多旱脓性15 我国引起肺心病鼓常见的病因:慢性阻塞性肺疾病16 导致哮喘反复发作的系要原因:气道高反应17 医院内获得性肺炎,最常见的致病菌是:革兰阴性杆菌18 不能做支气管造影:病变较重累及双侧肺19 细胞内结核无效的杀菌药是:乙胺丁醇20 II型呼吸衰竭时氧疗吸氧浓度:25 -34 %21 支气管扩张症咳嗽往往于清晨或夜间就动体位时加重,并伴有咳嗽22 与呼吸困难无明显关系的疾病包括:急性胃炎23 BP170 / 100mmhg 伴心肌梗死患者,诊断为高BP 病:2 级(极高危)24 直接引起心脏容最负荷加重的疾病为:主A瓣关闭不全25 冠心病的危险因素,除了:HB 异常26 可引起低血钾的药物是:呋塞米别名:速尿27 动脉粥样硬化病变最常见累及哪一支冠状动脉:左冠状动脉前降支28 急性心肌梗死鼓常见的心律失常是:室性期前收缩29 震颤常见于:动脉导管未闭30 三尖瓣狭窄最严重的并发症是:急性肺水肿31 最容易引起心绞痛的是:主A 狭窄38 判断慢性胃炎是否属于活动性的病理依据是:粘膜中有无中性粒细胞浸润39 胃溃疡多见于胃角和胃窦40 回盲部——是肠结核好发的部位41 对结核性腹膜炎最具有诊断价值的是:腹腔镜检查42 X线钡检呈跳跃征象(Stier-lin-sing )提示为:Crohn 病43 急性腹痛发病一周后,对胰腺炎有诊断价位是:血清脂肪酶44 诱发肝性脑病除外的是:多次灌肠或导泻45 肝硬化最可靠和证据:肝穿刺活检示假小叶形成46 贫血根据病因可分为:红细胞生成减少,红细胞破坏过多,失血三类47 红细胞增多常见于:严重慢性肺心病48 急粒与急淋的鉴别要点是:前者原始细胞POX 染色阳性50 各种蛋白质平均含氮量约为:16 %。
《泵与风机》Pump&fan一、课程基本信息学时:32学分:2考核方式:考试(平时成绩占总成绩的30%)中文简介:《泵与泵站》是给水排水工程专业的一门专业必修课。
主要讲述离心泵的工作原理、基本性能、水泵机组配置、运行工况的图解法和数解法原理、泵站对土建的要求和特点、泵站噪声消除及其维护管理方法;介绍其它泵与风机的基本性能及其应用;学会给水泵站和排水泵站设计的原理和方法。
是《环境工程学》、《建筑给水排水工程》和《给水排水管网工程》等专业课的基础课程。
二、教学目的与要求第一章绪论1.掌握水泵的定义;2.了解合理设计泵站具有重要的经济意义;3.按工作原理对水泵进行分类;4.了解不同种类水泵的使用范围及发展趋势。
第二章叶片式水泵1.识读水泵构造图,能准确说出离心泵各部件的构造特点和作用;2.理解水泵的工作原理,水泵铭牌意义,叶片泵基本方程式的意义;3.学会计算水泵配套电机的耗电量和电费;4.掌握闭闸启动、比例律、相似工况抛物线(也称等效率曲线)、比转数(ns)、切削律、切削抛物线、横加法原理、允许吸上真空高度HS等重要概念;5.掌握推导水泵扬程公式及公式应用方法,掌握绘制水头损失特性曲线、水泵装置的管道系统特性曲线和图解法求水泵工况点的方法,掌握水泵串联、并联、调速及换轮运行的特性曲线绘制方法,掌握准确计算水泵安装高度的方法;6.了解叶片泵常用的几种调节方法,了解水泵并联后流量、杨程及轴功率变化规律,了解水泵调速和换轮运行的优点,了解水泵启动前的准备工作、水泵的启动程序和停车程序,水泵性能曲线型谱图及其应用,了解轴流泵、混流泵的适应范围及使用条件,了解给排水工程中常用叶片泵的使用和安装特点;7.简述水泵的型号意义并归纳总结水泵运行中应注意的问题。
第三章其它水泵1.了解射流泵构造、工作原理及应用;2.了解往复泵的构造、工作原理及应用;3.了解螺旋泵的构造、工作原理及应用;4.了解真空泵的构造、工作原理及应用;5.了解离心式风机和轴流式风机的构造、性能参数及应用。
介绍离心泵的几条重要的性能曲线水泵的性能参数如流量Q扬程H轴功率N转速n效率η之间存在的一定的关系。
他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的性能曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
A、流量—扬程特性曲线它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点(既中间凸起,两边下弯),称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
B、流量—功率曲线轴功率是随着流量而增加的,当流量Q=0时,相应的轴功率并不等于零,而为一定值(约正常运行的60%左右)。
这个功率主要消耗于机械损失上。
此时水泵里是充满水的,如果长时间的运行,会导致泵内温度不断升高,泵壳,轴承会发热,严重时可能使泵体热力变形,我们称为“闷水头”,此时扬程为最大值,当出水阀逐渐打开时,流量就会逐渐增加,轴功率亦缓慢的增加。
