概率与统计问题的题型与方法
- 格式:doc
- 大小:392.00 KB
- 文档页数:27
高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
如何解决高中数学中的概率与统计难题高中数学中的概率与统计难题是让许多学生头疼的问题之一。
概率与统计是数学的重要分支,也是日常生活中经常会遇到的概念。
解决高中数学中的概率与统计难题需要一定的策略和技巧,本文将介绍几种解决高中数学中的概率与统计难题的方法。
以下是一些建议。
1. 理解基本概念首先,要解决高中数学中的概率与统计难题,必须对基本概念有清晰的理解。
例如,了解事件、样本空间、随机变量、概率、期望值等基本概念是非常重要的。
只有掌握了这些基本概念,才能更好地理解与解决难题。
2. 掌握计算方法在解决概率与统计难题时,掌握相关的计算方法是很关键的。
例如,计算置信区间、计算概率、计算期望值等。
要做到这一点,就需要掌握一些公式和计算技巧。
此外,要熟悉使用计算器或电脑软件进行计算。
3. 勤练习概率与统计是一门需要大量练习才能掌握的学科。
通过大量的练习,可以巩固基本概念、学会灵活运用各种计算方法,提高解题能力。
可以寻找一些相关的练习题,根据难度逐渐增加,逐步提高自己的解题水平。
4. 学会归类与总结归类和总结是解决概率与统计难题的重要方法。
通过对一类题目进行归纳整理,找出问题的共性和规律,可以更好地解决类似的难题。
在解题过程中,可以总结一些常用的方法和技巧,以备将来效仿。
5. 多角度思考解决概率与统计难题时,多角度思考是非常有帮助的。
有时候,一个问题可以从多个角度进行思考和解决。
尝试从不同的角度入手,换个思路来解决问题,可能会找到一个更简单或更直接的解决办法。
6. 查找资料与请教他人当遇到较难的概率与统计难题时,可以查找相关的学习资料,寻求问题的解答和解释。
可以向老师、同学或其他专业人士请教,听取他们的经验和建议。
他们可能会提供一些有用的思路和方法,帮助解决难题。
总结起来,解决高中数学中的概率与统计难题需要掌握基本概念、计算方法,勤加练习,学会归类与总结,多角度思考,并及时查找资料与请教他人。
通过这些方法和策略,相信能够有效地解决高中数学中的概率与统计难题,提高数学学习的水平。
常见大题:1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件iA ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因iA 的概率问题 全概率公式:()()()1B |ni i i P B P A P A ==∑贝叶斯公式:1(|)()()()()ni i i jjj P A B P A P B A P A P BA ==∑||一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。
先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=ii A 表示从第i 个口袋中任取一个球为红球,2分则b a aB P +=)(1,2分 111++++++++=b a a b a b b a a b a a b a a+=2分 依次类推2分二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?、解记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n==++,()1P A B =,()12r P A B =―—5分 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。
现在每次从中任取一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。
在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。
(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。
解设A 表示“任取一件产品被检验为正品”,B 表示“任取一件产品是正品”,则()96100P B =,()4100P B =,()|0.95P A B =,()|0.01P A B =(1)由全概率公式得(2)这批产品被检验为合格品的概率为四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概率分别为0.6和0.4,由于存在干扰,发出‘0’时,分别以概率0.7和0.1接收到‘0’和‘1’,以0.2的概率收为模糊信号‘x ’;发出‘1’时,分别以概率0.85和0.05收到‘1’和‘0’,以概率0.1收到模糊信号‘x ’。
概率与统计高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型及解题思路1.正确读取统计图表的信息典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A.2.古典概型概率问题 典例2:(全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A.B.C.D.解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6D. 0.45解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得p =0.60.75=0.8,故选A.3.几何概型问题典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12C.23 D.34解:如图所示,画出时间轴:小明到达的时间会随机地落在图中线段AB 中,而当他到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率P=101040+=12.选B.4.类似超几何分布的离散型随机变量分布列问题(古典概型求概率)5.类似二项分布的离散型随机变量分布列问题(频率估计概率,相互独立事件概率计算)典例5(超几何分布与二项分布辨析):某工厂为检验其所生产的产品的质量,从所生产的产品中随机抽取10件进行抽样检验,检测出有两件次品.(1)从这10件产品中随机抽取3件,其中次品件数为X ,求X 分布列和期望;(2)用频率估计概率,若所生产的产品按每箱100件装箱,从一箱产品中随机抽取3件,其中次品件数为Y ,求Y 分布列和期望;(3)用频率估计概率,从所生产的产品中随机抽取3件,其中次品件数为Z ,求Z 分布列和期望.分析:第(1)问中,抽取产品的总体N=10,所含次品件数M=2,都是明确的,所以该随机变量的分布为超几何分布。
高中数学的归纳概率与统计中的常见问题解决方法数学作为一门重要的学科,数学的归纳概率与统计是其中的一个重要分支。
在高中阶段,学生们接触到了更加深入的数学知识,归纳概率与统计也就成为了他们学习的一部分。
然而,由于这门知识的抽象性和复杂性,高中生在学习归纳概率与统计时常常会遇到一些困惑和问题。
本文将针对这些常见问题,提供解决的方法和建议。
一、概率问题的解决方法概率是归纳概率与统计的重要内容之一,也是一个较为复杂的概念。
在解决概率问题时,需要考虑以下几点:1.明确问题:首先,我们要明确问题的背景和要求,确定所求的概率是条件概率还是简单概率,并理清题目中给出的已知条件。
2.列出样本空间:针对问题的要求,将可能出现的结果进行归纳整理,并列出样本空间。
3.分析事件:根据问题的条件和要求,归纳分析在样本空间中满足条件的事件,形成概率的分析思路。
4.使用概率公式:根据题目的要求,选择合适的概率公式进行计算,如基本概率公式、条件概率公式等。
5.注意条件约束:在解决概率问题时,需要特别注意条件约束。
确保在计算概率时不遗漏或重复考虑某些情况。
通过以上步骤的分析和计算,我们可以较为准确地解决概率问题,得出符合题目要求的概率值。
二、统计问题的解决方法统计是归纳概率与统计的另一个重要内容,也是一个较为实际的应用领域。
在解决统计问题时,需要注意以下几点:1.数据收集和整理:首先,我们需要收集问题中所给出的数据,并对数据进行整理和归纳,形成方便分析的数据表格或图表。
2.确定统计指标:根据问题的要求,确定需要计算的统计指标,如均值、方差、中位数等。
3.计算统计指标:根据问题中给出的数据和统计指标的计算公式,进行计算。
