热电偶特性及其应用研究实验报告Word版
- 格式:doc
- 大小:244.50 KB
- 文档页数:6
热电偶实验报告引言热电偶是一种常见的温度测量仪器,利用热电效应测量物体的温度。
本次实验旨在通过热电偶测量不同温度下的热电势,进一步了解热电偶的原理和特性。
一、实验原理热电偶基于热电效应,即在两种不同材料的接触处,由于温度差异而产生的电压。
通常热电偶由两种不同金属的合金组成,两端形成接触点。
当一个接点被加热,另一个接点处于常温状态,则两个接点之间会产生一定的电势差。
二、实验材料本次实验使用的热电偶为常见的铁-铜热电偶,选用的金属合金分别是铁和铜的合金。
因为铁和铜的合金对于温度变化有较大的响应,故常被用于温度测量。
三、实验步骤1.将热电偶的铁合金端片固定于一个恒温器中,并通过电炉使其升温,同时将铜端片悬空。
2.使用万用表测量铁合金端片与铜端片之间的电势差。
3.依次升高恒温器的温度,并记录相应的电势差。
4.完成测量后,将数据整理并绘制电势差随温度变化的曲线。
四、实验结果通过实验测量,我们得到了热电势随温度变化的曲线图。
曲线呈现出一定的线性关系,即温度越高,热电势越大。
这与热电效应的原理相符合。
同时,根据实验数据我们还可以计算出热电偶的灵敏度,即单位温度差引起的热电势变化。
五、实验分析1.热电势与温度的线性关系说明了热电偶测温的可靠性。
热电偶可用于不同温度范围内的精确测量。
2.热电势的大小与所选金属合金的特性有关。
不同金属合金对温度响应的灵敏度不同,需要根据实际应用场景进行选择。
3.热电偶在实际应用中需要注意保护措施。
因为长期高温作用可能导致铁合金端片的氧化,从而影响测量精度。
4.实验中我们只使用了铁-铜热电偶,但实际上还有其他种类的热电偶,如铬-铜、铬-铓等。
不同热电偶适用于不同温度范围和环境条件,需要根据实际需求进行选择。
六、实验总结热电偶是一种常见且可靠的温度测量仪器。
通过本次实验,我们深入了解了热电偶的原理和特性,并通过实验数据对其性能进行了评估。
在实际应用中,我们应根据具体需求选择合适的热电偶,并注意使用和保养的细节。
热电偶实验报告一、实验目的本实验旨在探究热电偶的工作原理及其在温度测量中的应用。
二、实验器材热电偶、数字温度计、火柴、酒精灯等。
三、实验原理热电偶的工作原理是基于热电效应的。
当两根金属棒以不同温度连在一起时,形成的热电偶会在两个不同温度处形成电势差。
这个电势差与两个温度之差有关,从而可以通过测量电势差来测量温度。
四、实验步骤1.将热电偶的两端剥开,使之暴露出来。
2.用火柴点燃酒精灯,将热电偶的一个金属头通过火焰加热至红热状态。
3.用数字温度计测量被加热的端头的温度,并记录下来。
4.将另外一个金属头连接到数字温度计上,读取并记录温度。
5.根据读取的温度差计算出电势差,并记录下来。
6.重复以上步骤,将温度差尽量控制在20度左右。
五、实验结果及分析通过实验得到的数据如下:温度一:850摄氏度温度二:830摄氏度温度差:20摄氏度电势差:4.96毫伏通过计算可得,每1摄氏度的温度变化会导致0.248毫伏的电势变化。
以上实验结果表明,热电偶可以非常精确地测量温度,其准确度可达响应温度变化的1/1000左右。
这使得热电偶成为了广泛应用于实验室和工业领域的一种温度测量方式。
六、实验结论本次实验通过实际测量,验证了热电离散效应原理并表面其在温度测量中的应用。
热电偶的优点是精度高,测量范围广,且不易受环境影响。
但需要注意的是,由于热电偶中的金属种类不同,测量范围和适用温度范围也会不同,使用时需要根据具体情况选用适合的热电偶。
七、实验改进本次实验由于实验器材受到限制,缺乏更准确的温度控制设备,实验结果存在了一定误差,建议在另有更好条件的情况下,对实验进行进一步的改进,以获取更准确的实验结果。
热电偶测温性能实验报告一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理(1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。
