二次函数Y=AX2的图象(一) —— 初中数学第五册教案
- 格式:doc
- 大小:6.23 KB
- 文档页数:15
1.2 二次函数y=ax2的图象和性质一等奖创新教案22.1 二次函数的图象和性质22.1.2 二次函数y=ax2的图象和性质一、教学目标【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.【过程与方法】通过画出简单的二次函数探索出二次函数y=ax2的性质及图象特征.【情感态度与价值观】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课1.你们喜欢打篮球吗?(出示课件2)2.你们知道投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?学生自主思考.(二)探索新知探究一:二次函数y=ax2的图象的画法出示课件4:画出二次函数y=x2的图象.学生分组画y=x2的图象,教师巡视,对于不正确的给予指导.⑴列表:在y=x2中自变量x可以是任意实数,列表表示几组对应值:x …-3 -2 -1 0 1 2 3 …y=x2 ……⑵描点:根据表中x,y的数值在坐标平面中描点(x,y)(出示课件5)⑶连线:如图,再用平滑曲线顺次连接各点,就得到y=x2的图象.当取更多个点时,函数y=x2的图象如下:(出示课件6)教师归纳:二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y轴对称,y轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.出示课件7:画出二次函数y=-x2的图象.学生分组画y=-x2的图象,教师巡视,对于不正确的给予指导.⑴列表:x …-3 -2 -1 0 1 2 3 …y=-x2 ……⑵描点:⑶连线:探究二:二次函数y=ax2的图象性质出示课件8:教师问:根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=x2的图象是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点(0 ,0 );5.图象有最低点.出示课件9:教师问:说说二次函数y=-x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=-x2的图象是一条抛物线;2.图象开口向下;3.图象关于y轴对称;4.顶点(0,0);5.图象有最高点.教师归纳:(出示课件10)二次函数y=ax2的图象性质:1.顶点都在原点(0,0);2.图像关于y轴对称;3.当a>0时,开口向上;当a0时,a越大,开口越小.出示课件18:在同一直角坐标系中,画出函数的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ·-4 -3 -2 -1 0 1 2 3 4 ···x ·-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···出示课件19:师生共同探究:二次函数的图象开口大小与a的大小有什么关系?教师归纳:当a-1.因此m=1.此时,二次函数为y=2x2.出示课件23:已知是二次函数,且当x>0时,y随x增大而增大,则k= .学生独立思考后,自主解答如下:解:是二次函数,即二次项的系数不为0,x的指数等于2.又因当x>0时,y随x增大而增大,即说明二次项的系数大于0. 因此,,解得k=2.探究四:二次函数y =ax2的实际应用出示课件24:师生共同认知:二次函数y=ax2是刻画客观世界许多现象的一种重要模型.出示课件25:例已知正方形的周长为Ccm,面积为Scm2,(1)求S与C之间的二次函数关系式;(2)画出它的图象;(3)根据图象,求出当S=1cm2时,正方形的周长;(4)根据图象,求出C取何值时,S≥4cm2.学生独立思考后,师生共同解答.(出示课件26)解:(1)∵正方形的周长为Ccm,∴正方形的边长为cm,∴S与C之间的关系式为S=;作图如图:(3)当S=1cm2时,C2=16,即C=4cm;(4)若S≥4cm2,即≥4,解得C≥8,或c≤-8(舍去),因此C ≥8cm.出示课件27:已知二次函数y=2x2.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_____y2;(填“>”“=”或“15.开口方向对称轴顶点坐标向上y轴(0,0)向下y轴(0,0)向上y轴(0,0)向下y轴(0,0)6.