可以使用手工计算,也可以借助计算机或统计软件来进行计算。
4.数据分析和解释:在完成统计指标的计算后,需要对结果进行分析和解释。
比较不同样本之间的统计指标差异,找出规律和特点。
5.结论与应用:根据统计结果,得出相应的结论,并根据实际情况进行应用。
中考数学中的概率与统计问题解题方法总结概率与统计是中考数学中重要的考点之一,掌握相关解题方法对于获得高分至关重要。
本文将总结中考数学中的概率与统计问题解题方法,帮助同学们更好地备考。
一、概率问题解题方法1.1 随机事件的概率计算在解决概率问题时,首先要明确问题中所涉及的随机事件,然后确定事件的样本空间和事件的可能数。
计算概率时,可采用“有利结果数与总结果数比”或“频率”两种方法。
1.2 事件的排列与组合当问题中涉及的事件是有序排列或无序组合时,可以使用排列组合的方法来计算概率。
对于有序排列的事件,可以使用全排列的方法,对于无序组合的事件,可使用组合数的方法。
1.3 复合事件的概率计算当问题中的事件是复杂的复合事件时,可以使用独立事件的概率乘法原理或互斥事件的概率加法原理来计算概率。
需要注意确定事件之间的独立性或互斥性。
二、统计问题解题方法2.1 数据的整理与描述在解决统计问题时,首先需要对给定的数据进行整理和描述。
可通过制表、绘图等方式对数据进行整理,计算出均值、中位数、众数、极差等统计量,从而有助于进一步分析和解决问题。
2.2 统计规律的探究通过观察和分析给定的统计数据,寻找其中的规律和趋势,可以通过绘制直方图、折线图等来展示数据的变化趋势和分布情况。
这有助于深入理解数据的特点,并根据规律解决问题。
2.3 数据的分析与推理在统计问题中,常常需要根据已经给定的数据进行推理和判断。
这时需要通过归纳、分析,利用已知的统计规律和统计方法来判断未知的事物或问题的解答。
三、应用举例3.1 概率问题的应用例如,某次抽奖活动,参与抽奖的人数为100人,其中60人是女性,40人是男性。
如果从中随机抽取一人,求抽中女性的概率。
解题时,可根据女性人数占总人数的比例,得出概率为60/100=0.6。
3.2 统计问题的应用例如,某班级同学的考试成绩如下:74, 68, 82, 90, 76, 84, 78, 86, 92, 80。
高中数学概率与统计题型解答方法概率与统计是高中数学中的重要内容,也是学生们普遍感觉较为困难的部分。
在这篇文章中,我将为大家介绍一些解答概率与统计题型的方法和技巧,希望能够帮助大家更好地理解和应对这一部分的考试内容。
一、概率题型解答方法概率题型主要涉及到事件的发生可能性以及事件之间的关系。
在解答概率题型时,我们可以按照以下步骤进行:1. 确定样本空间:首先要明确问题中所涉及的所有可能结果,这些结果构成了样本空间。
例如,如果问题是抛一枚硬币,我们可以得到样本空间为{正面,反面}。
2. 确定事件:根据问题的要求,确定我们关注的事件。
例如,如果问题是抛一枚硬币,要求出现正面的概率,那么我们可以将事件定义为“出现正面”。
3. 计算概率:根据事件发生的可能性和样本空间的大小,计算事件发生的概率。
例如,对于抛一枚硬币出现正面的问题,由于样本空间中只有两个结果,所以事件发生的概率为1/2。
除了基本的概率计算,还有一些特殊的概率题型,例如条件概率、独立事件等。
对于这些题型,我们需要根据具体情况使用相应的公式和方法进行计算。
二、统计题型解答方法统计题型主要涉及到数据的收集、整理和分析。
在解答统计题型时,我们可以按照以下步骤进行:1. 收集数据:首先要明确问题中所要求的数据类型和范围,然后进行数据的收集。
例如,如果问题是调查学生的身高,我们可以通过测量学生的身高来收集数据。
2. 整理数据:将收集到的数据进行整理和分类,以便后续的分析。
例如,可以将学生的身高按照一定的范围进行分组,并制作成频数表或直方图。
3. 分析数据:根据问题的要求,对数据进行分析和计算。
例如,可以计算出数据的平均值、中位数、众数等统计量,以及数据的方差和标准差等。
除了基本的数据分析,还有一些特殊的统计题型,例如假设检验、相关性分析等。
对于这些题型,我们需要根据具体情况使用相应的统计方法和检验标准进行分析。
三、举一反三在解答概率与统计题型时,我们可以通过举一反三的方法拓展思路,将相似的题目进行比较和联系,从而更好地理解和解答题目。
初中数学解题技巧掌握解决概率与统计题目的窍门初中数学是中学阶段的必修课程之一,其中概率与统计是数学中的一个重要内容。
解决概率与统计题目需要掌握一些解题技巧和窍门。
本文将介绍一些初中数学解题技巧,帮助学生们更好地解决概率与统计题目。
一、概率题目的解题技巧概率是数学中的一个重要概念,也是我们生活中经常会遇到的概念。
解决概率题目需要掌握以下几个技巧:1. 确定样本空间:样本空间是指一个随机试验可能结果的集合,确定样本空间有助于我们对概率问题的整体了解。
2. 列举事件:根据题目要求,列举可能发生的事件,并计算事件出现的次数。
3. 计算概率:根据事件发生的次数和样本空间来计算概率,概率的计算公式是:事件发生的次数/样本空间中可能结果的总数。
4. 判断独立事件:如果两个事件发生与否互相不会影响,我们可以将其看作是独立事件,此时可以通过将事件的概率相乘来计算同时发生的概率。
二、统计题目的解题技巧统计是数学中与概率相关的内容,解决统计题目需要掌握以下几个技巧:1. 理解统计图表:在解决统计问题时,学生要能够理解并分析给定的统计图表,如条形图、折线图、饼图等,从图表中获取相关信息。
2. 确定数据类型:在解决统计问题时,要根据题目给出的问题确定所需的数据类型,如平均数、中位数、众数等。
3. 进行数据分析:根据题目要求进行数据分析,计算相关统计量,并进行适当的比较和推理。
4. 注意问题中的陷阱:有时统计题目中会设置一些陷阱,会有一些与问题无关的数据和信息,学生需要有辨别能力,避免被这些干扰信息所迷惑。
三、解决概率与统计题目的窍门除了上述的解题技巧外,还有一些解决概率与统计题目的窍门可以帮助学生们更快更准确地解题。
1. 多做练习:解决概率与统计题目需要不断的练习,熟能生巧。
学生们可以多做相关习题或者模拟试题,加深对解题方法和技巧的理解。
2. 理清思路:在解题过程中,学生们应该先理清思路,明确问题的要求,然后再根据题目给出的条件和已有的知识来解决问题。
概率与统计常见题型一、随机抽样和用样本估计总体规律方法 (1)解答与抽样方法有关的问题的关键是深刻理解各种抽样方法的特点、适用围和实施步骤,熟练掌握系统抽样中被抽个体的确定方法,掌握分层抽样中各层人数的计算方法.(2)与频率分布直方图、茎叶图有关的问题,应正确理解图表中各个量的意义,通过图表掌握信息是解决该类问题的关键.(3)在做茎叶图或读茎叶图时,首先要弄清楚“茎”和“叶”分别代表什么,正确求出数据的众数和中位数;方差越小,数据越稳定.特别提醒:频率分布直方图中的纵坐标为频率组距,而不是频率值.1、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ). A .101B .808C .1 212D .2 0122、如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为__________.3、如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)二、变量的相关性和统计案例规律方法 解决线性回归问题的关键是:(1)正确理解计算b ^,a ^的公式并准确的计算,若对数据作适当的预处理,可避免对大数字进行运算;(2)分析两个变量的相关关系时,可根据样本数据作散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.4、某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x /元 8 8.2 8.4 8.6 8.8 9 销量y /件 90 848380 75 68(1)求回归直线方程y ^=b ^x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本) 5、某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2013年的粮食需求量.三、古典概型与几何概型规律方法 (1)解决古典概型问题的关键是①正确求出基本事件总数和所求事件包含的基本事件数.②P (A )=mn既是古典概型的定义,又是求概率的计算公式,应熟练掌握.