一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。
热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。
两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。
根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。
热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。
因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。
B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。
热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度(2)分类:(S型热电偶)铂铑10-铂热电偶铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。
该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。
S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
大物实验热电偶实验报告热电偶实验是给学生们提供了一个研究物理热量变化的有趣而有价值的实验。
在这次实验中,学生们需要使用热电偶,测量热量的变化、估算各种热量之间的关系以及分析实验结果。
热电偶是一种常用的测量热量变化的设备,它由一根金属丝和一块发热片组成,当两者所夹的物体的温度发生变化时,金属丝和发热片之间的电流也将随之发生变化。
它可以测量出箱子内温度的变化,从而得出热量的变化结果。
二、实验目的本次实验的目的是通过使用热电偶来测量热量的变化,得出热量之间的关系以此来推导温度随着一定热量耗尽时,所发生的温度变化规律三、实验原理实验是通过热电偶测量热量的变化,热电偶的原理是热电偶模块的夹片中间的金属丝与发热片之间的接受能量耗尽时,电压和电流会发生变化,从而可以计算出温度的变化。
四、实验装置1.热电偶组件:它的主要组成部分是金属丝和发热片,两者之间构成一个可测定温度变化的电路。
2.热量发生器:它是一种把电能转换成热能的装置,可以用来给热电偶模块提供加热电源。
3.数字温度计:它是一种可以读取温度变化的仪器,可以测量箱子内容物的温度。
4.绘图板:它可以把热电偶模块的数据可视化,以便进行分析和观察。
五、实验过程1.首先,将热电偶标记并连接好,确保组件正确连接,然后将热电偶组件装在箱子内热量发生器上。
2.然后,使用数字温度计测量箱子内温度,确保初始温度稳定,并将其记录在绘图板上。
3.接下来,启动热量发生器,使它加热箱子内物品,并用数字温度计测量温度的变化。
4.随着温度的上升,记录下各个测量点的温度变化情况,并将其绘制在绘图板上。
5.最后,当实验结束后,计算出热量、温度变化的比例,并将其记录在报告中。
六、实验结果本次实验结果显示,热量和温度在变化过程中存在一定的比例关系,随着热量的耗尽,温度也不断下降,而当温度达到稳定时,热量亦达到最低值,因此实验结果证实了热量和温度之间的关系。
七、实验总结本次实验是使用热电偶来研究物理热量变化的实验,实验结果表明,热量和温度在变化过程中存在一定的比例关系,而当温度达到稳定时,热量亦达到最低值,实验也验证了热量和温度之间的关系。
热电偶定标实验报告热电偶定标实验报告引言:热电偶是一种常用的温度测量传感器,可广泛应用于工业控制、实验室研究等领域。
本次实验旨在通过对热电偶的定标实验,了解其工作原理以及验证其准确性和稳定性。
一、实验原理热电偶是利用两种不同金属的热电效应产生电动势,从而实现温度测量的仪器。
