(完整版)运算定律与简便计算
- 格式:doc
- 大小:27.10 KB
- 文档页数:4
数学简便运算包括以下定律:
1.加法交换律:两个加数交换位置,和不变,这叫做加法交换
律。
字母公式:a+b+c=(b+a)+c。
2.加法结合律:先把前两个数相加,或先把后两个数相加,和不
变叫做加法结合律。
字母公式:a+b+c=a+(b+c)。
3.乘法交换律:两个因数交换位置,积不变,这叫做乘法交换
律。
字母公式:a×b=b×a。
4.乘法结合律:先乘前两个数,或先乘后两个数,积不变。
字母
公式:a×b×c=a×(b×c)。
5.乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不
变。
字母公式:(a+b)×c=a×c+b×c。
6.减法性质:一个数连续减去两个数,可以用这个数减去两个数
的和。
字母公式:a-b-c=a-(b+c)。
7.除法性质:一个数连续除以两个数,可以先把后两个数相乘,
再相除。
字母公式:a÷b÷c=a÷(b×c)。
这些定律被广泛应用于各种数学计算中,包括加、减、乘、除、乘方和开方等运算。
运算定律与简便计算 (一)加减法运算定律1.加法交换律 定义:两个加数交换位置,和不变 字母表示:a b b a +=+ 例如:16+23=23+16 546+78=78+5462.加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++ 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24(3)140+639+860 举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245 3.减法交换律、结合律 注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=-- 例3.简便计算:(1)369-45-155 (2)896-580-120 4.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997 随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996 (7)876-580+220 (8)997+840+260 (9)956—197-56 (二)乘除法运算定律1.乘法交换律 定义:交换两个因数的位置,积不变。
小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律 a b = b a例:25 37=37 25加法结合律 a b c=a (b c)例:25 37 63=25 (37 63)(扩展) a-b-c=a-(b c)例:125-37-63=25-(37 63)a-b c=a-(b-c)例:300-159 59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b c)=a×b a×c例:8×(125 25)=8×125 8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=102×50=1004×25=1008×25=20012×5=608×125=100037×3=111333=111×3999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28 36) 64=28 (36 64)=28 100=128182 18 276 24=(182 18)(276 24)=200 300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律与简便计算重点知识归纳(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a+b=b+a例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:(a+b)+c=a+(b+c)注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法的性质注:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:a-b-c=a-c-b例2.简便计算:198-75-98减法性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:a-b-c=a-(b+c)例3.简便计算:(1)369-45-155 (2)896-580-120 4.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996 (7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
每次孩子们做简便计算总会出现各种各样的问题,归根结底是知识点理解不透彻。
运算定律是解决简便运算的基础。
一.加法运算定律
1. 加法交换律——加法交换律: 两个加数交换位置,和不变。
字母公式: a+b=b+a
2. 加法结合律——先把前两个数相加,或者先把后两个数相加,和不变 。
字母公式: a+b+c = a+(b+c)
二.减法性质 :
一个数连续减去两个数,可以先减第二个数再减第一个数,也可以减去两个数的和。
字母公式:a-b-c=a-c-b=a-(b+c)
三.乘法运算定律:
1. 乘法交换律——乘法交换律 : 两个乘数交换位置,积不变。
字母公式: a×b = b×a
2. 乘法结合律——乘法结合律 : 先乘前两个数,或者先乘后两个数,积不变。
字母公式: a×b×c = a×(b×c)
3. 乘法分配律——乘法分配律 :
两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式: (a+b)×c=a×c+b×c 四.除法性质
四、除法性质:一个数连续除以两个数
,可以 先除以第二个数再除以第一个数,也可以除以两个数的积。
字母公式: a÷b÷c=a ÷c ÷b =a÷(b×c)。
定律与简便计算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,与不变字母表示:例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,与不变.字母表示:注意:加法结合律有着广泛得应用,如果其中有两个加数得与刚好就是整十、整百、整千得话,那么就可以利用加法交换律将原式中得加数进行调换位置,再将这两个加数结合起来先运算。
例1、用简便方法计算下式:(1)63+16+84(2)76+15+24 (3)140+639+860 3、减法交换律、结合律注:减法交换律、结合律就是由加法交换律与结合律衍生出来得。
减法交换律:如果一个数连续减去两个数,那么后面两个减数得位置可以互换。
字母表示:例2、简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数得与。
字母表示:例3、简便计算:(1)369-45—155 (2)896—580-1204、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些得时候,我们可以把这个数拆分成整百、整千与一个较小数得与,然后利用加减法得交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4、计算下式,能简便得进行简便计算:(1)89+106(2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170(2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)63+71+37+29 (8)85-17+15—33 (9)34+72-43-57+28 (二)乘除法运算定律1、乘法交换律定义:交换两个因数得位置,积不变。
字母表示:例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变.字母表示:乘法结合律得应用基于要熟练掌握一些相乘后积为整十、整百、整千得数。
运算定律与简便计算
(一)加减法运算定律
1.加法交换律:两个加数交换位置,和不变
字母表示:a b b a +=+
2.加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++
注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:
(1)63+16+84 (2)76+15+24 (3)140+639+860
举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245
3.减法性质:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--
例2. 简便计算:198-75-98
减法性质:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--
例3. 简便计算:(1)369-45-155 (2)896-580-120
4.拆分、凑整法简便计算
拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…
凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…
注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就
具有很大的简便了。
例4.计算下式,能简便的进行简便计算:
(1)89+106 (2)56+98 (3)658+997
随堂练习:计算下式,怎么简便怎么计算
(1)730+895+170 (2)820-456+280 (3)900-456-244
(4)89+997 (5)103-60 (6)458+996
(7)876-580+220 (8)997+840+260 (9)956—197-56
(二)乘除法运算定律
1.乘法交换律:交换两个因数的位置,积不变。
字母表示:a b b a ⨯=⨯
2.乘法结合律:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a ⨯⨯=⨯⨯
乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
3.乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母表示:c b c a c b a ⨯+⨯=⨯+)(,或者是c a b a c b a ⨯+⨯=+⨯)(
简便计算中乘法分配律及其逆运算是运用最广泛的一个,一个要掌握它和它的逆运算。
例6. 简便计算: 125×(8+4)
除法性质:从被除数里面连续除以两个数,交换这两个除数的位置商不变。
字母表示:b c a c b a ÷÷=÷÷
简便计算:160÷5÷4
除法性质:从被除数里面连续除以两个数,等于被除数除以这两个数的积。
字母表示:)(c b a c b a ⨯÷=÷÷
举一反三:1000÷25÷8
四年级上册简便运算
一、运算定律及性质
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
2、乘法交换律:a×b=b×a4、乘法结合律:(a×b)×c=a×(b×c) 5、乘法分配律:(a+b)×c=a×c+b×c6、减法的性质:a-b-c=a-(b+c) 7、除法的性质:a÷b÷c=a÷(b×c)
用简便方法计算:
(155+356)+(345+144)978-156-244
45+32+55 63+28+72+37 145-36-45
283-56-44 197-(42+97) 25×13×4
125×32×25 24×102 21×99
(25+3)×4 56×23+44×23 178×45-45×78
34×99+34 78×12+21×12+12 3000÷125÷8
810÷18 720÷18÷4 630÷(21×2)、
145+201 234+98 163-102
236-199 214-(86+14)455-(155+230)
576-285+85 825-657+57 871-299
157-99 17X23-23X7 35X127-35X16-11X35
容易出错类型(共五种类型,没有运用运算定律,不能简便运算)600-60÷15 20X4÷20X4 100+45-100+45
48X99+1 672-36+64。