(2)解决几何概型的关键是寻找试验的全部结果构成的区域和事件发生时构成的区域,有时需要设出变量,在坐标系中表示所需要的区域.(3)若事件正面情况比较多、反面情况较少,则一般利用对立事件进行计算.对于“至少”、“至多”等事件的概率计算,往往用这种方法求解.6、如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 随机取一点,则此点取自阴影部分的概率是( ).A .12-1π B .1πC .1-2πD .2π第6题 第8题7、有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ). A .13B .12C .23D .348、如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 部随机取一个点Q ,则点Q 取自△ABE 部的概率等于( ).A .14 B .13C .12 D .23四、概率统计综合问题规律方法 1.抽样方法和概率问题的综合一般是从分层抽样开始,设置分层抽样中的一些计算问题,然后就分层抽样中各个层设置一个古典概型计算问题.虽然此类题目所考查的知识横跨两部分,但是分解开来后,并不难解决.由于此类题目多与实际问题联系紧密,题干较长,信息量大,且会有图表,因此要认真审题并要掌握解答题目所需的知识.要做到:(1)分层抽样中的公式运用要准确. ①抽样比=样本容量个体总量=各层样本容量各层个体总量.②层1的数量∶层2的数量∶层3的数量=样本1的容量∶样本2的容量∶样本3的容量. (2)在计算古典概型概率时,基本事件的总数要计算准确. 2.频率分布与概率的综合主要有两种形式:(1)题目中给出了样本的频率分布表,它反映了样本在各个组的频数和频率,要求根据频率分布表画出频率分布直方图,并根据样本在各组的频数,设置分层抽样和概率计算等.(2)利用频率与概率的关系,频率近似于概率,给出某类个体中的一个个体被抽中的概率,从而求出样本容量及其他类个体的数量.在解决此类问题时,可将题目中所给概率作为此类个体被抽中的频率,从而求解. 9、近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾202060(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.(注:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数)10、某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (1)完成如下的频率分布表近20年六月份降雨量频率分布表降雨量 70 110 140 160 200 220 频率120420220(2)求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.五、数形结合思想——解决有关统计问题(1)通过频率分布直方图和频数条形图研究数据分布的总体趋势; (2)根据样本数据散点图确定两个变量是否存在相关关系.解答时注意的问题: (1)频率分布直方图中的纵坐标为频率组距,而不是频率值;(2)注意频率分布直方图与频数条形图的纵坐标的区别.11、为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185cm 之间的概率;(3)从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率.概率与统计练习:1.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ).A .众数B .平均数C .中位数D .标准差2.对某商店一个月每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ).A .46,45,56 B .46,45,53C .47,45,56 D .45,47,533.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( ).A .16B .13C .23D .454.袋中有五卡片,其中红色卡片三,标号分别为1,2,3;蓝色卡片两,标号分别为1,2. (1)从以上五卡片中任取两,求这两卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一标号为0的绿色卡片,从这六卡片中任取两,求这两卡片颜色不同且标号之和小于4的概率.5.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系.根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( ).A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170c m ,则可断定其体重必为58.79kg6.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为( ).A .①简单随机抽样法,②系统抽样法B .①分层抽样法,②简单随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法7.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为( ).分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数234 542A .0.35B .0.45C .0.55D .0.658.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A .π4B .π-22C .π6D .4-π49.为了分析某同学在班级中的数学学习情况,统计了该同学在6次月考中的数学名次,用茎叶图表示如图所示,则该组数据的中位数为__________.10.若某产品的直径长与标准值的差的绝对值不超过1 mm 时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品,计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:分组 频数 频率[-3,-2)0.10 [-2,-1) 8(1,2]0.50 (2,3] 10 (3,4] 合计501.00(1)将上面表格补充完整;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.11.甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如图:(1)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由; (2)若在茎叶图中的甲、乙预赛成绩中各任取1次成绩分别记为a 和b ,求满足a >b 的概率.1、解析:四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,9612=N101,解得N =808.故选B.2、9 解析:由于组距为1,则样本中平均气温低于22.5 ℃的城市频率为0.10+0.12=0.22.平均气温低于22.5 ℃的城市个数为11,所以样本容量为110.22=50. 而平均气温高于25.5 ℃的城市频率为0.18,所以,样本中平均气温不低于25.5 ℃的城市个数为50×0.18=9.3、6.8 解析:∵x =8+9+10+13+155=11,∴s 2=8-112+9-112+10-112+13-112+15-1125=6.8.4、解:(1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80,所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1 000=-202334x ⎛⎫- ⎪⎝⎭+361.25,当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润.5、解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,为此对数据预处理如下:年份-2006-4-2 0 24需求量-257 -21 -11 0 19 29对预处理后的数据,容易算得x =0,y =3.2,b ^=-4×-21+-2×-11+2×19+4×29-42+-22+22+42=26040=6.5,a ^=y -b ^x =3.2. 