热电偶由两根不同金属的导线组成,两端焊接在一起形成一个回路。
当两端温度不同时,由于两种金属的热电效应不同,就会产生电动势。
二、实验装置本次实验采用了标准的热电偶测温系统,包括热电偶、测温仪、恒温槽等。
热电偶选用了铜-铜镍合金热电偶,测温仪采用了数字显示仪表。
三、实验步骤1. 准备工作:将热电偶插头与测温仪连接,确保连接牢固。
2. 温度校准:将热电偶的测温端插入恒温槽中,调节恒温槽的温度,待温度稳定后,记录测温仪的示数。
3. 温度变化测量:将热电偶的测温端分别插入不同温度的介质中,记录测温仪的示数,并观察示数的变化趋势。
4. 数据处理:根据测温仪示数和对应的温度值,绘制热电偶的温度特性曲线。
四、实验结果与分析通过实验测量,我们得到了热电偶的温度特性曲线。
曲线显示出热电偶的输出电动势与温度之间的线性关系,符合热电偶的工作原理。
同时,我们还观察到在不同温度下,热电偶的输出电动势有所变化,这与热电偶的特性相符。
在实验过程中,我们还注意到热电偶的响应速度较快,能够迅速感知温度的变化。
这使得热电偶在工业控制领域得到广泛应用,能够满足对温度变化快速响应的需求。
五、实验误差分析在实验中,由于测量设备的精度限制以及环境因素的影响,可能会产生一定的误差。
例如,温度梯度对热电偶的测量结果会产生影响,因此在实验过程中要尽量减小温度梯度。
此外,由于热电偶的材料和制造工艺不同,不同型号的热电偶具有不同的特性,因此在实际应用中,需要根据具体情况选择适合的热电偶。
六、实验结论通过本次热电偶定标实验,我们深入了解了热电偶的工作原理,并验证了其准确性和稳定性。
实验结果表明,热电偶能够快速、准确地测量温度,并具有良好的线性特性。
大物实验热电偶实验报告
热电偶实验是众多大物实验中的一种,主要用于测量物质的热能。
热电偶被广泛应用于各种行业,如汽车、航空、军工等,用于测量各种热能物质的热量。
本文将介绍热电偶的实验原理以及实验过程,以便学生们能够更好地理解热电偶实验。
一、热电偶实验原理
热电偶是一种特殊结构的电器装置,它将温度变化转换为电压变化,具有灵敏度高、体积小、重量轻等特点,也是本次实验的主要实验器材。
一般热电偶由两个不同金属组成,每个金属部分由热电偶头和棒组成,它们表面均加上一层特殊的热电膜,当热电膜处于不同的温度时,它们之间会发生电势差,此时可以对其进行测量。
二、热电偶实验过程
1、实验前准备:将热电偶插入热电偶测量仪器,根据标准的热
电偶示教程操作,检查热电偶是否正确安装,确保实验中不会出现任何故障。
2、实验室实验:将热电偶放入规定的实验室,在温度恒定的条
件下进行测量,然后对热电偶输出值进行采样、记录,并记录实验室的温度和湿度,以便在下一次实验中重复实验。
3、实验结果分析:记录下实验的数据后,对结果进行详细分析,计算出热电偶的热能及温度系数,以及实验室温度与湿度等参数,最终给出准确的结论。
三、总结
热电偶实验是一种重要的大物实验,它可以检测物质的热能,并且还可以测量实验室温度和湿度等参数,使学生们更好地了解热电偶,增强对热工学的认识和理解。
以上就是本次热电偶实验报告的全部内容,希望能够帮助学生们更好地理解热电偶实验。
热电偶应用实验报告单实验目的:本实验的目的是通过研究热电偶的工作原理和性能,了解热电偶在温度测量中的应用。
实验原理:热电偶是一种基于塞贝克效应的温度传感器。
其工作原理是利用两种不同材料的热电势差产生的电压来测量温度差异。
热电偶由两个不同材料的导线组成,这两根导线焊接在一起形成热敏性区域。
当热敏区域与温度不均匀的物体接触时,导体之间的温度差使得产生一个微小的热电势差,这个热电势差可以通过连接导线的测温电表进行测量。
实验步骤:1. 准备实验材料和设备,包括热电偶、测温电表和待测温度物体。
2. 将热电偶的两个导线分别连接到测温电表的正负极上,确保连接牢固。
3. 将热敏区域置于待测温度物体表面,确保与物体接触良好。
4. 打开测温电表,调整至适当的量程和测量精度。
