大数定理与中心极限定理间的关系及其他们的应用
- 格式:doc
- 大小:281.50 KB
- 文档页数:10
高考数学中的大数定律与中心极限定理介绍高考数学涉及到各种概率、统计和数理方法,因此对于喜欢数学的同学来说,它是不可忽视的一门课程。
而在高考数学中,有一些重要的数学规律和定理,是必须要掌握的。
其中,大数定律和中心极限定理就是比较重要的内容之一。
一、大数定律大数定律是概率论中的一个重要定理,是指当样本容量趋向于无穷大时,样本平均值趋向于总体平均值的概率为1。
在高考数学中,大数定律有着广泛的应用。
在高考数学中,需要通过大量的数据来进行推测和判断。
例如,如果要预测某个城市的未来发展趋势,就需要收集该城市的人口、经济、环境等各种数据。
这些数据的抽样必须具有足够的代表性,才能够用来描述整个总体的趋势和规律。
而通过大数定律,我们可以将这些抽样数据的平均值用来估计总体平均值,并计算出误差范围,以此来预测未来的发展趋势。
二、中心极限定理中心极限定理是概率论中的另一个重要定理,是指当样本容量趋向于无穷大时,样本平均值服从正态分布的概率为1。
在高考数学中,中心极限定理也有着广泛的应用。
在高考数学中,中心极限定理可以用来解决各种概率和统计问题。
例如,如果要估计某个事件的概率,就需要对事件进行抽样,在抽样的过程中,样本的均值和方差对于概率的估计具有很重要的作用。
而通过中心极限定理,我们可以将样本数据的平均值用来近似服从正态分布,进而计算出概率的估计值,从而解决各种概率和统计问题。
三、总结总的来说,大数定律和中心极限定理是高考数学中比较重要的数学规律和定理之一。
在高考中,考生需要掌握它们的定义和基本性质,熟练运用它们解决各种概率和统计问题,从而在考试中取得更好的成绩。
但是,在学习和应用大数定律和中心极限定理的过程中,同学们也需要注意一些事项。
例如,在进行样本抽取和数据处理的过程中,需要注意样本的随机性和代表性,以确保样本的正确性和可信度;另外,在利用定理来求解问题时,需要注意计算的精确度和误差范围,以保证结果的正确性。
大数定律与中心极限定理总结大数定律和中心极限定理是概率论中两个重要的定理,它们可以帮助我们理解随机事件的规律性。
本文将对这两个定理进行总结,并提供相关参考内容。
一、大数定律:大数定律是概率论中的一个基本定理,它描述了随着随机事件的重复进行,样本均值逐渐趋近于其期望值的现象。
大数定律包括弱大数定律和强大数定律。
1. 弱大数定律:弱大数定律又称为辛钦定律,它是在较宽松的条件下得到的。
根据弱大数定律,当独立同分布的随机变量的期望存在时,它们的算术平均值会以很高的概率接近于它们的期望值。
参考内容:- H.W. Robbins, D. Siegmund. A Weak Law of Large Numbers for Partial Sums of Random Variables with Infinite Variance. The Annals of Probability, 21(1), 197-205.- Erdos, P. (1949). On a Family of Polynomial Identities Involving Sums of Random Variables. Bulletin of the American Mathematical Society, 55(6), 538-543.2. 强大数定律:强大数定律是在严格条件下得到的。
它指出,对于独立同分布的随机变量序列,样本均值会以概率1收敛到其期望值。
参考内容:- Gromov, M. (2014). Large Scale Geometry. European Mathematical Society, 9.- Petrov, V. V. (2012). Sums of Independent Random Variables. Springer Science & Business Media.二、中心极限定理:中心极限定理是概率论中的一个重要定理,它描述了大量独立随机变量之和的分布近似服从正态分布的现象。
本科生毕业论文(设计)题目大数定律与中心极限定理的关系及应用姓名学号院系数学科学学院专业数学与应用数学指导教师职称2013年4 月16 日曲阜师范大学教务处制目录摘要 (3)关键词 (3)Abstract (3)Key words (3)引言 (3)1 大数定律与中心极限定理的关系 (4)1.1预备知识 (4)1.1.1大数定律 (4)1.1.2中心极限定理 (5)1.2大数定律与中心极限定理的关系 (6)1.2.1服从大数定律不服从中心极限定理的例子 (7)1.2.2服从中心极限定理不服从大数定律的例子 (8)1.2.3大数定律与中心极限定理均不服从的例子 (9)2 大数定律与中心极限定理在实际生活中的应用 (10)2.1 在误差分析中的应用 (10)2.2 在数学分析中的应用 (11)2.3 在近似计算中的应用 (13)2.4 在保险业中的应用 (14)2.5 在企业管理方面的应用 (15)结论 (16)致谢 (16)参考文献 (17)大数定律与中心极限定理的关系及应用摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。
经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。
另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。
最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。
关键词:大数定律中心极限定理随机变量应用Relationship and Applications betweenthe Law of Large Number and Central Limit TheoremStudent majoring in mathematics and applied mathematics Bai YanfeiTutor Liu LiAbstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value.Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