由上述计算结果,知所求回归直线方程为y ^-257=b ^(x -2 006)+a ^=6.5(x -2 006)+3.2,即y ^=6.5(x -2 006)+260.2. ①(2)利用直线方程①,可预测2013年的粮食需求量为:6.5×(2 013-2 006)+260.2=6.5×7+260.2=305.7(万吨)≈306(万吨).6、C 解析:设OA =OB =2R ,连接AB ,如图所示,由对称性可得,阴影的面积就等于直角扇形拱形的面积,S 阴影=14π(2R )2-12×(2R )2=(π-2)R 2,S 扇=πR 2,故所求的概率是π-2R 2πR2=1-2π.7、A 解析:记三个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,则事件A 包含“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P (A )=39=13.8、C 解析:由题意知,可设事件A 为“点Q 取自△ABE ”,构成试验的全部结果为矩形ABCD 所有点,事件A 为△ABE 的所有点,又因为E 是CD 的中点,所以S △ABE =12AD ×AB ,S 矩形ABCD =AD ×AB ,所以P (A )=12.9、解:(1)厨余垃圾投放正确的概率约为: “厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200,所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.10、解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为降雨量 70 110 140 160 200 220 频率120 320420720320220(2)P (“发电量低于490万千瓦时或超过530万千瓦时”)=P (Y <490或Y >530)=P (X <130或X >210)=P (X =70)+P (X =110)+P (X =220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.11、解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185cm 之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185cm 之间的频率f =3570=0.5,故由f 估计该校学生身高在170~185cm 之间的概率P 1=0.5.(3)样本中身高在180~185cm 之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190cm 之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:故从样本中身高在180~190cm 之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190cm 之间的可能结果数为9,因此,所求概率P 2=915=35. 练习答案::1.D 解析:由s =x 1-x2+x 2-x2+…+x n -x2n,可知B 样本数据每个变量增加2,平均数也增加2,但(x n -x )2不变,故选D.2.A 解析:由茎叶图可知中位数为46,众数为45,极差为68-12=56.故选A.3.C 解析:此概型为几何概型,由于在长为12 cm 的线段AB 上任取一点C ,因此总的几何度量为12,满足矩形面积大于20 cm 2的点在C 1与C 2之间的部分,如图所示.因此所求概率为812,即23,故选C.4.解:(1)标号为1,2,3的三红色卡片分别记为A ,B ,C ,标号为1,2的两蓝色卡片分别记为D ,E ,从五卡片中任取两的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五卡片中任取两,这两卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F 为标号为0的绿色卡片,从六卡片中任取两的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六卡片中任取两,这两卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两卡片颜色不同且它们的标号之和小于4的概率为815.5.D 选项中,若该大学某女生身高为170 cm ,则其体重约为:0.85×170-85.71=58.79 kg.故D 不正确. 6.①中总体由差异明显的几部分构成,宜采用分层抽样法,②中总体中的个体数较少,宜采用简单随机抽样法,故选B.7.B 解析:样本数据落在区间[10,40)的频数为2+3+4=9,故所求的频率为920=0.45.8.D 解析:题目中⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的区域为如图所示的正方形,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积部分,因此P =2×2-π4·222×2=4-π4,故选D.9.18.5 解析:由茎叶图知中间两位数为18和19,所以中位数为18+192=18.5.10.解:(1)分组 频数 频率 [-3,-2) 5 0.10 [-2,-1) 8 0.16 (1,2] 25 0.50 (2,3] 10 0.20 (3,4]20.04合计50 1.00(2)由频率分布表知,(1,3]的概率约为0.50+0.20=0.70;(3)设这批产品中的合格品数为x 件,依题意有505 000=20x +20,解得x =5 000×2050-20=1 980.所以该批产品中的合格品件数估计是1 980件. 7.解:由茎叶图知甲乙两同学的成绩分别为: 甲:88 82 81 80 79乙:85 85 83 80 77 (1)方法一:派乙参赛比较合适,理由如下:甲的平均分=82x 甲,乙的平均分=82x 乙,甲、乙平均分相同;又甲的标准差的平方(即方差)s 2甲=10,乙的标准差的平方(即方差)s 2乙=9.6,s 2甲>s 2乙,甲、乙平均分相同,但乙的成绩比甲稳定,所以派乙去比较合适.方法二:派乙参赛比较合适,理由如下:从统计学的角度看,甲获得85分以上(含85分)的概率P 1=15,乙获得85分以上(含85分)的概率P 2=25,甲的平均分=82x 甲,乙的平均分=82x 乙,平均分相同,所以派乙去比较合适. 方法三:派乙参赛比较合适,理由如下:从得82分以上(含82分)去分析,甲获得82分以上(含82分)的概率P 1=25,乙获得82分以上(含82分)的概率P 2=35,甲的平均分=82x 甲,乙的平均分=82x 乙,平均分相同,所以派乙去比较合适.(2)甲、乙预赛成绩中各任取1次成绩分别记为(a ,b ),有(88,85),(88,85),(88,83),(88,80),(88,77),(82,85),(82,85),(82,83),(82,80),(82,77),(81,85),(81,85),(81,83),(81,80),(81,77),(80,85),(80,85),(80,83),(80,80),(80,77),(79,85),(79,85),(79,83),(79,80),(79,77)共25种,满足a >b 的有(88,85),(88,85),(88,83),(88,80),(88,77),(82,80),(82,77),(81,80),(81,77),(80,77),(79,77)共11种.满足a >b 的概率为1125.。
热点03 统计与概率中考数学中《统计与概率》部分主要考向分为三类:一、数据的收集与处理(每年1~2道,8~12分)二、数据分析(每年1~2道,3~6分)三、概率(每年1题,3~4分)统计与概率是中考数学中的必考考点,内容包含数据的收集与处理、数据分析、概率三个考点,对应知识点都比较好理解识记,整体难度不大。
但是这部分的分值在中考占比较大。
题型方面则是选择、填空题、解答题都有。
并且,由于其特有的计算类型,易错点也比较的统一,所以需要考生在审题和计算上要特别留心。