5. 等待一段时间,直到测温电表稳定读数,记录下温度值。
6. 更换待测温度物体,重复步骤3-5,记录多组数据以获得准确结果。
7. 实验结束后,关闭测温电表,恢复设备原状。
实验数据处理和分析:根据实验步骤所记录的多组温度值,可以计算热敏区域与待测物体之间的温度差异。
通过测温电表的读数,可以估算出待测物体的温度。
根据温度差和温度读数的关系,可以验证热电偶的工作准确性和灵敏度。
实验注意事项:1. 在进行实验操作前,安全措施要到位,避免热电偶导线的密切接触。
2. 实验过程中,确保热敏区域与待测物体接触紧密,以获得准确的温度读数。
3. 测温电表的选择和设置要根据实际需要,确保测量范围和精度合适。
4. 实验结束后,及时关闭测温电表,避免能源浪费和不必要的安全风险。
实验结果和讨论:通过对多组实验数据的分析,我们可以得出热电偶在温度测量中具有较高的准确性和灵敏度。
实验数据的稳定性和重复性也表明了热电偶在不同温度条件下的可靠性。
此外,根据数据分析,可以进一步研究热电偶的工作原理和在不同应用场景中的优缺点。
结论:热电偶是一种常用的温度传感器,通过利用热电效应测量温度差异。
热电偶测温性能实验报告热电偶测温性能实验报告引言:热电偶是一种常用的温度测量装置,其原理基于热电效应。
热电偶由两种不同材料的导线组成,当两个导线的接触点处于不同温度时,就会产生电动势。
本实验旨在探究热电偶的测温性能,包括响应时间、测量精度和线性度等方面的考察。
实验装置:本实验采用了一组标准热电偶和温度控制装置。
标准热电偶由铜和常见的测温材料铁铬合金(K型热电偶)组成。
温度控制装置通过加热电源和温度传感器实现对被测温度的控制和监测。
实验步骤:1. 将标准热电偶的冷端固定在恒温槽中,确保冷端与环境温度相同。
2. 将标准热电偶的热端与被测温度接触,确保接触良好。
3. 打开温度控制装置,设定被测温度为25℃。
4. 记录热电偶输出电压,作为初始电压。
5. 逐步提高温度控制装置的设定温度,每次提高5℃,并记录热电偶输出电压。
6. 当设定温度达到80℃时,开始逐步降低温度控制装置的设定温度,每次降低5℃,并记录热电偶输出电压。
7. 重复步骤3-6,直到设定温度回到25℃。
实验结果:通过实验记录的数据,我们可以得到热电偶在不同温度下的输出电压。
根据热电偶的特性曲线,我们可以计算出热电偶的响应时间、测量精度和线性度等性能指标。
1. 响应时间:响应时间是指热电偶从遇到温度变化到输出电压稳定的时间。
通过实验数据的处理,我们可以绘制出热电偶的响应时间曲线。
从曲线上可以看出,热电偶在温度变化后,输出电压会迅速变化,并在一段时间后趋于稳定。
响应时间可以通过计算输出电压达到稳定值所需的时间来确定。
2. 测量精度:测量精度是指热电偶测量温度与真实温度之间的偏差。
通过实验数据的处理,我们可以计算出热电偶的测量精度。
一般来说,热电偶的测量精度与热电偶的材料和制造工艺有关。
在实验中,我们可以通过与其他精度更高的温度测量装置进行比对,来评估热电偶的测量精度。
3. 线性度:线性度是指热电偶输出电压与温度之间的关系是否呈线性。
通过实验数据的处理,我们可以绘制出热电偶的线性度曲线。
实验题目:。
一、实验目的了解电位差计的构造、工作原理及使用方法; 2.了解温差电偶的测温原理和基本参数; 3.测量铜—康铜热电偶的温差系数二、实验仪器1、UJ31型电位差计:2、标准电池3、检流计4、控温实验仪5、样品室以及加热装置6、保温杯三、实验原理(概括)1.电位差计的补偿原理为了能精确测得电动势的大小,可采用图2.10.2所示的线路。
其中是电动势可调节的电源。
调节,使检流计指针指零,这就表示回路中两电源的电动势、方向相反,大小相等。
故数值上有(2.10.1)这时我们称电路得到补偿。
在补偿条件下,如果的数值已知,则即可求出。
据此原理构成的测量电动势和电位差的仪器称为电位差计。
2.实际电位差计的工作原理使用时,首先使工作电流标准化,即根据标准电池的电动势调节工作电流I。