C、流量—效率曲线它的曲线象山头形状,当流量为零时,效率也等于零,随着流量的增大,效率也逐渐的增加,但增加到一定数值之后效率就下降了,效率有一个最高值,在最高效率点附近,效率都比较高,这个区域称为高效率区。
五、合理配置、安全运行、优质供水以上四个方面了解了离心泵构造,工作原理、特性曲线以后,如何合理配置电机水泵的功率,是保证水泵的安全运行,优质供水,降低生产成本的关键,合理配置水泵功率,发挥水泵最佳工作区域的安全运行,我厂供水的实际情况,足已说明设备合理配置的重要性、可靠性和经济性。
第二章:1.叶片式泵的定义和分类:(1)定义:依靠叶轮的高速旋转以完成其能量的转换。
由于叶轮中叶片形状的不同,旋转时水流通过叶轮受到的质量力就不同,水流流出叶轮时的方向也就不同。
(2)分类:根据叶轮出水的水流方向分离心泵(径向流)、轴流泵(轴向流)、混流泵(斜向流)2.离心泵的工作原理:当一个敞口圆筒绕中心轴作等角速旋转时,圆筒内的水面便呈抛物线上升的旋转凹面。
圆筒半径越大,转的越快时,液体沿圆筒壁上升的高度就越大。
启动前先用水灌满泵壳和吸水管道,驱动电机,叶轮高速转动,水被甩出叶轮流入管道,叶轮中心处由于水被甩出而形成真空,水在大气压作用下流入吸水口,又受到高速旋转的叶轮作用而被甩出,形成离心泵的连续输水3.叶片泵的基本性能参数:流量(抽水量)、扬程(总扬程)、轴功率、效率、转速、允许吸上真空高度(Hs)及气蚀余量(Hsv)4.离心泵的基本方程式的几点讨论:HT=(u2C2u-u1C1u)/g (1)为了提高泵的扬程和改善吸水性能大多数离心泵在水流进入叶片时使α1=90°即HT=u2C2u/g 为了使HT>0 必须α2<90°α2越小,泵的理论扬程越大(2)水流通过泵时,比能的增值HT与圆周速度u2有关u2=nπD2/60,水流在叶轮中所获得的比能与叶轮的转速n 叶轮的外径D2有关,增加叶轮转速或加大外径可提升泵的扬程(3)离心泵的理论扬程与液体密度无关。
液体在一定转速下所受的离心力与液体密度有关,液体受离心力所获得的扬程相当于离心力所造成的压强除以液体的ρg,它们对扬程的影响被消除。
液体密度越大,泵消耗的功率越大。
(4)HT=H1+H2,动扬程H2在总扬程中所占的百分比越小,泵壳内部的水力损失越小,泵的效率将提高高。
5.离心泵装置的总扬程:H=Hd(压力表读数)+Hv(真空表读数)Hst(泵静扬程)=Hss(吸水井至泵轴高差)+Hds(泵轴至测压管垂直距离)H=HsT+Eh(水头损失总和)6.实测特性曲线讨论:后弯式叶片的流道比较平缓,弯度小,叶槽内水力水头损失较小,有利于提高泵的效率(问答题:β角为什么采取后弯式)1.每一个流量Q都想应于一定的扬程H轴功率N效率η和允许吸上真空高度Hs。
水泵的性能曲线图分析:泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。
水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。
注意其轴功率不应超过电机功率。
1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。
扬程--流量曲线以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。
每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。
扬程是随流量的增大而下降的。
Q-H(流量-扬程)是一条不规则的曲线。
相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。
它将是该水泵最经济工作的一个点。
在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。
在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。
因无法上图,请自找一幅水泵性能曲线图对照着看。
主要就这些了。
GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。
其中ft是英尺,表示扬程。
1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米.比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢?转换公式是什么?请大家告诉我一下!谢谢转换公式:高度H=P/(ρg)压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。