解:在二次函数y=x2中,a=1>0因此当x=0时,y有最小值.∵当x≥m时,y最小值=0,∴m≤0.7.解:由题意得解得因此两函数的交点坐标为A(4,16)和B(-1,1).∵直线y=3x+4与y轴相交于点C(0,4),即CO=4.两交点与原点所围成的三角形面积S△ABO=S△ACO+S△BOC.在△BOC中,OC边上的高就是B点的横坐标值的绝对值1;在△ACO中,OC边上的高就是A点的横坐标值的绝对值4.因此S△ABO=S△ACO+S△BOC=×4×1+×4×4=10.(四)课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?.(五)课前预习预习下节课(22.1.3第1课时)的相关内容.七、课后作业1.教材41页习题22.1第3,4题2.配套练习册内容八、板书设计:九、教学反思:本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.1 / 15。
二次函数y=ax2的图象_九年级数学教案教学设计示例1课题:二次函数的图象教学目标:1、会用描点法画出二次函数的图象;2、根据图象观察、分析出二次函数的性质;3、进一步理解二次函数和抛物线的有关知识4、渗透由特殊到一般的辩证唯物主义观点;5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力;6、培养学生勇于探索创创新及实事求是的科学精神.教学重点:根据图象,观察、分析出二次函数的性质教学难点:渗透数形结合的数学思想方法教学用具:直尺、微机教学方法:谈话、探究式教学过程:1、列表、描点画出函数与的图象,引入新课例:画出函数与的图象解:列两个表x-4-3-2-1123484.520.50.524.58x-2-1.5-0.50.511.5284.520.50.524.58分别描点画图2、根据图象发现问题,由学生探索出新知识.提问:你能从图象中发现抛物线是哪些性质?这两个函数图象有何异同?(1)这两个函数的图象都关于y轴对称.这一点可以从刚才的列表中可以看出,时所对应的y值分别相等,如等.这样的两个点关于y轴对称.由这些点构成的抛物线也关于y 轴对称.从解析式中也可以得出这个结论:互为相反数的两个数的平方数相等,因此,这两个函数的图象都是关于y轴对称的.(2)从图中可以看出,x可取x轴上的任意一点,而y对应的是大于、等于零的数.即抛物线有最低点(0,0).这一点可以从解析式中得到很好的解释,可取任意实数. 图象开口向上.这也说明数与形是数学中的两条线索,它们是互相对应的,反映了数形结合的思想.(3)从图中也可以看出抛物线不同于我们以前学过的正比例函数和一次函数,这两个函数的图象都是直线,而抛物线是曲线,有一个拐弯,函数的图象都在最低点拐了一个弯.这样它们的性质几发生了变化.在y轴的左侧,从左向右呈下坡趋势,即y随x的增大而减小;在y轴的右侧,从左向右,呈上坡趋势,即y随x的增大而增大.这一变化趋势也可以从列表中看出.(4)这两个图象除以上相同之处外,还有不同的地方.如:离y轴近,离y轴远.从列表中可以看出:如过点(2,2),而过点(2,8)也就是说,当x=2时,的图象所对应的点高于所对应的点.因此会有上述的结论.3、画出函数的图象与中的a都是正数,当a我们看例2例2、画出函数的图象解:列表:x-3-2123y-9-4-1-1-4-9描点画图:4、从函数图象入手,再次总结二次函数的性质(1)与刚才两个图象不同的是,的图象开口向下.这是因为x是任意实数,,即,因此,开口会向下.图象有最高点(0,0)(2)此图象仍然是关于y轴对称的(3)在y轴的左侧,y随x的增大而增大;在y轴的右侧,y随x的增大而减小5、得出一般的规律一般地,抛物线的对称轴是y轴,顶点是原点,当a>0时,抛物线的开口向上,当a 6、小结:这一节课,从始至中都是结合图象观察、归纳总结出二次函数的性质,体现了数与形的结合.函数图象是解决函数问题的有利工具,希望大家能自觉地应用.7、作业:习题13.6A组1、2B组1、2教学设计示例2课题:二次函数的图象第一课时一、素质教育目标(一)知识教学点1.使学生知道二次函数的意义;2.使学生会用描点法画出二次函数的图像,并结合的图像,初步理解抛物线及其有关概念。
二次函数y=a²的图象一——初中数学第五册教案一、教学目标1.理解二次函数y=a²的概念和性质。
2.能够绘制和分析二次函数y=a²的图象。
3.培养学生的观察、分析和解决问题的能力。
二、教学重点与难点1.重点:二次函数y=a²的概念和性质,二次函数y=a²的图象特点。
2.难点:二次函数y=a²的图象绘制和分析。
三、教学准备1.教学课件或黑板。
