基因在染色体上完整
- 格式:ppt
- 大小:2.85 MB
- 文档页数:29
基因在染色体上1. 引言基因是生物体内的遗传信息的载体,它在遗传传递和表达中起着至关重要的作用。
而染色体是基因组的一部分,是由DNA和蛋白质组成的复杂结构。
基因在染色体上的位置决定了其在生物体内的遗传传递方式和表达模式。
本文将深入探讨基因在染色体上的相关知识。
2. 基因与染色体的关系基因是存储生物体遗传信息的单位,它们定位于染色体上。
染色体由DNA组成,而DNA则包含了基因序列。
每个基因位于染色体上的特定位置,称为基因座。
不同的基因座决定了不同的遗传特征。
染色体有不同的类型和结构,最常见的是线性染色体。
在人类中,23对染色体中的22对是自动染色体,另外还有一对性染色体。
在这些染色体上,基因按照一定的顺序排列。
3. 基因在染色体上的排列方式基因在染色体上的排列方式非常有序。
基因组中的基因按照从5号染色体到1号染色体的顺序排列。
同一条染色体上的基因是连续排列的,这种连续排列被称为基因链。
基因链上的基因按照从一端到另一端的方向排列,形成一个线性序列。
在染色体上,基因之间的距离不是固定的,距离越短,基因之间的相互作用越密切。
因此,基因在染色体上的排列方式对于遗传科学研究具有重要意义。
4. 基因与染色体的遗传传递基因在染色体上的位置决定了它们在遗传传递中的行为。
在有性生殖中,染色体是以有序对的方式存在的。
例如,父母各贡献一半的染色体给子代,这种过程称为单倍体与双倍体之间的配对。
基因在染色体上的位置和排列方式决定了基因分离的方式。
在减数分裂过程中,染色体会发生交叉互换,从而导致基因重组。
这种基因重组的方式决定了基因在下一代中的组合情况,进而影响了遗传特征的表现。
5. 基因在染色体上的表达基因在染色体上的表达方式是指基因如何被转录和翻译为蛋白质。
转录是指DNA序列被转录为RNA序列的过程,而翻译是指RNA序列被翻译为蛋白质序列的过程。
基因在染色体上的位置和排列方式对于基因表达有重大影响。
染色体上的某些区域富集了转录因子和其他调控元件,这些元件与基因的转录过程密切相关。
高中生物新教材“基因在染色体上”解读01.问题探讨这一节问题探讨的题目对学生要求颇高。
人类基因组计划要测定24条染色体的DNA序列,而不是46条,主要原因在于:对于常染色体而言,同源染色体之间具有同源关系,即两者DNA的碱基序列基本相似,因此基因组测序时只需要测定同源染色体中的一条即可。
注1:早期测序采用的方法是将整个DNA分子处理成小片段,测定小片段的序列,然后像拼图游戏一样拼接出整个DNA序列,工作量特别大,对于同源染色体这样的相似序列测定两次是极其不划算的。
注2:同源染色体的DNA序列相似,螺旋化加粗形成染色体的方式相同。
在学习了基因位于染色体上之后,学生就能明确等位基因作为控制同一性状的基因,它们的DNA序列是相似的,因此位于同源染色体相同的位置上。
对于性染色体而言,如X和Y染色体,两者虽然也有同源区段,在同源区段两者DNA的碱基序列相似,但是X和Y染色体还存在大量的非同源区段,在非同源区段两者的碱基序列存在显著差异,因此需要同时测定X和Y染色体上的DNA序列,才能获得相对完整的遗传信息。
02萨顿的假说萨顿根据基因的行为和染色体的行为具有明显的平行关系,提出假说:基因位于染色体上。
对于萨顿提出假说的依据,一些课堂就是把体现基因和染色体行为平行关系的表现照着教材念一遍,这样的教学内容全面性有了,但是学生很难从中深刻理解科学家的思考,思维层次要求偏低。
现行教材和新教材为了加深学生的理解和思考,设计了“分析减数分裂中基因和染色体的关系”的思考讨论,这个思考与讨论需要利用起来,从而让学生明确:如果基因位于染色体上,就可以用减数分裂过程中同源染色体的分离去解释等位基因的分离。
教材只是设计了一对基因位于一对同源染色体上的情况,教师还可以设计两对基因位于两对同源染色体上的情况,用非同源染色体的自由组合去解释控制不同性状的基因自由组合。