大数定理与中心极限定理的关系及应用汇总大数定理和中心极限定理都是概率论中非常重要的定理,它们在概率论和统计学中有着广泛的应用。
下面我们来详细介绍它们的关系及应用。
大数定理(Law of Large Numbers)是概率论中的一个重要定理,它描述的是随机变量序列的平均值收敛于期望的情况。
大数定理主要分为弱大数定律和强大数定律。
弱大数定律指的是当样本容量趋于无穷大时,随机变量的平均值收敛于期望的概率为1;强大数定律则指的是在一些条件下,随机变量的平均值几乎处处收敛于期望,即概率为1中心极限定理(Central Limit Theorem)是概率论中另一个重要的定理,它描述的是随机变量序列的和随着样本容量的增大逼近于正态分布的现象。
中心极限定理分为三种形式:林德伯格-列维定理、德莫佛拉-拉普拉斯定理和契比雪夫不等式。
其中,林德伯格-列维定理是最早提出的版本,它陈述了独立随机变量和的分布函数在适当的标准化下会趋近于标准正态分布。
大数定理和中心极限定理的关系:大数定理和中心极限定理在一定程度上是互补的。
大数定理关注的是样本容量趋于无穷大时随机变量的平均值的收敛情况,中心极限定理则关注的是样本容量增加时和的分布趋近于正态分布的情况。
可以说,中心极限定理是大数定理的一种具体形式。
应用汇总:大数定理和中心极限定理在实际应用中有着广泛的应用。
下面我们来汇总一些常见的应用领域:1.投资与金融:大数定理可以应用在股票市场分析中,通过分析历史数据计算出平均回报率,从而预测未来的回报率。
而中心极限定理则可以用于计算股票收益率的置信区间,帮助投资者进行风险管理。
2.生物统计学:大数定理和中心极限定理在生物统计学中有着广泛的应用。
例如,通过大数定理可以估计人口中患其中一种疾病的比例,从而指导公共卫生政策制定。
而中心极限定理则可以用于计算样本均值的置信区间,帮助比较两个群体的差异性。
3.教育评估:在教育评估中,大数定理和中心极限定理可以用于计算学生的平均成绩以及学校的平均分数的置信区间。
大数定律与中心极限定理知识点整理大数定律和中心极限定理是概率论与数理统计中两个重要的概念,它们在统计学和经济学等领域中具有广泛的应用。
下面将对它们的主要知识点进行整理。
一、大数定律(Law of Large Numbers)大数定律是关于随机变量序列均值的收敛性的一个法则。
它表明,当独立同分布的随机变量不断增加时,其均值将会趋近于理论期望。
具体来说,大数定律包含以下几个重要概念:1. 弱大数定律(Weak Law of Large Numbers)弱大数定律指的是当随机变量序列无限增加时,其均值以概率1收敛于理论期望。
这个定律要求序列中的随机变量具有有限的方差和独立同分布的性质。
2. 强大数定律(Strong Law of Large Numbers)强大数定律指的是当随机变量序列无限增加时,其均值几乎处处收敛于理论期望。
与弱大数定律相比,强大数定律要求序列中的随机变量只需要具有独立性,而不需要具有方差的有限性。
二、中心极限定理(Central Limit Theorem)中心极限定理是关于随机变量和其样本均值之间关系的一个重要定理。
它表明,当样本量增加时,随机变量的分布将趋近于正态分布。
中心极限定理包含以下几个关键点:1. 独立同分布的随机变量之和的分布趋近于正态分布。
2. 标准化后的样本均值的分布趋近于标准正态分布。
3. 样本量越大,越接近正态分布。
总结:大数定律和中心极限定理是概率论与数理统计中非常重要的概念。
大数定律研究随机变量序列均值的收敛性,而中心极限定理研究随机变量和其样本均值的分布趋近于正态分布的关系。
它们的应用广泛,对于统计学、经济学等领域的研究与实践具有重要意义。
巢湖学院毕业论文课题名称:大数定理与中心极限定理间的关系及其他们的应用学生姓名:曹明君学号:07025069专业:数学与应用数学班级:07数本(1)班指导教师:赵开斌2011年3月20日大数定律与中心极限定理间的关系及其他们的应用【论文学科】基础数学论文【论文级别】学士论文【中文关键词】随机变量的收敛论文; 独立随机变量论文; 特征函数论文; 大数定律论文; 中心极限定理论文【中文题名】大数定律与中心极限定理间的关系及其他们的应用【英文题名】The Law of Large Number and Central Limit Theorem of Independent Random Sequence and Their Applications【所属分类】基础科学,数学,概率论、数理统计【英文关键词】convergence of random variables; independent random variables; characteristic function; laws of large number; central-limit theorem【中文摘要】本文从随机变量序列的各种收敛与它们间的关系谈起,通过对概率论的经典定理——大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。
经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示的理论依据。
关于大数定律方面,较全面地分析和叙述了独立不同分布条件下的马尔科夫定理以及作为它的推论的切比雪夫定理、伯努利定理、泊松定理和同分布条件下的辛钦定理,而且把这些定理推广到以概率1收敛意义下的强大数定律。
同样中心极限定理的内容也从独立同分布与独立不同分布两个角度来进行讨论;另外,叙述了各种大数定律以及中心极限定理各自之间,大数定律与中心极限定理之间的关系。