2.二次函数y=a²的图象示例。
3.练习题。
四、教学过程1.引入新课(1)回顾一次函数的图象特点,引导学生思考二次函数的图象会有什么不同。
(2)介绍二次函数y=a²的概念和性质。
2.二次函数y=a²的概念和性质(1)讲解二次函数y=a²的定义:形如y=a²(a≠0)的函数称为二次函数。
(2)讲解二次函数y=a²的性质:开口方向、顶点坐标、对称轴、单调性等。
3.二次函数y=a²的图象特点(1)展示二次函数y=a²的图象示例,引导学生观察图象的特点。
(2)讲解二次函数y=a²的图象特点:开口方向、顶点、对称轴、单调性等。
4.二次函数y=a²的图象绘制(1)讲解二次函数y=a²的图象绘制方法:选取适当的点,描绘出图象。
(2)示范绘制二次函数y=a²的图象,让学生跟随操作。
5.二次函数y=a²的图象分析(1)引导学生分析二次函数y=a²的图象,讨论图象与函数性质的关系。
(2)讲解二次函数y=a²的图象分析方法:观察开口方向、顶点、对称轴、单调性等。
6.练习与巩固(1)布置练习题,让学生独立完成。
7.课堂小结(2)强调二次函数y=a²在实际生活中的应用。
五、课后作业1.复习二次函数y=a²的概念、性质和图象特点。
2.完成课后练习题,巩固所学知识。
二次函数y=ax2的图像和性质教案篇一:22.1.2二次函数y=ax2图像与性质教案2123篇二:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,。
二次函数y=ax2的图象和性质教案中的案例讲解及教学方法。
案例描述:小明是一名初三学生,他正在学习二次函数的图象和性质。
他很好奇,如果将二次函数中的参数a取不同的值,会对函数其图象造成什么影响。
他请教了数学老师,并得到了以下问题:已知二次函数y=ax^2 的参数 a 的不同取值分别为 1/2、1、2,画出它们的函数图象,并分析它们的性质。
教学方法:1.让学生探究让学生自行根据题目中的要求,搜索资料,画出三个函数的图象,并分析它们的性质。
老师可以引导学生思考如下问题:(1)三个函数的图象有何相似之处,何不同之处?(2)三个函数都有什么最高点或最低点,这个点的坐标分别为多少?这个点对函数有什么影响?(3)三个函数在什么位置上与x轴相交,这对函数有何影响?(4)三个函数在什么位置上与y轴相交,这对函数有何影响?(5)三个函数的开口方向有何不同之处?这对函数有何影响?2.总结性讲解根据学生自己探究的结果,老师可以进行总结性讲解,介绍二次函数 y=ax^2 的图象和性质:(1)二次函数 y=ax^2 的图象都是开口朝上或开口朝下的抛物线。
其中参数 a 的正负决定了开口的朝向。
当 a>0 时,开口朝上;当 a<0 时,开口朝下。
(2)二次函数 y=ax^2 的最高点或最低点为抛物线的对称轴上的点,称为抛物线的顶点。
顶点的坐标为(0,a/4)或(0,-a/4)。
(3)二次函数 y=ax^2 与x轴相交的点称为根,也称为零点或解。
当 a>0 时,抛物线与x轴有两个根,分别为x1=(-∞,0)、x2=(0,+∞);当 a<0 时,抛物线与x轴无根。
(4)二次函数 y=ax^2 与y轴相交于点(0,0)。
这表示二次函数总是通过原点。
(5)二次函数 y=ax^2 的参数 a 的变化,会导致抛物线形状的变化。
当参数 a 的值越大,抛物线的开口越宽,曲线愈平缓;当参数a 的值越小,抛物线的开口越窄,曲线愈陡峭。
二次函数y=a x2的图像与性质教学设计定远县郭集学校谢辉一、教材分析:本节是学生学习了二次函数的概念之后,对其图象及性质逐步进行探究的一个内容,在此之前学生已经对正比例函数、一次函数和反比例函数的概念及图象与性质进行了学习,因此在本节课的学习方法上学生已经有了一定的经验。
但二次函数,它是进一步学习函数知识,体现函数知识螺旋发展的一个重要环节。
同时在此节后,我们还将循序渐进,在此基础上由简到繁逐步展开二次函数的研究。
二次函数的图像是抛物线,是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
可以说这节课既是承上启下,同时本节课的学习也能让学生体会到数学的实用及美感。
其地位及作用不可小看。
二、设计思想1.函数及其图象在初中数学中占有很重要的位置。
如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。
我们知道,函数的表示法有三种:列表法、图象法、解析法,初二时的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,具有一定的片面性。