将开关K2合在S位置,调节可变电阻,使得检流计指针指零。
这时工作电流I在段的电压降等于标准电池的电动势,即(2.10.2)再将开关K2合向X位置,调节电阻Rx,再次使检流计指针指零,此时有这里的电流I就是前面经过标准化的工作电流。
也就是说,在电流标准化的基础上,在电阻为Rx的位置上可以直接标出与对应的电动势(电压)值,这样就可以直接进行电动势(电压)的读数测量。
3. 温差电偶的测温原理把两种不同的金属或不同成分的合金两端彼此焊接成一闭合回路,如图所示。
若两接点保持在不同的温度t和t0,则回路中产生温差电动势。
温差电动势的大小除了和组成热电偶的材料有关外,唯一决定于两接点的温度函数的差。
一般地讲,电动势和温差的关系可以近似地表示成这里t是热端温度,t0是冷端温度,c称为温差系数,其大小决定于组成电偶的材料。
四、实验步骤测铜—康铜热电偶的温差系数(1).按图6接好电路.根据室温求出标准电池电动势的数值,按电位差计的使用方法(参见仪器简介)调节好电位差计。
(2).加热杯中的液体,至一定温度后停止加热,在读出水银温度计的读数的同时用电位差计测出温差电动势的大小。
热电偶测温特性实验报告
一、实验目的
实验目的是通过测量热电偶,了解测量热电偶的工作原理和使用特性;测试热电偶校
准系数,确定热电偶的温度测量范围及精度;测试热电偶的变比特性,量化热电偶的传感
特性。
二、实验方法和步骤
1、实验前准备:采用电阻结构式热电偶,连接氢火焰校准标准装置及UT383传感器,同时采用UT383测量仪器,热电偶的输出电压随标准温度逐渐变化。
2、热电偶校准:用氢火焰标准装置,从-30~980℃稳定工作,热电偶计量管输出电压
随温度改变,用UT383测量仪器测量,确定热电偶输出电压和温度的关系,确定校准系数。
3、测试热电偶的变比特性:将热电偶的影响因素(如坐标及角度等)一一排除,将
热电偶的温度值与其输出电压值测量,求出温度及输出电压的变比关系。
三、实验结果
经过以上实验,得出的以下结果:
1、热电偶的温度测量范围和精度:根据校准系数计算,热电偶的温度测量范围为-25℃~+850℃,精度达到±0.25℃。
2、热电偶变比特性:测量数据表明,热电偶输出电压和温度呈良好的线性关系,变
比特性良好,具有较大的温度量程,满足一定温度测量范围需求。
1、本次实验能够较好的了解热电偶的工作原理和使用特性。
3、在使用上,应根据温度量程、温度精度和变比特性等热电偶技术参数,确定使用
条件,使其达到最佳性能。
实验报告
热电偶特性及其应用研究
姓名:
学号:
班级:
热电偶特性及其应用研究
一、实验目的
1.了解电位差计的构造、工作原理及使用方法;
2.了解温差电偶的测温原理和基本参数;
3.测量铜—康铜热电偶的温差系数。
二、实验原理
1.电位差计的补偿原理
为了能精确测得电动势的大小,可采用图2.10.2所示的线路。
其中是电动势可调节的电源。
调节,使检流计指针指零,这就表示回路中两电源的电动势、方向相反,大小相等。
故数值上有(2.10.1)
这时我们称电路得到补偿。
在补偿条件下,如果的数值已知,则即可求出。
据此原理构成的测量电动势和电位差的仪器称为电位差计。
2.实际电位差计的工作原理
使用时,首先使工作电流标准化,即根据标准电池的电动势调节工作电流I。
将开关K2合在S位置,调节可变电阻,使得检流计指针指零。
这时工作电流I 在段的电压降等于标准电池的电动势,即(2.10.2)
再将开关K2合向X位置,调节电阻Rx,再次使检流计指针指零,此时有
这里的电流I就是前面经过标准化的工作电流。
也就是说,在电流标准化的基础上,在电阻为Rx的位置上可以直接标出与对应的电动势(电压)值,这样就可以直接进行电动势(电压)的读数测量。
3. 温差电偶的测温原理
把两种不同的金属或不同成分的合金两端彼此焊接成一闭合回路,如图所示。
若两接点保持在不同的温度t和t0,则回路中产生温差电动势。
温差电动势的大小除了和组成热电偶的材料有关外,唯一决定于两接点的温度函数的差。
一般地讲,电动势和温差的关系可以近似地表示成