论文题目:大数定律与中心极限定理的关系及其应用摘要:本文通过对概率论的经典定理——大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性.经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据.关于大数定律方面,较全面地分析和叙述了几种最常用的大数定律.同样中心极限定理的内容也从独立同分布与独立不同分布两个角度来进行讨论;另外,叙述了各种大数定律以及中心极限定理各自之间,大数定律与中心极限定理之间的关系.同时通过举出很多相关的反例说明二者的关系.最后给出了一些简便的大数定律与中心极限定理在数理统计、误差、彩票学、近似计算、保险业及数学分析等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值.关键词:随机变量序列;大数定律;中心极限定理;应用Title:Law of large numbers and the relationship between the centrallimit theorem and its applicationAbstract: Based on the probability of a classic theorem : the law of large numbers central limit theorem in the independent distribution ; with the different distribution of both cases, it made more systematic exposition, and revealed the phenomenon of the random nature of the most fundamental an average of the results of the Stability . Trough the central limit theorem discussion it will give out the random variables and the distribution of the normal distribution .About the law of large numbers, there are more comprehensive analysis and described several of the most commonly used on it. The content of the same central limit theorem also discussed the independent distribution and independent distribution of the two different perspectives. Also, it will discussed the relationship between the variety of narrative and the law of large numbers between their respective central limit theorem, and that of the law of large numbers and the central limit theorem. At the same time, it demonstrated the relationship between the two aspects through lots of anti-related examples. Finally ,it gave out several aspects of application of a number of simple law of large numbers and the central limit theorem in mathematical statistics, error, lottery school, the approximate calculation, and the insurance industry and mathematical analysis, to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value.Keywords: Random variables ; Law of large numbers; Central limit theorem; Application目录摘要 (I)Abstract (II)第1章引言 (1)第2章大数定律及其证明 (2)2.1 几个相关定义 (2)2.2 大数定律及其证明 (4)第3章中心极限定理 (8)3.1 中心极限定理的提法 (8)第4章大数定律与中心极限定理的关系 (11)4.1 服从大数定律, 但不服从中心极限定理 (11)4.2 服从中心极限定理, 但不服从大数定律 (12)4.3 大数定律与中心极限定理都不服从 (13)4.4 大数定律、中心极限定理都服从 (13)第5章应用 (14)5.1“概率”及“数学期望”的确切定义 (14)5.2 解释测量(随机) 误差 (14)5.3 在数学分析中的应用 (15)5.4 在计算精确的近似概率方面的应用 (16)5.5 在彩票和保险业的应用 (17)结语 (20)参考文献 (21)致谢 (22)附录 (23)第1章引言概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来. 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近. 人们在实践中观察其他一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性. 这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的特征无关,且不再是随机的. 深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么? 在什么条件下具有稳定性? 这就是大数定律要研究的问题.众所周知,中心极限定理是概率论中最重要、最基本的一个定理.中心极限定理揭示了离散型随机变量与连续型随机变量之间的内在联系, 为用连续型随机变量的分布,特别是标准正态分布对离散型随机变量进行概率计算提供了理论基础.基于中心极限定理的概率统计方法在生活中的应用,本文利用中心极限定理,分析了保险业和近似计算中的应用.第2章 大数定律及其证明2.1 几个相关定义定义1[1] 设n (1,2,)n ξ=为概率空间(,,)F P Ω上定义的随机变量序列(简称随机序列),若存在随机变数ξ,使对任意0ε>,恒有:lim {}0n n p ξξε→∞-≥=或lim {}1n n p ξξε→∞-≤=, 则称随机序列{}n ξ概率收敛于随机变量ξ(ξ也可以是一个常数),并用下面的符号表示:lim ()n n p ξξ→∞=或p n ξξ−−→. 