本节课,力图让初三学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。
2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。
(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。
(3)通过课堂教学活动向学生渗透数学思想方法。
三、教学目标1、知识技能:经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
二次函数y=ax2的图象(一)——初中
数学第五册教案
课题二次函数y=ax2的图象(一)
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是Scm2
1。
21.2二次函数的图象和性质1.二次函数y=ax2的图象和性质1.正确理解抛物线的有关概念;(重点)2.会用描点法画出二次函数y=ax2的图象,概括出图象的特点;(重点)3.掌握形如y=ax2的二次函数图象的性质,并会应用;(难点)4.通过动手操作、合作交流,积累数学活动经验,培养动手能力和观察能力.一、情境导入我们都见过篮球运发动投篮,你知道篮球从出手到落入篮圈内的路线是什么图形吗?它是如何画出来的?我们把篮球从出手到落入篮圈内的曲线叫抛物线,你还能举出一些抛物线的例子吗?二、合作探究探究点一:二次函数y=ax2的图象【类型一】画二次函数y=ax2的图象在同一平面直角坐标系中,画出以下函数的图象:①y=12x2;②y=2x2;③y=-12x2;④y=-2x2.根据图象答复以下问题:(1)这些函数的图象都是轴对称图形吗?如果是,对称轴是什么?(2)图象有最高点或最低点吗?如果有,最高点或最低点的坐标是什么?解析:要画出四个函数的图象,需先列表,因为在这些函数中,自变量的取值范围是全体实数,故应以原点O为中心,对称地选取x的值,列出函数的对应值表.解:列表:描点、连线,函数图象如以下图.(1)这四个函数的图象都是轴对称图形,对称轴都是y 轴;(2)函数y =2x 2和y =12x 2的图象有最低点,函数y =-12x 2和y =-2x 2的图象有最高点,这些最低点和最高点的坐标都是(0,0).方法总结:(1)画形如y =ax 2(a ≠0)的图象时,x 的值应从最低(或最高)点起左右两边对称地选取.(2)连线时,一般按从左到右的顺序将点连接起来,一定注意连线要平滑,不能画成折线.(3)抛物线的概念:二次函数y =ax 2(a ≠0)的图象是抛物线,简称为抛物线y =ax 2.(4)抛物线的特点:①有开口方向;②有对称轴;③有顶点——对称轴与抛物线的交点.抛物线的顶点也是它的最低点或最高点.【类型二】同一坐标系中两种不同图象的判断当ab >0时,抛物线y =ax 2与直线y =ax +b 在同一直角坐标系中的图象大致是( )解析:根据a、b的符号来确定.当a>0时,抛物线y=ax2的开口向上.∵ab>0,∴b>0.∴直线y=ax+b过第一、二、三象限.当a<0时,抛物线y=ax2的开口向下.∵ab>0,∴b<0.∴直线y=ax+b过第二、三、四象限.应选D.方法总结:本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.探究点二:抛物线y=ax2的开口方向、大小与系数a的关系如图,四个二次函数图象中,分别对应:①y=ax2;②y=bx2;③y=cx2;④y=dx2,那么a、b、c、d的大小关系为()A.a>b>c>dB.a>b>d>cC.b>a>c>dD.b>a>d>c答案:A方法总结:抛物线y=ax2的开口大小由|a|确定,|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大.探究点三:二次函数的图象与几何图形的综合应用二次函数y=ax2(a≠0)与直线y=2x-3相交于点A(1,b),求:(1)a,b的值;(2)函数y=ax2的图象的顶点M的坐标及直线与抛物线的另一个交点B的坐标;(3)△AMB的面积.解析:直线与二次函数y=ax2的图象交点坐标可利用方程求解,而求△AMB的面积,一般应画出草图进行解答.解:(1)∵点A (1,b )是直线y =2x -3与二次函数y =ax 2的图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1; (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0).