初中数学九年级《锐角三角函数——正弦、余弦、正切》公开课教学设计
- 格式:docx
- 大小:154.99 KB
- 文档页数:4
初中锐角三角函数教案一、教学目标:1.理解锐角的概念,并能够通过观察角度来判断锐角;2.掌握正弦、余弦和正切三角函数的定义及基本性质;3.能够在给定角度范围内计算正弦、余弦和正切的值;4.能够运用三角函数解决实际问题。
二、教学重点:1.正弦、余弦和正切三角函数的定义及基本性质;2.正弦、余弦和正切的计算方法;3.能够通过问题分析运用三角函数解决实际问题。
三、教学难点:1.正弦、余弦和正切的计算方法;2.运用三角函数解决实际问题的能力。
四、教学准备:教学课件、黑板、白板笔、直尺、三角板等。
五、教学过程:步骤一:引入新知识教师可以通过多媒体或实物等方式,引导学生观察角度,并介绍锐角的概念。
然后通过与学生的互动,让学生判断哪些角度是锐角。
步骤二:讲解三角函数的定义及基本性质1.定义:正弦函数:在直角三角形中,对于锐角A,以A的对边长度除以其斜边长度所得的比值,叫做A的正弦,记作sinA。
余弦函数:在直角三角形中,对于锐角A,以A的邻边长度除以其斜边长度所得的比值,叫做A的余弦,记作cosA。
正切函数:在直角三角形中,对于锐角A,以A的对边长度除以其邻边长度所得的比值,叫做A的正切,记作tanA。
2.基本性质:正弦函数的值域为[-1,1],在每个周期内呈周期性变化;余弦函数的值域为[-1,1],在每个周期内呈周期性变化;正切函数的定义域为全体锐角,值域为R。
步骤三:计算三角函数的值1.通过给定的角度,使用三角函数的定义及基本性质来计算正弦、余弦和正切的值。
例如:计算角度为30°的正弦、余弦和正切的值。
2.通过课堂练习,让学生灵活掌握计算三角函数的方法。
步骤四:解决实际问题通过一些实际问题的引入,让学生运用所学的三角函数知识解决问题。
例如:一根斜杆在水平地面上的倾斜角为60°,斜杆的长度为10米,求斜杆的垂直高度是多少?步骤五:课堂练习及小结设计一些课堂练习题,让学生巩固所学的知识,并在小结时进行复习。
28.1 锐角三角函数 第2课时 余弦和正切一、新课导入复习与探究:1. 锐角正弦的定义:∠A 的正弦:sin ∠A= A 的对边斜边2、当锐角A 确定时,∠A 的对边与斜边的比就随之确定。
此时,其他边之间的比是否也随之确定?为什么?二 、新知探索:1、你能将“其他边之比”用比例的式子表示出来吗?这样的比有多少?cbb a2、当锐角A 确定时,∠A 的邻边与斜边的比, ∠A 的ABCa bcABCa bc对边与邻边的比也随之确定吗?为什么?交流并说出理由。
如图,在Rt △ABC 中,∠C =90°,★我们把锐角A 的邻边与斜边的比叫做∠A 的 余弦(cosine ),记作cosA , 即cb A A =∠=斜边的邻边cosABC斜边c 对边a 邻边b★我们把锐角A 的对边与邻边的比叫做∠A 的 正切(tangent ),记作tanA , 即baA A A =∠∠=的邻边的对边tan三、注意• cosA ,tanA 是一个完整的符号,它表示∠A 的余弦、正切,记号里习惯省去角的符号“∠”;• cosA ,tanA 没有单位,它表示一个比值,即直角三角形中∠A 的邻边与斜边的比、对边与邻边的比; • cosA 不表示“cos”乘以“A”,tanA 不表示“tan”乘以“A”c a A A =∠=斜边的对边sin c bA A =∠=斜边的邻边cos b aA A A =∠∠=的邻边的对边tan1.对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是A 的函数。
同样地, cosA ,tanA 也是A 的函数。
2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.四、练一练如图)BCBC(1) (1) sinA= ((2)COS B= ()(3)sinA=0.6m ()(4)tanB=0.8 ()ABAB C A10m 6mB(2)如图,sinA= ()BCAB例1 如图,在Rt △ABC 中,∠C =90°,BC=6,求cosA 和tanB 的值.解:.34tan 54cos ,8610.10356sin sin 2222====∴=-=-==⨯==∴=BC AC B AB AC A BC AB AC A BC AB ABBCAABC6例2 如图,在Rt △ABC 中,∠C =90°,BC=2,AB=3,求∠A ,∠B 的正弦、余弦、正切值.解:在ABC2延伸:由上面的计算,你能猜想∠A ,∠B 的正弦、余弦值有什么规律吗?结论:一个锐角的正弦等于它余角的余弦,或一个锐角.25tan 32cos 35sin .55252tan 35cos 32sin ,5232222=============∴=-=-=∆BC AC B AB BC B AB AC B ACBC A AB AC A AB BC A BC AB AC ABC Rt的余弦等于它余角的正弦。