定义 2[2][6][8] 设{}n ξ为随机变量序列, 数学期望n E ξ存在()1n ≥,如果对任意的0ε>.恒有:1111lim (())1n n i i n i i p E n n ξξε→∞==-<=∑∑, 则称随机变量序列{}n ξ服从大数定律. 定义 3 设{}n ξ为随机变量序列, 如果存在常数序列{}n a .对任意的0ε>.恒有:11lim ()1ni n n i p a n ξε→∞=-<=∑, 则称随机变量序列{}n ξ服从大数定律. 注:定义2和定义3两种大数定律定义的讨论所谓大数定律, 它是揭示大量随机现象的平均结果稳定于平均值的极限理论.而大量随机现象即{}n ξ的平均结果是11n i i n ξ=∑(n 充分大),其平均值是11()ni i E n ξ=∑.因此, 从这一角度来考虑,定义2是恰当的.定义3与定义2的不同点在于它并不要求随机变量n ξ的期望n E ξ存在(1n ≥),只要存在常数序列{}n a ,使对任意的0ε>.恒有11lim ()1ni n n i p a n ξε→∞=-<=∑即可.为了弄清这两种定义的异同,我们必须讨论数列{}n a 与数列{11()ni i E n ξ=∑}之间的关系. 首先,当n E ξ(1n ≥)存在时,我们不难证明:0δ∀>,11lim (())0nn i n i p a E n ξδ→∞=-≥=∑这个结果表明在n E ξ(1n ≥)异存在时,只需取11()nn i i a E n ξ==∑,(1n ≥).此时, 定义2 与定义3 是等价的.其次,当n E ξ(1n ≥)不存在时, 由定义2知{}n ξ不服从大数定律, 而此时, 存在常数列{}n a 使定义3仍然成立.综合上述定义2与定义3不是等价的.定义3不仅在形式上而且在内涵上比定义2更广泛.定义 4[3] 设{()}n F x 是分布函数序列,若存在一个非将函数()F x ,对于它的每一连续点x ,都有lim ()()n n F x F x →∞=,()()w n F x F x −−→,则称分布函数序列{()}n F x 弱收敛于()F x .定义5 设n ()(1,2,)F x n =, ()F x 分别是随机变量(1,2,)n n ξ=及ξ的分布函数,若()()w n F x F x −−→,则称{}n ξ依分布收敛于ξ,亦记为L n ξξ−−→,且有:(1)若p n ξξ−−→,则L n ξξ−−→; (2)设c 为常数,则p n c ξ−−→的充要条件是L n c ξ−−→. 逆极限定理:设特征函数列{()}n f x 收敛于某一函数()f t ,且()f t 在0t =时连续,则相应的分布函数列{()}n F x 弱收敛于某一分布函数()F x ,而且()f t 是()F x 的特征函数.车比雪夫不等式[4]:设ξ是一个随机变量,它的数学期望为a ,方差为2σ,则对任意的正常数ε恒有:22{},p a σξεε-≥≤ (2-1) 或有22{}1p a σξεε-<≥- (2-2)称(2-1)式或(2-2)式为车比雪夫不等式.以下就连续型随机变量来证明这个不等式.证 设的密度函数为()f x ,则有222()()()()()x EX x EX DX x EX f x dx x EX f x dx f x dx εεε+∞-∞-≥-≥=-≥-≥⎰⎰⎰{}22()x EX f x dx P x EX εεεε-≥==-≥⎰,于是 {}2DXP x EX εε-≥≤这个不等式可解释为:对任意给定的正常数ε,可以作为两个区间(,)a ε-∞-和(,)a ε++∞.(1)式表示,在一次试验中,随机变量ξ的取值落在(,)(,)a a εε-∞-⋃++∞的概率小于等于22σε.不等式说明DX 越小,则X 的取值越集中在EX 附近.这进一步说明了方差是反映随机变量取值的离散程度的.2.2 大数定律及其证明大数定律形式有很多,我们仅介绍几种最常用的大数定律.定理1[5][6] (车比雪夫大数定律)设随机变量12n ,,,,ξξξ相互独立,它们的数学期望依次为12n ,,,,a a a ,方差依次为22212,,,,n σσσ而且存在正常数k ,使得对一切1,2,i =有2i k σ<,则对任意给定的正常数ε,恒有1111lim {}1n ni i n i i p a n n ξε→∞==-<=∑∑ 证 设11ni i n ξξ==∑,则ξ的数学期望和方差分别为: 111111n n n i i i i i i E E E a n n n ξξξ===⎛⎫=== ⎪⎝⎭∑∑∑,222111111n nn i i i i i i D D D n n n ξξξσ===⎛⎫=== ⎪⎝⎭∑∑∑ 由车比雪夫不等式,对任意给定的正数ε,有11111{}n ni i i i p a n n ξε==≥-<∑∑=22221222{}1111n ii D p E nk n k n n σξξξεεεεε=-<≥-=->-=-∑ 即 211111{}1n ni i i i p a k n n n ξεε==≥-<=-∑∑. 对不等式取极限,则得1111lim {}1n ni i n i i p a n n ξε→∞==-<=∑∑ 车比雪夫大数定律表明,在一定条件下,当n 充分大时,n 个随机变量的算术平均值11n i i n ξ=∑偏离其数学期望的可能性很小.这也正是用一系列测量值的平均值来近似代替真值的做法的原则.推论 1 设随机变量12n ,,,,ξξξ相互独立,且它们具有相同的分布及有限的数学期望和方差:E a ξ=,2(1,2,)D i ξσ==,则对任意给定的正数ε,有11lim {}1ni n i p a n ξε→∞=-<=∑. 此推论证明:n 个相互独立的具有相同数学期望和方差的随机变量,当n 很大时,它们的算术平均值几乎是一个常数,这个常数就是它们的数学期望.定理 2[7] (辛钦大数定律)设12n ,,,,ξξξ是相互独立的随机变量,而且有相同是的分布,具有有限的数学期望k ,(1,2,)E a k ξ==,则对任意给定的0ε>,有11lim {}1nk n k p a n ξε→∞=-<=∑. 注:定理2中条件比定理1中的条件要宽,在定理1中要求方差有限,而定理2不需要这个条件.