由-x 2=2x -3,解得x 1=1,x 2=-3,∴y 1=-1,y 2=-9,∴直线与二次函数的另一个交点B 的坐标为(-3,-9);(3)如以下图,作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C 、D ,根据点的坐标的意义,可知MD =3,MC =1,CD =1+3=4,BD =9,AC =1,∴S △AMB =S 梯形ABDC -S △ACM -S △BDM =12×(1+9)×4-12×1×1-12×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题.探究点四:二次函数y =ax 2的性质【类型一】二次函数y =ax 2的增减性作出函数y =-x 2的图象,观察图象,并利用图象答复以下问题:(1)在y 轴左侧图象上任取两点A (x 1,y 1),B (x 2,y 2),使x 2<x 1<0,试比拟y 1与y 2的大小;(2)在y 轴右侧图象上任取两点C (x 3,y 3),D (x 4,y 4),使x 3>x 4>0,试比拟y 3与y 4的大小.解析:根据画出的函数图象来确定有关数值大小比拟,是一种比拟常用的方法.解:(1)图象如以下图,由图象可知y 1>y 2;(2)由图象可知y 3<y 4.方法总结:解有关二次函数的性质问题,最好利用数形结合思想,在草稿纸上画出抛物线的草图,进行观察和分析以免解题时产生错误.【类型二】二次函数y =ax 2的最值函数y =(1-n )xn 2+n -4是关于x 的二次函数,当n 为何值时,抛物线有最低点?并求出这个最低点的坐标.这时当x 为何值时,y 随x 的增大而增大?解:∵函数y =(1-n )xn 2+n -4是关于x 的二次函数,∴⎩⎪⎨⎪⎧n 2+n -4=2,1-n ≠0.解得n =2或n =-3.∵抛物线有最低点,∴1-n >0,即n <1.∴n =-3.∴当x >0时,y 随x 的增大而增大.方法总结:抛物线有最低点或最高点是由抛物线y =ax 2(a ≠0)的二次项系数a 的符号决定的;当a >0时,抛物线有最低点;当a <0时,抛物线有最高点.而此题常错误地认为n >0时,抛物线有最低点.正确的答案应为1-n >0,即n <1时,抛物线有最低点,因为二次项系数是(1-n ).探究点五:利用二次函数y =ax 2的图象和性质解题 【类型一】利用二次函数y =ax 2的性质解题当m 为何值时,函数y =mxm 2-m 的图象是开口向下的抛物线?当x 为何值时,y 随x 的增大而增大?这个函数有最大值还是最小值?这个值是多少?解:由题意,得m 应满足⎩⎪⎨⎪⎧m <0,m 2-m =2,解得m =-1.当x <0时,y 随x 的增大而增大.这个函数有最大值,最大值是0.方法总结:此题主要考查函数y =ax 2(a ≠0)的有关性质.当a >0时,图象开口向上,函数有最小值0;当a <0时,图象开口向下,函数有最大值0.当a <0且x <0时,y 随x 的增大而增大.【类型二】二次函数y =ax 2的图象和性质的实际应用如图,是一座抛物线形拱桥的示意图,在正常水位时,水面AB 的宽为20m ,如果水位上升3m ,水面CD 的宽为10m.(1)建立如以下图的坐标系,求此抛物线的函数表达式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,甲地距此桥280km(桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶了1h 时,突然接到紧急通知:前方连降暴雨,造成水位以每小时的速度持续上涨(货车接到通知时,水位在CD 处,当水位涨到桥拱最高点O 时,禁止车辆通行).问:如果货车按原来速度行驶,能否平安通过此桥?假设能,请说明理由;假设不能,要使货车平安通过此桥,速度应超过每小时多少千米?解:(1)设抛物线的函数表达式为y =ax 2(a ≠0),拱桥最高点O 到水面CD 的距离为h m ,那么D (5,-h ),B (10,-h -3).∴⎩⎪⎨⎪⎧25a =-h ,100a =-h -3,解得⎩⎪⎨⎪⎧a =-125,h =1.∴抛物线的函数表达式为y =-125x 2; (2)水位由CD 处涨到最高点O 的时间为h ==4(h),货车按原来速度行驶的路程为40×1+40×4=200<280,∴货车按原来速度行驶不能平安通过此桥.设货车速度提高到x km/h ,即当4x +40×1=280时,x =60.∴要使货车平安通过此桥,货车的速度应超过60km/h.方法总结:一般地,求二次函数y =ax 2的表达式时,只需一个点(坐标原点除外)的坐标即可.