28.1锐角三角函数学习目标:1. 会表示一个锐角的正弦,能利用锐角的正弦值进行简单的计算;2.通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法.一、创设情境:鞋跟多高合适?美国人体工程学研究人员卡特调查发现,70%以上的女性喜欢穿鞋跟高度为6至7厘米左右的高跟鞋。
但专家认为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,你能算出鞋跟在多少厘米左右高度最佳吗?同学们:你知道专家是怎样计算的吗?二、新知探究:问题为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?分析:这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,BC =35m,求AB。
拓展延伸:在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于1/2.思考:如图,任意画一个Rt △ABC ,使∠C =90°,∠A =45°,计算∠A 的对边与斜边的比 ,你能得出什么结论?结论:即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于综上可知,在一个Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于( ) ,是一 个固定值;当∠A =45°时,∠A 的对边与斜边的比都等于 ( ) ,也是一个固定值.探究:当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?小结:如图,在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦(sine ),记住sin A 即例1 如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.ABC50m 30mB 'C 'ABBC c a A A =∠=斜边的对边sin AB Ccab斜边AB C3 4ABC例 2.如图,在Rt △ABC 中,∠C=90°,AB=13,BC=5求sinA 和sinB 的值.例3、如图,在△ABC 中, AB=BC=5,sinB=4/5, 求△ABC 的面积。
人教版九年级数学下册《锐角三角函数-正弦》优秀教学设计一. 教材分析人教版九年级数学下册《锐角三角函数-正弦》是学生在学习三角函数知识的重要阶段,本节内容主要介绍了正弦的概念和性质。
通过本节课的学习,学生能够理解正弦的定义,掌握正弦函数的增减性和奇偶性,为后续学习三角函数的其他部分打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了锐角三角函数的基本概念,对三角函数有一定的了解。
但部分学生对概念的理解不够深入,对函数性质的把握不够准确。
因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和讲解。
三. 教学目标1.理解正弦的概念,掌握正弦函数的定义域和值域。
2.能够运用正弦函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正弦函数的定义和性质。
2.正弦函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正弦函数的性质。
2.运用实例分析,让学生体会正弦函数在实际问题中的应用价值。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.安排学生在课前预习正弦函数的相关内容。
3.准备一些实际问题,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用生活中的实例,如音乐播放器的音量调节,引入正弦函数的概念。
引导学生思考:如何用数学语言描述这个现象?2.呈现(15分钟)讲解正弦函数的定义,通过PPT展示正弦函数的图像,让学生了解正弦函数的性质。
同时,引导学生通过小组讨论,总结正弦函数的增减性和奇偶性。
3.操练(15分钟)布置一些练习题,让学生运用正弦函数的性质解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生的练习情况,进行讲解和总结,强化对正弦函数性质的理解。
5.拓展(10分钟)出示一些实际问题,让学生运用正弦函数解决。
引导学生思考:如何将实际问题转化为数学问题?6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
教学目标:1.理解锐角三角函数的概念和性质。
2.掌握锐角三角函数的计算方法。
3.能够运用锐角三角函数解决实际问题。
教学重点:1.锐角三角函数的定义和计算。
2.锐角三角函数的性质和应用。
教学难点:1.运用锐角三角函数解决实际问题。
教学准备:教师:教学设计、教学PPT、三角函数表、直角三角形模型。