整体来说,这个考点的考题属于中考中的中档考题,但要做到越是容易拿分的考点越要细心。
考向一:数据的收集与整理【题型1 调查与样本等概念及其作用】满分技巧1、全面调查和抽样调查的适用范围:调查总数很少的可以全面调查,如一个班的身高情况;调查总数多的选择抽样调查,如一个学校的作业完成情况;比较重要或影响比较大的事情必须全面调查,如疫情期间,某市感染人数、第7次全国人口普查等。
2、理解样本、样本总量、个体、总体间的关系在统计中,要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中抽取一部分个体的集体叫做这个总体的一个样本,样本中个体的数目叫做样本容量。
1.(2023•浙江)在下面的调查中,最适合用全面调查的是()A.了解一批节能灯管的使用寿命B.了解某校803班学生的视力情况C.了解某省初中生每周上网时长情况D.了解京杭大运河中鱼的种类2.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生3.(2023•金昌)据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90﹣912592﹣93■94﹣95■96﹣971198﹣9910100﹣101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92﹣93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人【题型2 频数分布直方图和折线图】满分技巧1、频数分布直方图和频数分布折线图可以更直观、更方便的表示出各数据的多少和变化2、各组数量之和=样本容量;各组频率之和=1;数据总数×相应的频率=相应的频数;1.(2023•北京)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x<10001000≤x<16001600≤x<22002200≤x<2800x≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.2.(2023•温州)某校学生“亚运知识”竞赛成绩的频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有人.3.(2023•赤峰)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑.某校对全校1500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是()A.样本容量是200B.样本中C等级所占百分比是10%C.D等级所在扇形的圆心角为15°D.估计全校学生A等级大约有900人【题型3 三大统计图的应用】如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量比公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同2.(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.76°3.(2023•鞍山)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.考向二:数据分析【题型4 四大统计量及其选择】满分技巧四大统计量:平均数、中位数、众数、方差;其中:平均数反应一组数据的平均水平,容易受极端值的影响;中位数反应一组数学的中等水平;众数反应数据的集中水平;方差反应一组数据的波动性,方差越大,数据的波动性越大。
第7讲概率与统计问题的题型与方法(4课时)一、考试内容离散型随机变量的分布列,离散型随机变量的期望值和平方差,抽样方法,总体分布的估计,正态分布,总体特征数的估计,线性回归。
二、考试要求⑴了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
⑵了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
⑶会用抽机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。
⑷会用样本频率分布去估计总体分布。
⑸了解正态分布的意义及主要性质。
⑹了解假设检验的基本思想。
⑺会根据样本的特征数估计总体。
⑻了解线性回归的方法。
三、复习目标1.了解典型分布列:0~1分布,二项分布,几何分布。
2.了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
3.在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。
4.了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质。
5. 了解标准正态分布的意义和性质,掌握正态总体),(2σμN 转化为标准正态总体N (0,1)的公式)()(σμ-Φ=x x F 及其应用。
6. 通过生产过程的质量控制图,了解假设检验的基本思想。
7. 了解相关关系、回归分析、散点图等概念,会求回归直线方程。
8. 了解相关系数的计算公式及其意义,会用相关系数公式进行计算。
9. 了解相关性检验的方法与步骤,会用相关性检验方法进行检验。
四、双基透视㈠随机事件和统计的知识结构:㈡随机事件和统计的内容提要1.主要内容是离散型随机变量的分布列、期望与方差,抽样方法,总体分布的估计,正态分布和线性回归。
2.随机变量的概率分布 (1)离散型随机变量的分布列:两条基本性质①,2,1(0=≥i p i ...); ②P 1+P 2+ (1)(2)连续型随机变量概率分布:由频率分布直方图,估计总体分布密度曲线y=f(x); 总体分布密度函数的两条基本性质: ①f(x) ≥0(x ∈R);②由曲线y=f(x)与x 轴围成面积为1。
数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。
本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。
一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。
在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。
解题方法:1. 仔细读题,理解题意。
确定需要统计的数值或范围,并分析给定数据的特点。
2. 建立频数统计表格。
将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。
3. 统计频数。
根据数据进行计数,并记录在频数统计表格中。
4. 统计完成后,根据题目要求回答相关问题。
举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。
题目要求统计数据中各个数字出现的次数。
解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。
3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。
二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。
通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。
解题方法:1. 读题,理解题意。
确定频率或百分数的计算对象,并分析给定数据的特点。
2. 计算频率或百分数。
使用给定数据和统计结果计算所需的频率或百分数。
3. 根据题目要求,回答相关问题或进行比较。
高考统计概率题型的解题方法高考统计概率题型通常涉及到概率、期望和抽样等内容。
解题的方法和思路决定了我们能否高效地解决这些题目。
下面我将介绍一些常用的解题方法,希望对您有所帮助。
一、概率问题的解题方法1.事件的概率计算在解决概率问题时,首先要确定所求事件的概率。
概率可以表示为“事件发生的次数/总的可能次数”。
有以下几种常见情况:-均匀概率问题:即各事件发生的概率相等。
此时,所求事件的概率等于所求事件发生的次数/总的可能次数。
-条件概率问题:即事件A在事件B已经发生的条件下发生的概率。