而此题由于点B ,D 的纵坐标未知,故需设出CD 到桥顶的距离h 作为辅助未知数.三、板书设计二次函数y =ax 2的图象和性质⎩⎪⎪⎪⎨⎪⎪⎪⎧图象⎩⎪⎨⎪⎧画y =ax 2图象y =ax 2图象的形状、特点性质⎩⎪⎪⎨⎪⎪⎧a >0⎩⎪⎨⎪⎧当x <0时,函数y 随x 的增大而减小当x >0时,函数y 随x 的增大而增大当x =0时,函数取得最小值,y 最小值=0,且y 没有最大值,即y ≥0a <0⎩⎪⎨⎪⎧当x <0时,函数y 随x 的增大而增大当x >0时,函数y 随x 的增大而减小当x =0时,函数取得最大值,y 最大值=0,且y 没有最小值,即y ≤0教学过程中,强调学生的自主探索和合作交流,在操作中探究二次函数的图象和性质,体会数学建模的数形结合的思想方法.第2课时用科学记数法表示较小的数1.理解并掌握科学记数法表示小于1的数的方法;(重点)2.能将用科学记数法表示的数复原为原数.一、情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?二、合作探究探究点:用科学记数法表示较小的数【类型一】用科学记数法表示绝对值小于1的数2021年6月18日中商网报道,一种重量为千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人用科学记数法可表示为()A×10-4×10-5×10-5D.106×10-6解析:×10-4.应选A.方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】将用科学记数法表示的数复原为原数用小数表示以下各数:(1)2×10-7; ×10-5;×10-3; ×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7×10-5=0.0000314;×10-3=0.00708;×10-1=0.217.方法总结:将科学记数法表示的数a×10-n复原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活泼,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量。
《次函数y=ax2的图象和性质》教案
一、教学目标
1、知识与技能:会用描点法画二次函数y=ax2的图象;能从图象上认识二次函数y=ax2的性质。
2、过程与方法:通过引导学生作图、观察、分析理解二次函数y=ax2图象与性质;
3、情感态度价值观:在画图、观察、交流等探究活动中,体会数形结合的思想方法,形成良好的数学思维习惯和数学学习方法。
二、重点和难点
重点:二次函数y=ax2的图象。
难点:从有关的图象中得出二次函数y=ax2的性质。
三、教法:探究式教学法。
四、学法:在探究时通过学生的动手操作和教师的课件演示,让学生经历知识的形成、开展与应用的过程,在教学过程中,鼓励学生自主探究与合作交流,引导学生观察、猜测、交流、归纳等数学活动。
五、教具准备:多媒体。
这就是回答最值的标准格§26.1.2 二次函数y =ax 2的图象备课组: 挂联领导: 使用者:【学习目标】 1.能够利用描点法做出函数y =ax 2的图象,能根据图象认识和理解二次函数y =ax 2的性质; 2.理解二次函数y =ax 2中a 对函数图象的影响。
【学习重点】经历探索二次函数y =ax 2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
【学习难点】能够利用描点法作出函数的图象,并能根据图象认识和理解二次函数y =ax 2的性质。
【学习过程】自 主 学 习一、知识链接:1.正比例函数y=kx(k ≠0)是图像是 ; 2.一次函数y=kx+b(k ≠0)的图像是 ; 3.反比列函数y=k x(k ≠0)的图像是 。
4.当我们还不了解一种函数图像的形状时,只能用描点法研究,描点法的一般步骤是: , , 。
二、阅读感知:阅读教材P4页,试作出二次函数y =x 2的图象。
(1)画出图象:①列表:(注意选择适当的x 值,并计算出相应的y 值) x … …y =x 2……①描点:(在右图坐标系中描点)①连线:(应注意用光滑的曲线顺次连接各点) (2)根据图像,进行小结:①y =x 2的图像是 ,且开口方向 。
②它是 对称图像,对称轴是 轴。
在对称轴的左侧(x<0),y 随x 的增大而 ;在对称轴的右侧(x 0),y 随x 的增大而 。
③图像与对称轴有交点,称为抛物线的顶点,从图中可以看出也是图像的最低点,此时,坐标为( , )。
④因为图像有最低点,所以函数有最 值,当x=0时,y 最小= 。