辛钦大数定律说明独立同分布的随机变量的算术平均值依概率收敛于它的数学期望值,它为在实际应用中用算术平均值估计数学期望提供了理论依据.证 因为12n ,,,,ξξξ是具有相同分布的随机变量序列,故它们有相同的特征函数.设它们的特征函数为()f t ,由于k E ξ存在,故()f t 有展开式:'()(0)(0)()1()f t f f t t iat t οο=++=++,其中()t ο表示关于t 的高阶无穷小量.再由独立性知,11n k k n ξ=∑的特征函数为:1n nt t t f ia n n n ο⎡⎤⎡⎤⎛⎫⎛⎫=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.对任意取定的数t ,有lim lim 1n niat n n t t t f ia e n n n ο→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=++= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.而iat e 是连续函数,且是单点分布的特征函数,由逆极限定理知:11nk k n ξ=∑的分布函数弱收敛于()F x .其中,1,(),0,x a F x x a >⎧=⎨=⎩因此,11,n L k k a n ξ=−−→∑由(2)式知:11n P k k a n ξ=−−→∑. 定理 3[8] (贝努利大数定律)设n μ是n 次独立试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率,则对任意给定的正数ε,有lim {}1n n p p n με→∞-<= 或 lim {}0n n p p n με→∞-≥=证 令 0,1,2,1n k A Y k k A ⎧==⎨⎩第试验不发生,,第试验发生.显然12n n Y Y Y μ=+++,由于各次试验是独立的,从而12,,,,n Y Y Y 相互独立,又k Y 服从参数为P 的两点分布,所以(),()(1),(1,2,)k k E Y P D Y P P k ==-=. 由定理1有 lim {}1n n p p n με→∞-<=.此定理表明:当n 很大时, n 重贝努利试验中事件A 发生的频率几乎等于事件A 在每次试验中发生的概率,这个定理以严格的数学形式刻画了频率的稳定性,因此,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率.证 作一次观察时n μ是定值, 作多次观察时n μ是随机变量,而且(,),nB n p μ因此:n E np μ=,n D npq μ=,()n E n p μ=,()n D n pq n μ=. 在车比雪夫不等式中,取 n n ξμ=,则a p =,2pq n σ=,于是对任意给定的正数ε,有21{}11()npq p p n n n μεε≥-<≥-→→∞,因而lim {}1n n p p nμε→∞-<=. 定理 4 (泊松大数定律)设12n ,,,,ξξξ是相互独立的随机变量, P{1}n n P ξ==, P{0}n n q ξ== (其中n P 1n q =-) ,则{}n ξ服从大数定律.证 由定理所设可得:11E()nn i n i P P n ξ===∑, 2221111111()()24n n n n n n i i i i i i P q D D Pq n n n nξξ===+⎛⎫==≤= ⎪⎝⎭∑∑∑. 由车比雪夫不等式得,对任意0ε>,有22()10{} 4n n n D P P n ξξεεε≤-≥≤≤. 两边取极限,得lim {}0n n n P P ξε→∞-≥=. 泊松大数定律是贝努利大数定律的推广, 贝努利大数定律证明了事件在完全相同条件下重复进行的随机试验中频率的稳定性;而泊松定理表明,当独立进行的随机试验的条件变化时, 频率仍然具有稳定性:随着n 的无限增大,在n 次独立试验中,事件 A 的频率趋于稳定在各次试验中事件A 出现概率的算术平均值附近.定理5[9][10] 马尔可夫(Marrkov) 大数定律)设{}k ξ是随机变量序列,若211lim ()0nk n k D n ξ→∞==∑,则对任意>0ε,均有1111lim {}1n nk k n k k p E n n ξξε→∞==-<=∑∑,即{}k ξ服从大数定律. 证 车比雪夫不等式得212111()111{}1nk n nk k k k k D n p E n n ξξξεε===≥-<≥-∑∑∑,取极限得:1111lim {}1n nk k n k k p E n n ξξε→∞==-<=∑∑注:车比雪夫大数定律可又马尔可夫大数定律推出,更重要的是马尔可夫大数定律已经没有任何关于独立性的规定.第3章 中心极限定理直观上,如果一随机变量决定于大量(乃至无穷多个)随机.因素的总合,其中每个随机因素的单独作用微不足道,而且各因素的作用相对均匀,那么它就服从(或近似地服从)正态分布,下面我们将按严格的数学形式来表述这一直观.3.1 中心极限定理的提法定理 6[3][11] (林德贝格——列维定理(Lindeberg-Levy)中心极限定理) 设随机变量12,,ξξ是一列独立同分布的随机变量,并且具有数学期望k E a ξ=和方差22(0),1,2,k D k ξσσ=>=,则对任意实数x ,有22lim ()t n k xn na P x e dt x ξ--∞→∞⎛⎫- ⎪⎪<==Φ⎪⎪⎝⎭∑(3-1) 证 设k a ξ-的特征函数为()t ϕ,1nknk naξ=-=∑的特征函数为nϕ⎡⎤⎢⎥⎣⎦又因为()()20,k k E a D a ξξσ-=-=,所以'''2(0)0,(0)ϕϕσ==-于是特征函数()t ϕ有展开式:2'''22221()()(0)(0)()1()22t t t t t t t ϕϕϕϕοσο=+++=-+,从而对任意固定的t ,有22221(),2nn tt t e n nn ϕο-⎡⎤⎡⎤=-+→→∞⎢⎥⎢⎥⎣⎦⎣⎦ 而22t e -是()0,1N 分布的特征函数,因此由特征函数的连续性定理即知(3-1)成立,定理得证.定理6又称独立同分布的中心极限定理,它表达了正态分布在概率论中的特殊地位,尽管k ξ的分布是任意的,但只要n 充分大,随机变量nknaξ-∑近似服从标准正态分布(0,1)N .