学生:笔记本、教材、作业本。
教学过程:一、导入(10分钟)1.师生互动,询问学生知道哪些与三角函数有关的内容。
2.引导学生回顾与锐角概念有关的知识,如三角形、直角三角形等。
二、新知传授(25分钟)1.定义锐角三角函数,并介绍正弦、余弦和正切的概念。
2.讲解锐角三角函数的性质:①正弦和余弦的值域;②锐角三角函数的周期性;②正切的独特性质。
3.分析锐角三角函数的计算方法,并通过例题讲解。
三、示范演练(30分钟)1.按照步骤演示计算实例,鼓励学生跟随计算。
2.利用直角三角形的模型展示三角函数的计算。
四、针对训练(25分钟)1.分发练习册,让学生独立完成练习。
2.教师巡视,解答学生疑惑。
五、拓展延伸(15分钟)1.引导学生应用锐角三角函数解决实际问题。
2.提出一些挑战性问题,鼓励学生思考。
六、归纳总结(10分钟)1.让学生对今天所学内容进行总结,向他们提问有关锐角三角函数的问题。
2.教师对学生的总结进行点评。
七、作业布置(5分钟)布置作业,要求学生继续复习、巩固和拓展锐角三角函数的相关知识。
教学反思:本节课通过先导入、再传授新知、进行示范演练和训练,最后进行总结复习和作业布置等环节,有助于提高学生对锐角三角函数的理解和掌握能力。
使用直角三角形模型进行示范演示,能够帮助学生更好地理解三角函数的计算。
此外,鼓励学生思考和解决实际问题,培养他们的应用能力。
在教学过程中,也要注重学生的互动参与,及时解答学生的问题。
28.1 锐角三角函数(教案)第1课时正弦【知识与技能】1.让学生理解当直角三角形的锐角固定时,它的对边与斜边的比值是一个定值的事实;2.掌握正弦函数意义,能依据正弦函数定义进行有关计算.【过程与方法】通过对30°和45°与其所对的直角边与斜边的比值之间关系的探讨,可以获得“直角三角形中,当锐角一定时,这个锐角的对边与斜边的比是固定值”这一重要结论,发展学生的演绎推理能力.【情感态度】在探索正弦函数概念的过程中,可进一步培养学生的创新意识,发展学生的形象思维,增强由特殊到一般逻辑推理能力.【教学重点】了解正弦函数定义,理解当锐角一定时它所对的直角边与斜边的比固定不变这一事实.【教学难点】加深直角三角形中,当它的某一锐角固定时这角的对边与斜边的比是个定值”的理解.一、情境导入,初步认识问题为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使水管出水口到水平面的高度为35m,那么需准备多长的管?【教学说明】对所提示的问题,教师应引导学生如何将这一实际问题转化为数学模型,让学生在相互交流中获得结论.教师应重点关注学生获取结论的过程,即是否运用“30 的对边斜边=12”这一结论。
二、思考探究,获取新知探究1 如果将上述问题中出水口到水平面的高度改为50m,那么需准备多长的水管?思考1通过对前面问题和探究的思考,你有什么发现?【教学说明】在学生自主探究,获得结论后,让他们相互交流各自体会,为掌握本节知识积累感性认识.最后教师与学生一道进行简要总结.【归纳结论】在一个直角三角形中,如果一个锐角为30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12,是一个固定值.思考2如图,在Rt△ACB中,∠C=90°,∠A =45°,计算∠A的对边BC与斜边AB的比值,你能得出什么结论?【教学说明】仍由学生自主探究,发现结论.教师可适时予以点拨,帮助学生梳理所获论的语言描述.【归纳结论】在一个直角三角形中,如果一个锐角是45°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22,是一个固定值.探究2在Rt△ABC和Rt△A'B'C',中,∠C=∠C'=9o°∠A=∠A' =α,且BCAB=k,你能求出B CA B''''的值吗?从中你又能得出什么结论?说说你的理由。
初三锐角三角函数教案一、教学目标:1. 理解什么是锐角和直角;2. 熟练掌握三角函数中的正弦、余弦和正切的概念;3. 能够利用三角函数求解简单的几何问题;4. 培养学生的观察力和逻辑思维能力。
二、教学重难点:1. 掌握三角函数中的正弦、余弦和正切的概念;2. 能够正确应用三角函数求解几何问题。
三、教学准备:课件、教学文具、同步练习题。
四、教学过程:Step 1:导入新知识通过展示一些常见的几何图形,引导学生思考并回答以下问题:- 这个角是否是锐角?- 是否存在角的边长与斜边之间的关系?- 是否能够利用角的知识求解几何问题?Step 2:引入概念与学生互动,引入正弦、余弦和正切三角函数的概念。
解释正弦函数、余弦函数和正切函数的定义,并说明它们与锐角三角形之间的关系。
通过课件和实例,让学生理解这些函数的定义和使用方法。
Step 3:学习三角函数的性质解释三角函数中的一些基本性质,如:- 正弦函数的值域是[-1,1];- 余弦函数的值域是[-1,1];- 正切函数的值域是实数集。
Step 4:应用三角函数求解几何问题通过几个例题,让学生在课堂上应用所学的三角函数知识,解决实际的几何问题。