此时,所求事件的概率等于事件A与事件B同时发生的次数/事件B发生的次数。
-独立事件概率问题:即事件A和事件B相互独立,互不影响。
此时,所求事件的概率等于事件A发生的概率乘以事件B发生的概率。
2.用排列组合解决问题有些概率问题中,可能涉及到多个选择,这时可以使用排列组合的方法来解决。
-排列:表示从n个元素中取出m个元素按照一定顺序排列的数目。
计算排列数的公式为:P(n,m)=n!/(n-m)!-组合:表示从n个元素中取出m个元素,不考虑其排列顺序的情况。
计算组合数的公式为:C(n,m)=n!/(m!(n-m)!)二、期望问题的解题方法1.期望的定义期望是一个随机变量在长期重复试验中出现的平均现象,通常用E 表示。
对于离散型随机变量,其期望可以表示为:E(X)=∑(x*p(x)),其中x为取值,p(x)为该值出现的概率。
对于连续型随机变量,期望可以用积分的形式表示。
2.期望的性质-线性性质:设X,Y为两个随机变量,a,b为常数,则E(aX+bY)=aE(X)+bE(Y)。
-期望的非负性:对于任意的随机变量X,有E(X)>=0。
-期望的加法性质:对于任意的随机变量X,Y,有E(X+Y)=E(X)+E(Y)。
三、抽样问题的解题方法1.抽样方法在抽样问题中,常见的有放回抽样和不放回抽样两种方法。
-放回抽样:即每次抽到一个元素后,将抽到的元素放回到总体中。
高中数学概率与统计题型解答方法概率与统计是高中数学中的一门重要课程,它涵盖了许多与概率、统计相关的数学题型。
在掌握基础知识的基础上,采用正确的解答方法,可以更好地应对这些题型。
本文将介绍几种常见的概率与统计题型,以及相应的解答方法。
一、事件概率1.求事件的概率求事件的概率是概率与统计中最基础的题型。
对于一个随机试验,事件A发生的概率可以用下列公式表示:P(A) = 事件A的可能性数 / 总的可能性数2.互斥事件的概率互斥事件是指两个事件不可能同时发生的情况。
假设A和B是两个互斥事件,则它们的概率可以用下列公式表示:P(A∪B) = P(A) + P(B)3.独立事件的概率独立事件是指两个事件的发生与否互不影响的情况。
如果A和B是两个独立事件,则它们的概率可以用下列公式表示:P(A∩B) = P(A) × P(B)二、排列与组合1.排列问题排列是指从若干个不同元素中选取若干个元素按照一定的顺序进行排列。
对于从n个元素中选取k个元素进行排列的问题,可以使用下列公式进行计算:A(n,k) = n! / (n-k)!2.组合问题组合是指从若干个不同元素中选取若干个元素进行组合,不考虑其顺序。
对于从n个元素中选取k个元素进行组合的问题,可以使用下列公式进行计算:C(n,k) = n! / (k! × (n-k)!)三、概率分布1.离散型随机变量的概率分布离散型随机变量的概率分布可以通过列出其取值以及相应的概率来表示。
当给定每个取值对应的概率后,可以计算出该随机变量的期望值、方差等。
2.连续型随机变量的概率分布连续型随机变量的概率分布可以通过概率密度函数来表示。
在解答问题时,常常需要计算某个取值范围内的概率,可以通过计算概率密度函数下的面积来实现。
四、抽样与推断1.简单随机抽样简单随机抽样是指从总体中随机地选取n个样本进行调查或实验。
在进行统计推断时,可以根据样本数据来估计总体参数。
2.抽样分布抽样分布是指统计量的分布。
高中数学概率与统计的常见题型及解题思路数学是一门精确的科学,而概率与统计则是数学中的一个重要分支。
在高中阶段,学生将学习到许多与概率与统计相关的常见题型,本文将介绍这些题型以及解题的思路。
一、概率题型1. 事件的概率计算概率计算是概率论的基本概念之一。
当我们面对一个事件时,首先需要明确事件的样本空间以及事件本身的可能性。
以掷硬币为例,样本空间为{正面,反面},而事件“掷出正面”有一半的可能性。
解题时,可以使用计数原理或者几何概型来计算概率。
2. 独立事件的概率计算当两个或多个事件相互独立时,可以使用乘法法则来计算它们同时发生的概率。
例如,从一副扑克牌中同时抽出两张牌,求两张牌都是红心的概率。
解题时,需要考虑每个事件的概率,并将它们相乘。
3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。
当两个事件互斥时,可以使用加法法则来计算它们发生的概率。
例如,从一副扑克牌中抽出一张牌,求该牌是红心或者是黑桃的概率。
解题时,需要考虑每个事件的概率,并将它们相加。
4. 条件概率计算条件概率是在已知一定条件下某个事件发生的概率。
例如,某城市早高峰时段交通事故的概率。
解题时,需要将已知条件与事件的概率结合起来计算。
二、统计题型1. 样本调查与数据分析在统计学中,常常需要进行样本调查以获取数据。
例如,假设我们要调查全校学生的身高分布,可以通过随机抽样的方式获得样本数据,并进行统计分析。
解题时,需要了解样本调查的方法和数据分析的技巧。
2. 统计指标计算常见的统计指标包括平均数、中位数、众数、方差等。
解决统计题目时,需要根据给定的数据计算相应的统计指标。
例如,求一组数据的平均值或者方差。
3. 概率分布计算概率分布是指随机变量取各个值的概率。
在统计学中,常见的概率分布包括二项分布、正态分布等。
解决概率分布相关的题目时,需要了解不同概率分布的特点,并运用相应的公式来计算。
4. 假设检验与置信区间假设检验和置信区间是统计学中的两个重要概念。
数学高考突破概率与统计的解题方法与常见题型分析在数学高考中,概率与统计是一个重要的考点,也是学生们容易出错的地方。
本文将介绍一些突破概率与统计题目的解题方法和常见题型分析,帮助同学们更好地备战高考。
一、解题方法1. 理解概念在解答概率与统计题目之前,首先需要对相关概念进行深入理解。
比如,概率的定义,事件的概念,统计学中的总体、样本等等。
只有对这些基本概念有清晰的认识,才能更好地应用解题方法。
2. 学会数学语言转化有些概率与统计的问题,可能需要将自然语言转化为数学语言,才能更好地解答。
比如,将“至少”、“不超过”等词语转化为数学符号,有助于准确理解问题和计算。
3. 掌握计算方法在解答概率与统计题目时,需要掌握一些常见的计算方法,比如,排列组合、加法和乘法原理、条件概率、频率分布等。
熟练掌握计算方法,能够快速准确地解决问题。
二、常见题型分析1. 概率计算题概率计算题是数学高考中最常见的题型之一。
其中包括求事件概率、互斥事件的概率、独立事件的概率等。
解答此类题目时,可以根据题目提供的条件,利用概率的定义和计算方法进行推导计算。
2. 极限概率问题极限概率问题是一类比较难的题目,需要通过深入理解概率的性质和计算方法来解答。
通常情况下,需要运用数学分析的知识,例如利用极限定义、函数收敛性等来求解。
3. 统计图表题统计图表题要求学生根据图表中所提供的信息,回答相应的问题。
对此类题目的解答,关键在于理解图表所代表的含义,并结合统计学知识进行分析和推断。
4. 抽样与总体问题抽样与总体问题主要考察学生对抽样方法和样本统计量的理解与应用。
解答此类题目时,需要注意样本数量的选择、样本的随机性和样本均值的分布。
5. 参数估计问题参数估计问题要求学生通过样本数据对总体参数进行估计。
解答此类题目时,需要运用区间估计的方法,结合样本的统计量求解,同时要注意抽样误差和置信水平的选择。
通过对以上常见题型的分析,我们可以发现概率与统计是一个较为形象直观的数学分支,但其中涉及的计算和推理过程也需要同学们严谨细致的思考和运算。
概率与统计概率与统计问题的解题方法与技巧概率与统计问题的解题方法与技巧概率与统计是数学中非常重要的一个分支,它在生活中的应用广泛。
在解决概率与统计问题时,我们需要一些方法与技巧来帮助我们理清思路、解决困惑。
本文将探讨一些解题方法与技巧,希望能对读者有所帮助。
一、概率问题的解题思路在解决概率问题时,我们首先需要明确问题的背景和要求,例如给定的条件、需要求解的概率等。
然后,我们可以根据问题的特点选择合适的计算公式或方法来解决问题。
下面是一些常见的解题思路:1. 计数法对于一些离散的、可枚举的概率问题,我们可以利用计数法来解决。
例如排列组合、二项式系数等概念可以帮助我们快速计算出概率。
同时,也可以运用排除法、互补事件等思路进行推理和计算。
2. 条件概率当问题给出了一些条件时,我们可以利用条件概率来求解。
条件概率指的是在某一条件下发生某一事件的概率。
我们可以通过利用条件概率公式和已知条件来计算所求概率。
3. 独立性如果事件A与事件B相互独立,那么它们的概率乘积等于事件A与事件B同时发生的概率。