或者说,当n 很大时,独立同分布的随机变量k ξ的和1nk k ξ=∑ 近似地服从正态分布2(,)N n n μσ.这就是那些(可以看作有许多微小的、独立的随机因素作用的总结果,而每一个因素的影响却都很小)随机变量,一般都可以近似地服从正态分布的理论依据,因而正态分布在理论上和应用上都具有极大的重要性.若(,)B n p ξ,则当n 很大时,有()P a b ξ⎛⎫⎛⎫≤≤≈Φ-Φ 定理 7 (棣莫弗—拉普拉斯(De Moivre-Laplace)中心极限定理) 设随机变量n η服从二项分布(,)B n p ,则对于任意区间[,]a b ,恒有22lim t nk b a n na P a b dt ξ-→∞⎛⎫- ⎪ ⎪≤<= ⎪⎪⎝⎭∑⎰二项分布的极限分布是正态分布 即如果(,)X B n p ,则22()()t nk b ana P a b dt b a ξ-⎛⎫- ⎪ ⎪≤<≈=Φ-Φ ⎪⎪⎝⎭∑⎰一般地,如果(,)X B n p ,则()P a X b P ⎛⎫≤<=≤<≈Φ-Φ说明:这个公式给出了n 较大时二项分布的概率计算方法. 引理 设12,,ξξ是独立随机变量序列,又k k E a ξ=,2(1,2,)k k D k ξσ==,221nnk k B σ==∑,这时:(1) 若{}k ξ是连续型随机变量,密度函数为{}()n P x ,如果对任意0τ>,有2211lim ()()0k n nk k x a B n k n x a P x dx B τ->→∞=-=∑⎰(2) 若{}k ξ是离散型随机变量,k ξ的分布列为(),1,2,n nj nj P x P j ξ===,如果对任意0τ>,有()2211lim 0nj k nnnj k kj n k x a B n x a P B τ→∞=->-=∑∑则称{}k ξ满足林德贝尔格条件.定理 8 (林德贝格定理) 设独立随机变量序列12,,ξξ满足林德贝尔格条件,则当时,对任意的,有()2211lim y n xk k n k n P a x e dy B ξ--∞→∞=⎛⎫-<=⎪⎝⎭∑这个定理证明了由大量微小而且独立的随机因素引起并积累而成的变量,必将是一个正态随机变量,由林德贝尔格条件可看到定理并不要求各个加项“同分布”,因而它比前述的林德贝尔格——勒维定理更强,事实上林德贝尔格——勒维定理可以由它推出.定理 9 (李雅普诺夫定理) 设12,,ξξ是独立随机变量序列,又k k E a ξ=,2(1,2,)k k D k ξσ==,记221nnk k B σ==∑,若存在0δ>,使有22110,nkkk nE a n B δδξ++=-→→∞∑,则对任意的实数x ,有()2211lim y n xk k n k n P a x e dy B ξ--∞→∞=⎛⎫-<= ⎪⎝⎭∑定理9又称独立非同分布的中心极限定理,李雅普诺夫定理可以解释如下:假定被研究的随机变量可以表示为大量独立随机变量的总和,且总和中的每个单独的随机变量对于总和又不起主要作用,那么可以认为这个随机变量近似地服从正态分布.讨论了独立随机变量和的分布的极限问题,在一定条件下,这些分布弱收敛于退化分布,这就是大数定律.凡是在一定条件下断定随机变量之和的极限分布是正态分布的定理,在概率论中统称为中心极限定理.具体一点说,中心极限定理回答的是(独立或弱相依)随机变量之和的极限分布在什么条件下是正态的.中心极限定理是揭示产生正态分布的源泉,是应用正态分布来解决各种实际问题的理论基础.第4章 大数定律与中心极限定理的关系概率论中关于独立随机变量序列的极限理论, 已相当完整, 各种问题已有了令人满意的回答,但由于一般教材中, 特别是工科教材, 只介绍一、二个最简单的基本定理,若弱大数定律只介绍切比契夫定理的特殊情况, 中心极限定理只介绍同分布的林德贝格——列维定理(Lindeberg-Levy)的特殊情况——德莫弗—拉普拉斯(De Moivre-Laplace)定理.仅少数教材提及林德贝格条件. 这几个定理的条件又都是充分条件, 我们容易产生这样的问题: 大数定律与中心极限定理之间究竟有什么关系? 服从大数定律的是否服从中心极限定理? 反之又如何? 是否有两者都服从或都不服从的随机序列?因教材知识所限, 这些问题不太好回答, 现拟补充几个定理, 以简单的例子加以说明.定理10[12] (格涅坚克定理) 设有相互独立的随机变量序列{}k ξ, 则对0ε∀>,11lim {()}1n k k n k p E n ξξε→∞=-<=∑的充要条件是2221()lim []0()nk k n k k kE E n E ξξξξ→∞=-=+-∑. 定理11 (马尔科夫定理) 随机变量序列{}k ξ, 若211()0nk k D n ξ=→∑,则对0ε∀>, 有11lim {()}1nk k n k p E n ξξε→∞=-<=∑. 定理12 (费勒定理) 对相互独立随机变量序列{}k ξ, 若∃常数n M ,使1max k n k nM ξ≤≤≤,且lim0nn nM B →∞=, 则{}k ξ服从中心极限定理.设{}k ξ为相互独立的随机变量序列, 以下在,,()k k j k j P P ξα==中, 令,,,k j k j P α取不同的值, 以说明不同的情形.4.1[12][13]服从大数定律, 但不服从中心极限定理令(),1,1210,121k k P k α==-+,(),2,221,21k k k P k α==+,(),3,321,21k k k P k α==+,1,2,3,k =,即()21(0)11k P k ξ==-+,()21()()21k k P k P k k ξξ===-=+可知0,k E ξ=()2221k k k D E k ξξ==+,()222111n nnk k k k B D k ξ====+∑∑因222110,n B n n n n<⋅→→∞, 由马尔科夫定理知, 大数定律成立, 但中心极限定理不成立. 这是因为12111(0)(0,0,,0)(0)(0)n nk n k k k k k P P P P ξξξξξξ∞==========≥=∑∏∏()2111(1)021nk k ==-=>+∏ 若服从中心极限定理,则取120,0x x <>,有22211211()t n x k x k n P x x e dt B ξ-=<<=∑, 当12,x x 充分靠近 0 时222112t x x e dt -<⎰. 