注:这里要注意由于非等位基因可能位于非同源染色体上也可能位于同源染色体上,因此非等位基因并不一定会自由组合。
基因位于染色体上的方法基因是指生物体内控制遗传特征的一段DNA序列。
它们位于染色体上,并通过遗传方式传递给后代。
在本文中,将介绍一些基因位于染色体上的方法。
1. 人类基因组计划:人类基因组计划(Human Genome Project,HGP)是一个国际合作的科学研究项目,旨在确定人类遗传组成中的所有基因,并了解这些基因的功能。
该计划使用了基因座标系(Genome Coordinate System),通过对许多人的基因进行测序和比较,确定了每个基因位于染色体上的具体位置。
2. 链霉菌发酵法:链霉菌发酵法(Streptomyces fermentation)通过将链霉菌培养在适当的培养基中产生链霉菌素,然后通过组织培养和染色体置换等方法,将链霉菌素与目标基因染色体连接起来。
这样,就可以通过链霉菌的发酵产物来确定目标基因位于染色体上的位置。
4. 荧光原位杂交(FISH):荧光原位杂交(Fluorescence In Situ Hybridization,FISH)是一种常用的染色体检测方法,可以用来确定基因位于染色体上的位置。
该方法通过标记具有特定序列的探针,并将其与染色体样品进行杂交,然后使用荧光染料进行可视化。
通过观察标记染色体的荧光信号,可以确定目标基因位于染色体上的位置。
5. 倒位杂交:倒位杂交(Inversion Hybridization)是一种通过杂交实验确定基因位于染色体上的方法。
该方法使用带有特定标记的DNA探针与染色体进行杂交,并通过测试两者之间的杂交信号来确定基因位于染色体上的位置。
6.基因测序:基因测序是一种直接测定DNA序列的方法,也可用于确定基因位于染色体上的位置。
通过对染色体样本进行测序,可以得到基因序列信息,并通过与参考序列进行比对,确定基因位于染色体上的位置。
总结来说,基因位于染色体上的方法有很多种,包括人类基因组计划、链霉菌发酵法、阵列比较基因组杂交、荧光原位杂交、倒位杂交和基因测序等。
第二章第2节 基因在染色体上孟德尔(1845)性状由遗传因子决定 约翰逊(1909)把遗传因子改为基因提出等位基因概念一、萨顿的假说研究方法:类比推理法(一种科学思维方式,光有折射和反射,声音也有,光可能具和声音一样的特性:是一种波)萨顿用蝗虫细胞作为材料,通过显微镜精巢和卵巢切片,发现蝗虫体细胞24天染色体,在生殖细胞只有12条,这24条按形态分为12对。
并通过一下观察和推论发现:通过类比推理发现:基因和染色体行为存在明显的平行关系,结论:基因是由染色体携带充秦代传递给下一代的,基因在染色体上。
二、性别决定和性染色体 在雌雄异体的生物中,生物的性别有多种决定方式1、染色体决定 2、环境温度决定认识人类染色体图 数字:染色体编号,形态相同的共享一个编号 A 女 B 男人体每个细胞内有_____对染色体。
其中_____对染色体在男女上一样,与性别决定无关,叫____染色体,男女不同的染色体,可以决定性别,叫______染色体。
性染色体是指雌雄异体动物和某些高等植物中与______决定直接有关的染色体。
1、性染色体 如图C XY 染色体形态____,但他们是同源染色体,两个能联会,但他们有各自的特有区段和特有基因在减数分裂过程中,精元细胞中MI 前期X 与___联会形成四分体 ,在___时期, 同源染色体__和__彼此发生分离,形成的次级精母细胞有_____常染色体和________或22条常染色体和_______。
最后男性产生的配子中染色体组成为22条常染色体和________或22条常染色体和_______;女性产生的配子中染色体组成为22条常染色体和________。