合 作 研 习一、交流探究 :作出二次函数y =-x 2的图象。
x …… …… y =-x 2…………小结:①y =-x 2的图像是 ,且开口向 。
②对称轴是 ,在对称轴左右的增减性分别是:在对称轴左侧,y 随x 的增大 ,在对称轴的右侧,y 随x 的增大 。
③顶点坐标是:( , ),且从图像看出它有最 点,所以函数有最 值。
二次函数y=ax2的图象和性质磷溪镇溪口联侨中学刘俊明一、教学目标1、知识目标:会用描点法画出二次函数y=ax2的图象,能根据图象认识和理解其有关特征。
2、能力目标:经历探索二次函数y=ax2的图象和图象特征的过程,体会数形结合的思想与方法。
3、情感目标:通过作函数图象,认识数形结合的数学方法,体会数学中的特殊与一般的辨证关系;体会数学内在的美感。
二、教学重难点1、教学重点:(1)用描点法画出二次函数y=ax2的图象;(2)根据图象观察、分析、归纳出二次函数y=ax2的图象特征。
2、教学难点:用描点法准确的画出二次函数y=ax2的图象,掌握其图象特征。
三、教法学法教法:启发式讲解互动式讨论研究式探索学法:自主探索观察发现合作交流对比归纳四、教学过程1、复习引入提问:二次函数的定义是什么?讨论:(1)一次函数的图象是什么形状呢?(2)画函数的图象的基本方法是什么?2、实践: 画出二次函数y=x2的图象教师指导学生列表,然后描点、连线,得出二次函数y=x2的图象,然后让学生归纳二次函数y=x2的图象的性质和特点.(1)列表:在x的取值范围内列出函数的对应值表.(2)描点.在直角坐标系中,用表里各组对应值作为点的坐标,在平面直角坐标系中描点.(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示.(4)归纳总结.提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归纳如下:二次函数y=x2的图象是一条曲线,这条曲线开口向上,它有一条对称轴,是y轴,且对称轴和图象有一点交点.抛物线概念:像这样的曲线通常叫做抛物线.顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点,它是抛物线y=x2的最低点.一般地,二次函数y=ax2+bx+c.的图象叫做抛物线y=ax2+bx+c.每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点.顶点是抛物线的最低点或最高点.在对称轴的左侧,抛物线从左到右下降;在对称轴的右侧,抛物线从左到右上升.也就是说,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.3、实例探究1.在同一直角坐标系中,画出函数y=x2,y=x2,y=2x2的图象.2.在同一直角坐标系中,画出函数y=-x2,y=-x2,y=-2x2的图象.教师引导学生根据描点法的一般步骤,进行列表,然后描点、画图.完成后让学生类比研究二次函数y=x2的角度,尝试从图象的形状、开口方向、对称性、顶点等几个方面分别描述这两个函数的图象特征(见教材第31页表、图).思考:(1)当a>0时,二次函数y=ax2的图象有什么特点?(2)当a<0时,二次函数y=ax2有什么图象和特点?学生思考、讨论,最后师生归纳:一般地,当a>0时,抛物线y=ax2的开口向上,对称轴是y轴,顶点是原点,顶点是抛物线的最低点,a越大,抛物线的开口越小.当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.4、巩固练习教材第32页练习.五、课堂小结抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点.对于抛物线y=ax2,∣a∣越大,抛物线的开口越小.如果a>0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;如果a<0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.六、布置作业习题22.1 第3、4题.板书设计:22.1.2 二次函数y=ax2的图象1、画二次函数y=ax2的图象描点法2、二次函数y=ax2的图象特征(抛物线)(1)开口方向(2)对称性(3)最值。
22.1.2 二次函数y=ax2的图象和性质教学设计
归纳总结:a>0,开口向上,对称轴为y 轴;顶点(0、0);函数值有最小值;增减性:在对称轴y 轴左侧,y 随x 的增大而减小,在y 轴右侧,y 随x 的增大而增大.