这就出现了矛盾. 所以中心极限定理不成立. 4.2 服从中心极限定理, 但不服从大数定律取,,()k k j k j P P ξα==,为1()2k P k ξ==,1()2k P k ξ=-=,1,2,,k =可知0,k E ξ=2k D k ξ=,221nnk B k ==∑, 又 3333322221(1)(1)lim lim lim 3(1)n n n n n nn n n n n B B B n →∞→∞→∞++-+-===-+, 即 313223lim lim 13n n n nn nB B -→∞→∞==,()12133lim1n nn B -→∞=又 1ax k k nM n ξ≤≤≤,()1213limlim 03n n n n n B n →∞→∞-== 则由费勒定理知中心极限定理成立, 但不服从大数定律, 这是因为2()xx R n x∈+, 为凸函数, 由琴生不等式222222222()k k k k E k E n n E n kξξξξ≥=+++, 而 222222111111,244nnn k k k k k n k n n k n n n n ===+≥==→→∞++∑∑∑ 由格涅坚克定理知, {}k ξ不服从大数定律.4.3 大数定律与中心极限定理都不服从取,,()k k j k j P P ξα==,为1(2)2k k P ξ==,1(2)2k k P ξ=-=,可知0,k E ξ=4k k D ξ=, 21144(41)3nnk n nk k k B D ξ=====-∑∑, 当 n 充分大时24n nB >,即2n n B > 21112222(21)2nnn n n kk k k ξξ+==≤≤+++=-<∑∑ , 112nk k n B ξ=<∑故11lim (2)1(2)(2)1nk n k n P B ξ→∞=<=≠Φ-Φ-<∑ 可知不服从中心极限定理, 又22222222111144()44k knn n nk k k nk k k k k k E E n n E n n ξξξξ====≥=>++++∑∑∑∑ 22111444(41),4433nk n nn k n n n ===⋅-→→∞++∑, 由格涅坚克定理知不服从大数定律.4.4 大数定律、中心极限定理都服从若{}k ξ为同分布且有有限期望及大于零的方差, 则由教材中定理易知两者都服从.这时有11lim (())1nk k n k P E n ξξε→∞=-<=∑.但括号中的事件概率, 究竞有多大? 大数定律未能回答. 而根据中心极限定理有22111(())()x n nk k k kk x P E P E e dx n ξξεξξσ-==≤-<=-<≈∑其中2k D σξ=, 这样看来在所假定的条件下, 中心极限定理比大数定律更精确.第5章 应用大数定律以严格的数学形式表达了随机现象最根本的性质——平均结果的稳定性,它是随机现象统计规律性的具体表现. 因此,大数定律在理论和实际中都有广泛的应用.5.1[3] “概率”及“数学期望”的确切定义在给出二者定义时,都采用“稳定”一词,这是一种不确切的描述.依据大数定律可给出更确切的表达,即:概率——独立重复实验中,事件A 出现的频率11n Pi i P n ξ=−−→∑,则该常数P 即为概率.数学期望——对于任一0ε>,有11lim ()1ni n i p n ξμε→∞=-<=∑,则()k E μξ=称为数学期望.5.2 解释测量(随机) 误差根据大数定律,对于随机误差12,,,n δδδ,应有110n Pi i n δ=−−→∑.这说明当测量次数较多时, 实测数据的平均值11ni i a n δ=+∑和预测真值a 的差值能以很大概率趋于0,因此,用求样本数据平均值的方法来进行测量是可行的.例1[14] 某种仪器测量已知量A 时,设n 次独立得到的测量数据为12,,,n x x x ,如果仪器无系统误差,问:当n 充分大时, 是否可取作为仪器测量误差的方差的近似值?解 把(1,2,,)i x i n = 视作n 个独立同分布的随机变量的观察值,则()i E x μ=,2(),(1,2,,)i D x i n σ==.仪器第i 次测量的误差i x A -的数学期望()i E x A A μ-=-,方差2()i D x A σ-=.设2(),1,2,,i i Y x A i n =-=,则i Y 也相互独立服从同一分布.在仪器无系统误差时()0i E x A -=,即有A μ=,222()()()()(1,2,,)i i i i i E Y E x A E x Ex D x i n σ⎡⎤⎡⎤=-=-===⎣⎦⎣⎦由车比雪夫定律,可得: 211lim {}1ni n i p Y n σε→∞=-<=∑即 ()2211lim {}1n i n i p x A n σε→∞=--<=∑从而确定,当n →∞时,随机变量()211n i i x A n =-∑依概率收敛于2σ,即当n 充分大时可以取()211n i i x A n =-∑作为仪器测量误差的方差. 5.3 在数学分析中的应用例2[1] 假设()22212121,,,:,0,,12n n n n n G x x x x x x x x ⎧⎫=+++≤≤≤⎨⎬⎩⎭,求其极限.解 假设随机变量(1,2,)n n ξ=在[]0,1上有均匀分布,而且相互独立,有112D ξ=,2112E ξ=,易见(){}22111,,2n n n n n G n dx dx P G P ξξξξ⎧⎫=∈=++≤⎨⎬⎩⎭⎰⎰()()222222211111111111266n nni i P P E P E n n n ξξξξξξξ=⎧⎫⎧⎫⎧⎫=++≤=++-≤≥-≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭∑由1,,n ξξ独立同分布,可见221,,,n ξξ独立同分布.根据辛钦大数定律知:2111lim ()16n i i n i p E n ξξ→∞=-≤=∑从而1lim 1n n G n dxdx →∞=⎰⎰.例3 用概率方法证明维尔斯特拉斯[weierstrass ]定理.假定()f x 在闭区间[],a b 上是连续的,那么,存在一列多项式12(),(),B x B x ,一致收敛于函数()f x ,[],x a b ∈.