利用独立性的特点,我们可以简化计算过程,快速求解概率问题。
二、统计问题的解题方法与技巧统计问题与概率问题相辅相成,经常需要通过统计现象来得出结论,或者通过已知条件来进行预测。
下面是一些解题方法与技巧:1. 数据整理与描述在解决统计问题时,我们首先需要整理和描述数据,以便更好地理解问题和找到解决方案。
可以通过频数分布表、直方图、散点图等方式将数据进行可视化呈现,从而更清晰地观察数据特点。
2. 推理统计与抽样在统计问题中,我们常常需要通过一部分样本来推断整体的特征。
这时,我们可以借助抽样方法来提取样本,并利用统计推断方法来得出结论。
通过合理的样本容量和抽样方法,我们可以更准确地估计总体的特征。
3. 假设检验假设检验是统计学中常用的方法之一,它用于检验研究者提出的假设是否成立。
在解决与统计有关的问题时,我们可以通过假设检验来得出结论,并进行相关的推理和判断。
学习解决数学中的统计和概率问题在数学学科中,统计和概率问题一直是学生们普遍感到困惑的领域。
本文将针对这一问题以分析、解读和解决统计和概率问题的方法来帮助学习者们更好地掌握这一难点知识。
一、统计问题的解决方法统计问题一般涉及数据的收集、整理、分析和解释。
下面将介绍一些常见的解决统计问题的方法。
1. 数据收集与整理解决统计问题的第一步是收集所需数据,并进行整理。
数据收集可以通过实地调查、问卷调查、实验、文献资料等多种方式进行。
在整理数据时,要注意对数据的分类和整体分布的把握,可以通过绘制统计图表或者使用电子表格软件进行处理。
2. 描述统计描述统计是对数据进行整体和局部的分析,以了解数据的特征和规律。
描述统计可以通过计算中心趋势(如平均数、中位数和众数)、离散程度(如极差、方差和标准差)和位置特征(如百分位数和四分位数)等指标进行。
3. 推论统计推论统计是基于样本数据对总体进行推断和估计。
该方法常用于通过样本数据推断总体参数,如置信区间估计和假设检验。
在应用推论统计时,要注意选择适当的统计方法和进行严谨的假设检验。
二、概率问题的解决方法概率问题是研究随机事件发生可能性的问题。
下面将介绍一些解决概率问题的方法。
1. 古典概率古典概率是指基于等可能假设的概率计算方法。
当样本空间中的每个结果出现的可能性相等时,可以使用古典概率计算事件的概率。
例如,扔一个均匀的骰子,每一个面的概率都是1/6。
2. 统计概率统计概率是通过对实验结果的频率进行统计来估计事件的概率。
通过多次实验观察事件发生的频率,可以得到事件发生的估计概率。
例如,通过多次抛掷硬币,可以估计正面朝上的概率。
3. 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
通过条件概率,可以对复杂事件的概率进行计算。
条件概率的计算可以使用公式P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和事件B 同时发生的概率,P(B)表示事件B发生的概率。
概率与统计题型及解题方法
概率与统计题型有很多种,以下列举几种常见的题型及解题方法: 1. 概率计算题:给定一组事件,求某个事件发生的概率。
解题
方法:使用概率的定义,将所求事件的样本空间对应的元素个数除以总的样本空间的元素个数。
2. 条件概率题:已知事件B发生的条件下,事件A发生的概率。
解题方法:使用条件概率公式P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
3. 互斥事件题:两个事件A、B不能同时发生,求它们中至少一个发生的概率。
解题方法:使用互斥事件的概率公式P(A∪B) = P(A) + P(B)。
4. 独立事件题:两个事件A、B发生与否互不影响,求它们同时发生的概率。
解题方法:如果事件A、B是独立事件,那么P(A∩B) = P(A) * P(B)。
5. 随机变量题:给定一个随机变量X,求其概率分布、期望、
方差等。
解题方法:根据随机变量的定义和性质,计算所求的概率或统计量。
6. 正态分布题:给定一个正态分布的随机变量X,求其概率或
统计量。
解题方法:根据正态分布的性质和标准正态分布的表格,计算所求的概率或统计量。
以上只是概率与统计题型的一部分,还有很多其他类型的题目。
解题方法主要是根据题目给出的条件和问题的要求,使用概率的定义、
性质、公式等进行计算和推导。
同时,熟练掌握一些常见的概率分布(如二项分布、泊松分布、指数分布等)和统计量(如均值、方差、协方差等)的计算方法也是解题的关键。
概率与统计掌握难点与常见题型概率与统计是数学中的一个重要分支,广泛应用于各个领域中。
然而,对于很多学生来说,概率与统计常常是一个难以掌握的主题。
本文将介绍概率与统计的难点所在,并针对常见的题型给出解题思路和方法。
一、概率与统计的难点概率与统计的难点主要体现在以下几个方面:1. 抽样方法的选择:在统计中,抽样是一项关键步骤,直接影响到数据的可靠性和准确性。
然而,学生常常对于不同的抽样方法选择不当,导致结果失真。
2. 概率的运算:概率的运算是概率与统计中的重点内容,但对于很多学生来说,概率的运算常常是一个困难的问题。
特别是在涉及到复杂事件的概率计算时,学生容易犯错或陷入死胡同。
3. 解读统计图表:在概率与统计中,统计图表是一种常见的数据展示方式。
然而,学生往往在解读统计图表时存在困难,无法准确理解数据的含义,影响到问题的解答。
4. 条件概率的计算:条件概率是概率与统计中的重要内容之一,涉及到事件在给定条件下发生的概率。
然而,学生常常对条件概率的计算方法不熟悉,无法准确应用。
二、常见题型及解题思路1. 概率计算题:概率计算题是概率与统计中的基础题型,通常涉及到单个事件的概率计算。
解题时,可以根据事件的定义和概率的性质进行计算。
例如,计算掷骰子出现奇数的概率,可以将奇数的可能性个数除以总的可能性个数。
2. 条件概率题:条件概率题是概率与统计中的常见题型,要求计算给定条件下事件的概率。
解题时,可以利用条件概率的定义和公式进行计算。
例如,计算在已知某人患病的情况下,某检测结果为阳性的概率,可以将阳性结果所对应的概率除以患病的概率。
3. 抽样与估计题:抽样与估计题是统计中的常见题型,要求通过对样本的观察和分析来对总体进行推断。
解题时,可以利用经验和统计方法进行估计和推断。
例如,通过抽样调查得到的数据,推断全体学生中女生的比例。
4. 统计图表题:统计图表题要求对给定的图表进行分析和解读。
解题时,需要仔细观察图表,理解图表所呈现的数据,并用正确的数据分析方法进行解答。
概率与统计问题的题型与方法一、考试内容离散型随机变量的分布列,离散型随机变量的期望值和平方差,抽样方法,总体分布的估计,正态分布,总体特征数的估计,线性回归。
二、考试要求⑴了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
⑵了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
⑶会用抽机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。
⑷会用样本频率分布去估计总体分布。
⑸了解正态分布的意义及主要性质。
⑹了解假设检验的基本思想。
⑺会根据样本的特征数估计总体。
⑻了解线性回归的方法。
三、复习目标1. 了解典型分布列:0~1分布,二项分布,几何分布。
2. 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
3. 在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。
4. 了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质。
5. 了解标准正态分布的意义和性质,掌握正态总体),(2σμN 转化为标准正态总体N (0,1)的公式)()(σμ-Φ=x x F 及其应用。
6. 通过生产过程的质量控制图,了解假设检验的基本思想。
7. 了解相关关系、回归分析、散点图等概念,会求回归直线方程。
8. 了解相关系数的计算公式及其意义,会用相关系数公式进行计算。
9. 了解相关性检验的方法与步骤,会用相关性检验方法进行检验。
四、双基透视㈠随机事件和统计的知识结构:㈡随机事件和统计的内容提要1.主要内容是离散型随机变量的分布列、期望与方差,抽样方法,总体分布的估计,正态分布和线性回归。