受精过程中,雌雄配子随机结合,产生的受精卵重新组成配对成同源,其中中性染色体组成__________或____________,概率各是___、___ 因此,理论分析,人类社会男女比例接近于1:13、性别决定类型:XY 型 XX 女 XY 男 哺乳类,果蝇 ,蝗虫 ZW 型 ZZ 雄 ZW 雌性 鸟类(鸡鸭等)练习:写出下列生物性染色体 (右边图为果蝇染色体雌性、雄性)项目 孟德尔遗传定律(基因)减数分裂(染色体)特 点发生于形成配子过程中,体细胞中成对存在,杂交时保持完整性和独立性发生于形成配子过程中,体细胞中成对存在,配子形成和受精时相对稳定形成配子时,等位基因基因分离分别进入不同的配子中,配子中成单存在形成配子时,同源染色体分离分别进入不同的配子中,配子中成单存在形成配子时,非等位基因自由组合进入配子中形成配子时,非同源染色体自由组合进入配子中体细胞中,成对的一个来自父方一个来自母方 体细胞中,成对的一条来自父方,一条来自母方男生____ 雄蝗虫____ 公鸡____ 雄鹰____ 雄性果蝇____ 雄性芦花鸡____果蝇雄性____常染色体+性染色体雌性____常染色体+性染色体三、基因位于染色体上的实验证据摩尔根果蝇实验1、果蝇昆虫纲双翅目,体长3—4mm。
基因在染色体上位置的判定方法1.遗传连锁法:遗传连锁法是通过观察遗传突变或多性状同时遗传的情况来确定基因在染色体上的位置。
当两个或多个基因在不同的染色体上时,它们可以独立地遗传给子代。
而当两个基因位于同一染色体上时,它们会同时遗传给子代。
通过连锁分析,可以确定基因的相对位置。
2.插入突变法:插入突变法是一种将外源DNA序列插入到已知基因上的方法。
通过这种方式,可以精确定位该基因的位置。
例如,科学家可以将一个反义DNA片段插入到已知基因上,并观察插入突变对基因表达的影响,从而确定该基因在染色体上的位置。
3.染色体映射法:染色体映射法是一种利用特定染色体标记或可识别的DNA序列,将基因定位到染色体特定区域的方法。
例如,通过比较有缺陷染色体的DNA序列与正常染色体的DNA序列之间的差异,可以确定染色体上承载缺陷基因的特定区域。
4.非连锁分析法:非连锁分析法是一种独立于遗传连锁法的方法,用于确定基因在染色体上的位置。
这种方法主要利用单核苷酸多态性(SNP)和微卫星标记等多态性基因标记,通过复杂的数学和统计模型来推断基因在染色体上的位置。
5.相对物理位置法:相对物理位置法是利用不同种群中的同源染色体达成互换片段,通过比较基因重组频率计算出基因的相对物理位置。
这种方法适用于逐渐构建染色体图谱,从而确定基因在染色体上的位置。
总结起来,基因在染色体上位置的判定方法包括遗传连锁法、插入突变法、染色体映射法、非连锁分析法和相对物理位置法。
这些方法的综合应用可以帮助科学家们更准确地确定基因在染色体上的位置,进而深入研究基因功能和与其相关的疾病。
高中生物基因在染色体上知识点总结高中生物基因在染色体上的知识点总结
染色体是生物体遗传信息的载体,它是由DNA和蛋白质组成的结构体,其中DNA是染色体的主要组成部分,而蛋白质则是染色体的支撑结构。
染色体上的基因
是由DNA组成的,它们是遗传信息的基本单位,每个基因都有一个特定的功能,它们可以控制细胞的形态、功能和行为。
基因在染色体上的分布是有规律的,它们沿着染色体的长度分布,每个染色体
上的基因数量不同,但是每个染色体上的基因都有一定的顺序,这种顺序可以帮助我们理解基因的功能。
基因的表达是指基因的信息被转化为生物体的特征,这个过程叫做基因表达,
它是基因在染色体上的一种重要表现形式。
基因表达可以通过调节基因的活性来控制细胞的形态、功能和行为,从而影响生物体的发育和表型。
基因突变是指基因在染色体上的结构发生变化,这种变化可以影响基因的功能,从而影响生物体的发育和表型。
基因突变可以通过外界因素,如辐射、化学物质等,或者由于基因本身的突变而发生。
总之,染色体上的基因是遗传信息的基本单位,它们可以控制细胞的形态、功
能和行为,基因的表达可以影响生物体的发育和表型,基因突变也可以影响生物体的发育和表型。
因此,了解染色体上的基因是非常重要的,它可以帮助我们更好地理解生物体的遗传信息。