a<0,开口向下,对称轴为y 轴;顶点(0、0);函数
值有最大值;增减性:在对称轴y 轴左侧,y 随x 的增大而增大,在y 轴右侧,y 随x 的增大而减小. |a|越大,抛物线的开口越小.
a>0图象 a<0图象
思考:对比抛物线,y=x 2和y= -x 2.它们关于x 轴对称吗?一般地,抛物线y=ax 2和y= -ax 2呢?
小结:在同一坐标系内,抛物线y=ax 2 与抛物线y= -ax 2是关于x 轴对称的. 环节三:课堂练习
1. 函数2
23y x =的图象的开口向上,对称轴是y
轴;顶点(0、0);在对称轴y 轴左侧,y 随x 的增大而减小,在y 轴右侧,y 随x 的增大而增大;函数有最小值.
2. 函数22y x =-的图象开口向下,对称轴为y
运用二次函数的性质求解未
知字母的值以及解决相关问题. 学生练习、板演解题过程,师生互
评,进行订正.
深刻理解二次函数的性质,初步
理解问题并能用所学的知识解决问题.培养学生运用数学知识解决问题的能力和对
知识的应用意识.
x
y
O
y
x
O。
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是scm2,圆的半径是rcm,写出空上圆的面积s与半径r之间的函数关系式。
(2)已知一个矩形的周长是60m,一边长是lm,写出这个矩形的面积s(m2)与这个矩形的一边长l之间的函数关系式。
(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是s=πr2;
(2)函数析式是s=30l—l2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。
我们说三个式子都表示的是二次函数。
一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。
2.画二次函数y=x2的图象。
按照描点法分三步画图:
(1)列表∵ x可取任意实数,∴以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;
(2)描点按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线用平滑曲线顺次连接各点,即得所求y=x2的图象。
注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。
而图象在x&3或x<-3的区间是无限延伸的。
(2)所画的图象是近似的。
3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们–1与1之间每隔0.2的间距取x值表和图13-14。
按课本p118内容讲解。
4.引入抛物线的概念。
关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。
小结
1.二次函数的定义。
(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。
2.二次函数y=x2的图象。
(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?(1)y=2-3x2;(2)y=x (x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作业:p122中a组1,2,3。
四、教学注意问题
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。
2.注意培养学生观察分析问题的能力。
比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。
(答:具有对称性。
)
(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。
)
课题二次函数y=ax2的图象(一)
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是scm2,圆的半径是rcm,写出空上圆的面积s与半径r之间的函数关系式。
(2)已知一个矩形的周长是60m,一边长是lm,写出这个矩形的面积s(m2)与这个矩形的一边长l之间的函数关系式。
(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是s=πr2;
(2)函数析式是s=30l—l2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。
我们说三个式子都表示的是二次函数。
一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。
2.画二次函数y=x2的图象。
按照描点法分三步画图:
(1)列表∵ x可取任意实数,∴以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;
(2)描点按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线用平滑曲线顺次连接各点,即得所求y=x2的图象。
注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。
而图象在x&3或x<-3的区间是无限延伸的。
(2)所画的图象是近似的。
3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们–1与1之间每隔0.2的间距取x值表和图13-14。
按课本p118内容讲解。
4.引入抛物线的概念。
关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。
小结
1.二次函数的定义。
(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。
2.二次函数y=x2的图象。
(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?
(1)y=2-3x2;(2)y=x (x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作业:p122中a组1,2,3。
四、教学注意问题
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。
2.注意培养学生观察分析问题的能力。
比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。
(答:具有对称性。
)
(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。
)。