这里t是热端温度,t0是冷端温度,c称为温差系数,其大小决定于组成电偶的材料。
三、实验所用仪器及使用方法
1.仪器:UJ31型电位差计、标准电池、光点检流计、稳压电源、温差电偶、冰筒、水银温度计、烧杯、控温实验仪等。
2.使用方法
UJ31型电位差计:
(1)将K2置于“断”,K0置于“×1”档(或“×10”档,视被测量值而定),分别接上标准电池、检流计、工作电源。
被测电动势(或电压)接于“未知1”或“未知2”。
(2)根据温度修正公式计算出标准电池的电动势Es的值,调节Rs的示值与其相等。
将K2旋至“标准”档,按下K1(粗)按钮,调节Rn1、Rn2、Rn3,使检流计指针指零,再按下K1(细)按钮,用Rn3精确调节至检流计指针指零。
(3)将K2旋至“未知1”(或“未知2”)位置,按下K1(粗)按钮,调节读数转盘Ⅰ、Ⅱ、Ⅲ,使检流计指针指零,再按K1(细)按钮,细调读数转盘III使检流计指针精确指零。
此时被测电动势(或电压)Ex等于读数转盘Ⅰ、Ⅱ、Ⅲ上的示值乘以相应的倍率之和。
标准电池:
实验中使用饱和标准电池的20℃时的电动势E
=1.0186V。
则温度为t℃时
20
的电动势可由下式近似得到
控温实验仪:
轻按“SET”按钮开始设置温度。
此时轻按“位移”按钮,改变调节焦点位置;轻按“下调”按钮,减小焦点处数字;轻按上调按钮时,增大焦点处数字。
再次轻按“SET”按钮,并设置加热电流后开始加热。
四、原始数据记录
1.标准电池的电动势
标准电池温度Tb(℃)=_18.6_
标准电池电动势:Es(V)= _1.0187_
2.测量热电偶温差电动势
热电偶低端温度t0(℃)=_0_
五、数据处理
1.方法一:图解法
用Matlab对数据点进行拟合,得直线斜率,即铜—康铜热电偶的温差系数
C=0.03967mV/℃
2.方法二:逐差法
高温t(℃)90.085.080.075.070.065.060.055.0温差(t-t0)(℃)90.085.080.075.070.065.060.055.0温差电动势Ex(mV) 2.9758 2.7749 2.5677 2.3469 2.1864 1.9774 1.7810 1.5817
序号1234 (Ex(i)-Ex(i+4))/(5*4) (单位:mV/℃)0.0397400.0398750.0393350.038260
铜—康铜热电偶的温差系数C(mV/℃) =_0.03931_
六、小结
1.结论:
⑴标准电池电动势Es=1.0187 V
⑵铜—康铜热电偶的温差系数C=0.040 mV/℃
2.误差分析:
⑴控温试验仪温度已达到设定温度,但电偶高温段还未被加热到指定温度,导
致误差;
⑵看指针是否指向中线时的视觉误差导致Ex测量不准;
⑶测量仪器(电位差计、检流器)的误差。
3.建议:
⑴加热仪达到设定温度后等待一会再测相应电动势;
⑵多次测量,求平均值,减小偶然读数误差;
⑶定期检查和更换仪器。
七、思考题
1. 怎样用电位差计校正毫伏表? 请画出实验线路和拟出实验步骤。
实验线路:
实验步骤:
①设被校电压表示值为U,实际电压降为U0,电势差计读数为US,则U0 = US。
电压表的指示值U与实际值U0之间的绝对误差为△U = U - U0 ;
②用电势差计对被校电压表在不同示值下进行校准,得一组△U ;
作图线△U-U(用折线联结相邻两点)即校准曲线(修正曲线)。
③利用修正曲线可以对该被校表的测量值进行修正。
如果用被校表测量某一
电压所得示值为Ux,可在修正曲线上找出对应于 Ux的误差△U x,则经修正而得测量结果为:U0x = Ux - △Ux 。
2.怎样用电位差计测量电阻? 请画出实验线路。
将a、b与c、d分别接入电位差计的未知1和未知2
则待测电阻阻值Rx=R0×(U1/U2)
(其中,R0为已知电阻,U1、U2为电位差计未知1、未知2的示数)
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。