充分利用课堂互动,引导学生思考问题的解决方法,并在黑板上进行详细的解答过程。
Step 5:巩固练习根据学生的学习情况,分配一定数量的练习题,巩固所学的知识。
教师可以设计多种类型的题目,包括选择题、填空题和计算题等,以满足不同学生的学习需求。
在学生完成练习后,对答案进行讲解,帮助学生发现并解决问题。
五、教学总结:通过本节课的学习,学生理解了锐角三角函数的概念,掌握了正弦、余弦和正切的定义及其性质,并能够运用所学知识解决简单的几何问题。
教师可以对本节课内容进行总结,并提醒学生继续复习和巩固所学的知识,为下一节课的学习做好准备。
六、作业布置:要求学生完成课堂练习题,并预习下一节课的内容。
七、教学反思:在教学过程中,教师应注意与学生的互动,引导学生思考和讨论问题。
九年级下册数学教案《锐角的余弦、正切》教材分析余弦、正切仍然是直角三角形的边角关系,在前面学习了正弦概念的基础上,余弦、正切的概念比较容易掌握,在此基础上得出锐角三角函数的全部概念,锐角三角函数为解直角三角形提供了有效的工具。
学情分析在上一节课的基础上,学生对锐角三角函数有了一定的认识,学生学习余弦、正切的概念较为容易。
教学目标1、理解余弦、正切的概念,了解锐角三角函数的定义。
2、能运用余弦、正切的定义解决问题。
教学重难点理解锐角三角函数的意义并简单计算。
教学过程一、复习导入1、正弦的定义在Rt △ABC 中,∠C = 90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。
2、在Rt △ABC 中,∠C = 90°,sinA = 513 ,则sinB 等于(A )A.1213B.1312C.512D.5133、在Rt △ABC 中,∠C = 90°,当锐角A 确定时,∠A 的对边与斜边的比是sin A 。
提问:(1)∠A 的邻边与斜边的比呢?(2)∠A 的对边与邻边的比呢?二、教学过程1、探究(1)如图,在Rt △ABC 和Rt △A ’B ’C ’中,∠C = ∠C ’= 90°,∠A = ∠A ’= α,那么AC AB 与 A ′C ′A ′B ′ 有什么关系?分析:由于∠C = ∠C ’= 90°,∠A = ∠A ’ = α,所以Rt △ABC ∽ Rt △A ’B ’C ’。
BCB ′C ′ = ABA ′B ′ ,即BC AB = B ′C ′A ′B ′ 。
(2)如图,在Rt △ABC 和Rt △A ’B ’C ’中,∠C = ∠C ’= 90°,∠A = ∠A ’= α,那么BC AC 与 B ′C ′A ′C ′ 有什么关系?与(1)同理,可得BC AC =B ′C ′A ′C ′ 。
2、余弦的定义 在Rt △ABC 中,∠C = 90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦。
课题7.1正切(1) 自主空间学习目标知识与技能:1.理解正切的概念, 能通过画图求出一个角的正切的近似值。
能运用正切解决与直角三角形有关的简单问题。
过程与方法:1.经历探索表示物体倾斜程度, 形成正切的概念的过程, 练就创造性解决问题的能力。
1.经历探索表示物体倾斜程度,形成正切的概念的过程,练就创造性解决问题的能力。
学习重点理解并掌握正切的含义, 会在直角三角形中求出某个锐角的正切值。
学习难点计算一个锐角的正切值的方法。
教学流程预习导航观察回答: 如图某体育馆, 为了方便不同需求的观众设计了多种形式的台阶。
下列图中的两个台阶哪个更陡?你是怎么判断的?图(1)图(2)[点拨]可将这两个台阶抽象地看成两个三角形答: 图的台阶更陡, 理由合作探究一、新知探究:1.思考与探索一:除了用台阶的倾斜角度大小外, 还可以如何描述台阶的倾斜程度呢?可通过测量BC与AC的长度,再算出它们的比, 来说明台阶的倾斜程度。
(思考: BC与AC长度的比与台阶的倾斜程度有何关系?)答: _________________. 讨论: 你还可以用其它什么方法?能说出你的理由吗?答: ________________________. 2.思考与探索二:(1)如图, 一般地, 如果锐角A的大小已确定,我们可以作出无数个相似的RtAB1C1, RtAB2C2, RtAB3C3……, 那么有: Rt△AB1C1∽_____∽____……根据相似三角形的性质,得: =_________=_________=……(2)由上可知:如果直角三角形的一个锐角的大小已确定, 那么这个锐角的对边与这个角的邻边的比值也_________。
3.正切的定义如图, 在Rt △ABC 中, ∠C =90°, a 、b 分别是∠A 的对边和邻边。
我们将∠A 的对边a 与邻边b 的比叫做∠A_______, 记作______。
即: tanA =________=__________(你能写出∠B 的正切表达式吗? )试试看.4.思考: 当锐角α越来越大时, α的正切值有什么变化? 二. 例题分析:例1:⑴某楼梯的踏板宽为30cm, 一个台阶的高度为15cm, 求 楼梯倾斜角的正切值。