2.随机变量的概率分布 (1)离散型随机变量的分布列:两条基本性质①,2,1(0=≥i p i ...); ②P 1+P 2+ (1)(2)连续型随机变量概率分布:由频率分布直方图,估计总体分布密度曲线y=f(x); 总体分布密度函数的两条基本性质: ①f(x) ≥0(x ∈R);②由曲线y=f(x)与x 轴围成面积为1。
3.随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ε…;反映随机变量取值的平均水平。
(2)离散型随机变量的方差:+-+-=222121)()(p E x p E x D εεε…+-+n n p E x 2)(ε…;反映随机变量取值的稳定与波动,集中与离散的程度。
(3)基本性质:b aE b a E +=+εε)(;εεD a b a D 2)(=+。
4.三种抽样方法。
5.二项分布和正态分布(1)记ε是n 次独立重复试验某事件发生的次数,则ε~B (n ,p );其概率,2,1,0,1()(=-==-k p q q p C k P k n k k n n …),n 。
期望Eε=np ,方差Dε=npq 。
(2)正态分布密度函数: 222)(21)(σμπσ--=x ex f期望Eε=μ,方差2σε=D 。
(3)标准正态分布: 若),(~2σμεN ,则)1,0(~N σμεη-=, )()(σμε-Φ=<b b P ,)()()(σμσμε-Φ--Φ=<<a b b a P 。
6.线性回归:当变量x 取值一定时,如果相应的变量y 的取值带有一定的随机性,那么就说变量y 与x 具有相关关系。
对于它们的一组观测值来说,如果与之相应的在平面直角坐标系中的点大体上集中在一条直线的附近,就说变量y 与x 之间具有线性相关关系。
相关系数用来检验线性相关显著水平,通常通过查表取显著水平0.05自由度n-2的05.0r ,若05.0r r >为显著;否则为不显著。
㈢离散型随机变量的分布列随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
随机变量最常见的两种类型,即离散型随机变量和连续型随机变量。
如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。
离散型随机变量的分布列:如果离散型随机变量ξ的可能取值为x i (i =1,2,…),由于试验的各个结果的出现有一定的概率,于是随机变量ξ取每一个值也有一定的概率P (ξ=x i )=p i这种表即为随机变量ξ的概率分布,简称为ξ的分布列。
分布列的表达式可有如下几种:(1)表格形式;(2)一组等式;(3)压缩为一个带―i‖的等式。
1.在实际问题中,人们常关心随机变量的特征,而不是随机变量的具体值。
离散型随机变量的期望和方差都是随机变量的特征数,期望反映了随机变量的平均取值,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。
其中标准差与随机变量本身有相同的单位。
2.离散型随机变量期望和方差的计算公式设离散型随机变量ξ的分布列为P(ξ=x i)=p i,i=1,2,…,则:Eξ=∑∞=1i x i p i,Dξ=∑∞=1(ix i-Eξ)2p i=∑∞=1ix i2p i-(Eξ)2=E(ξ2)-(Eξ)2。
3.离散型随机变量期望和方差的性质E (aξ+b)=a Eξ+b,D (aξ+b)=a2 Dξ。
4.二项分布的期望与方差若ξ~B (n,p),则Eξ=np,Dξ=np (1-p)。
㈣抽样方法三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
实现简单随机抽样,常用抽签法和随机数表法。
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。
系统抽样的步骤可概括为:(1)将总体中的个体编号;(2)将整个的编号进行分段;(3)确定起始的个体编号;(4)抽取样本。
3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。
㈤总体分布的估计总体分布:总体取值的概率分布规律通常称为总体分布。
总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线。
㈥正态分布正态分布:如果总体密度曲线是以下函数的图象:222)(21)(σμσπ--=x ex f ,),(+∞-∞∈x ①式中的实数μ、σ(σ>0)是参数,分别表示总体的平均数与标准差,这个总体是有无限容量的抽象总体。
其分布叫做正态分布,常记作N(μ,σ2)。
①的图象被称为正态曲线。
特别地,在函数①中,当μ=0,σ=1时,正态总体称为标准正态总体,这时,相应的函数 表达式是2221)(x ex f -=π,),(+∞-∞∈x , ②相应的曲线称为标准正态曲线。
当我们不知道一个总体的分布时,往往总是从总体中抽取一个样本,并用样本的频率分布去估计总体的分布,而且随着样本容量越大分组的组距越小,样本的频率分布就更加接近总体分布。
当样本容量无限增大且分组的组距无限缩小时,频率分布直方图就会演变成一条光滑曲线,即反映总体分布的总体密度曲线。
可以知道,反映总体分布的总体密度曲线的形状是形形色色的,不同形状的总体密度曲线是不同总体分布的反映,而正态分布以及反映这种分布的正态曲线是异彩纷呈的总体分布及总体密度曲线中的一类重要分布。
1.正态分布的重要性正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。
一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。
例如,产品尺寸是一类典型的总体,对于成批生产的产品,如果生产条件正常并稳定,即工艺、设备、技术、操作、原料、环境等可以控制的条件都相对稳定,而且不存在产生系统误差的明显因素,那么,产品尺寸的总体分布就服从正态分布。
又如测量的误差;炮弹落点的分布;人的生理特征的量:身高、体重等;农作物的收获量等等,都服从或近似服从正态分布。
另一方面,正态分布具有许多良好的性质,很多分布可以用正态分布来近似描述,另外,一些分布又可以通过正态分布来导出,因此在理论研究中正态分布也十分重要。
2.正态曲线及其性质 对于正态分布函数: 22)(21)(σμπσ--=x ex f ,x ∈(-∞,+∞)由于中学知识范围的限制,不必去深究它的来龙去脉,但对其函数图像即正态曲线可通过描点(或计算机中的绘图工具)画出课本图1-4中的图(1)、(2)、(3),由此,我们不难自己总结出正态曲线的性质。
3.标准正态曲线标准正态曲线N (0,1)是一种特殊的正态分布曲线,它是本小节的重点。
由于它具有非常重要的地位,已专门制作了―标准正态分布表‖。
对于抽像函数)()(00x x p x <=-Φ,课本中没有给出具体的表达式,但其几何意义非常明显,即由正态曲线N (0,1)、x 轴、直线0x x =所围成的图形的面积。
再由N (0,1)的曲线关于y 轴对称,可以得出等式)(1)(00x x Φ-=-Φ,以及标准正态总体在任一区间(a ,b)内取值概率)()(a b P Φ-Φ=。
4.一般正态分布与标准正态分布的转化由于一般的正态总体),(2σμN 其图像不一定关于y 轴对称,所以,研究其在某个区间),(21x x 的概率时,无法利用标准正态分布表进行计算。
这时我们自然会思考:能否将一般的正态总体),(2σμN 转化成标准的正态总体N (0,1)进行研究。
人们经过探究发现:对于任一正态总体),(2σμN ,其取值小于x 的概率)()(σμ-Φ=x x F 。
对于这个公式,课本中不加证明地给出,只用了―事实上,可以证明‖这几个字说明。
这表明,对等式)()(σμ-Φ=x x F 的来由不作要求,只要会用它求正态总体),(2σμN 在某个特定区间的概率即可。
5.“小概率事件”和假设检验的基本思想―小概率事件‖通常指发生的概率小于5%的事件,因为对于这类事件来说,在大量重复试验中,平均每试验20次,才能发生1次,所以认为在一次试验中该事件是几乎不可能发生的。
这种认识便是进行推断的出发点。
关于这一点我们要有以下两个方面的认识:一是这里的―几乎不可能发生‖是针对―一次试验‖来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用―小概率事件几乎不可能发生的原理‖进行推断时,我们也有5%的犯错误的可能。
就是说,这里在概率的意义上所作的推理与过去确定性数学中的―若a 则b‖式的推理有所不同。