证 不妨设0,1a b ==.假设()f x ,[]0,1x ∈是连续函数,那么()f x 在[]0,1上一致连续并且有界.对于任意[]120,0,0,1x x ε>≤∈存在0δ>,使12()()2f x f x ε-<,只要12x x ε-<.此外,对于一切01x ≤≤,有()f x k ≤(常数).现在,建立一多项式:0()(1)nm m n m n n n m m B x Ef f C x x n n ξ-=⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭∑,其中n ξ服从二项分布, 参数为1n ≥, 而[]0,1x ∈, 显然(0)(0)n B f =,(1)(1)n B f =.由贝努利大数定律知()limnn x P nξ→∞=,[]0,1x ∈现在证明()n n B x f n ξ⎛⎫= ⎪⎝⎭一致收敛于()f x ,[]0,1x ∈.由于0(1)1nm mn m nm C x x -=-=∑,可见()()0()(1)nm mn m n n m m B x f x f f x C x x n -=⎡⎤⎛⎫-=-- ⎪⎢⎥⎝⎭⎣⎦∑,由此可得:()()0()(1)nm mn mn n m m B x f x f f x C x x n -=⎛⎫-≤-- ⎪⎝⎭∑()()(1)(1)m m n m m m n m n n mmx x nnm m f f x C x x f f x C x x n n δδ---<-≥⎛⎫⎛⎫=--+-- ⎪ ⎪⎝⎭⎝⎭∑∑2(1)222m m n m n n mx nkC x x kP x n δεεξδ--<⎧⎫<+-=+-≥⎨⎬⎩⎭∑. 由于对任意[]0,1x ∈,Pnx n ξ−−→可见存在N ,使当时n N ≥,4n P x n kξεδ⎧⎫-≥≤⎨⎬⎩⎭ 从而,当n N ≥时,对于一切[]0,1x ∈,有:()()22422n B x f x k kεεεεε-<+=+=.即()n B x 关于[]0,1x ∈一致收敛于()f x .5.4 在计算精确的近似概率方面的应用例4[15] 现有一大批种子,其中良种占1/6 ,今在其中任选6000 粒,试分别用切比雪夫不等式估计和用中心极限定理计算在这些种子中良种所占的比例与1/6之差小于1%的概率是多少?解 设取出的种子中的良种粒数为X ,则1(6000,)6XB 于是1600010006EX np ==⨯= 155(1)60001000666DX np p =-=⨯⨯=⨯(1) 要估计的规律为{}1110006060006100X P P X ⎧⎫-<=-<⎨⎬⎩⎭相当于在切比雪夫不等式中取60ε=,于是{}21110006016000610060X DX P P X ⎧⎫-<=-<≥-⎨⎬⎩⎭由题意得 25111100010.23150.76856063600DX -=-⨯⨯=-= 即用切比雪夫不等式估计此概率不小于0.7685.(2) 由拉普拉斯中心极限定理,对于二项分布1(6000,)6B ,可用正态分布5(1000,1000)6N ⨯近似, 于是所求概率为{}11940106060006100X P P X ⎧⎫-<=<<⎨⎬⎩⎭ 2(2.0785)10.9625≈Φ-Φ≈Φ-≈ 从本例看出:用切比雪夫不等式只能得出来要求的概率不小于0.7685,而用中心极限定理可得出要求的概率近似等于0.9625.从而知道由切比雪夫不等式得到的下界是十分粗糙的.但由于它的要求比较低,只要知道X 的期望和方差,因而在理论上有许多运用.当i X 独立同分布(可以是任何分布),计算1()n P a X X b <++≤的概率时,利用中心极限定理往往能得到相当精确的近似概率,在实际问题上广泛运用.5.5[16][17] 在彩票和保险业的应用大数定律和中心极限定理是概率论中两类具有极大意义的重要定理. 大数定律证明了在大样本条件下,样本平均值可以看作是总体平均值(数学期望) ,它是“算术平均值法则”的理论基础;中心极限定理比大数定律更为详细具体,它以严格的数学形式阐明了在大样本条件下,不论总体的分布如何,样本均值总是近似的服从正态分布. 正是这个结论使得正态分布在数理统计和误差分析中占有特殊的地位,是正态分布得以广泛应用的理论基础. 本文通过对彩票学和保险业等几个具体事例的引用展现了大数定律和中心极限定理的实际应用.大数定理在实际生活中应用十分广泛,我们现在以生活中最平常的但都很感兴趣的事情——彩票为例来详细阐述一下大数定理在彩票学中的应用.我们知道概率论是研究现实世界随机现象的科学,是近代数学的重要组成部分. 它在自然科学以及经济工作中都有着广泛的应用,同时也是数理统计的基础. 彩票投注的中奖概率分布完全符合它的原理. 彩票的投注方法是一个玩数字游戏. 彩票号码的摇出是随机事件,也可以说是一随机现象,属概率论的一个基本概念. 首先我们应该先清楚什么是随机现象? 我们说随机现象的特点是:事先不能预言其结果,具有偶然性;另一方面,在相同条件进行大量的重复试验,会呈现出某种规律性(特别是随机开奖次数的不断增多).例如:在相同条件下,多次抛掷质量均匀的同一枚硬币,则出现正面向上的次数约占总抛次数的一半,而且随着抛掷次数的增加,正面向上次数是总抛次数的12.这就是概率论的统计结果.(请看下面5次抛币的试验结果)有人曾经做过抛掷硬币的试验,试验结果记录如下:投掷次数N,正面向上次数M.N M=M0.5181N=1061=2048N M=N=2048=4040M0.5069N M=M0.5016=12000N=6019N M==24000M0.5005N=12012N M=M0.4996N=14984=30000N M=M0.5011N=36124=72088由上述情况可以看出投掷次数很大时,其频率稳定于0.5彩票每期摇出的中奖号码(基本号码和特别号码)是一个随机事件,既然是随机事件,必有其分布规律.1. 2001010期至2001023期“上海风采”电脑福利彩票开奖计14期共摇出14*8112=个球.2. 每个球平均出现3.6次3. 奇数出现59次;偶数出现53次4. 小于或等于15的数47次;大于或等于16的数出现65次由此,我们引入彩票的一对常用语“冷门号码”及“热门号码”.有了“冷门号码”及“热门号码”,我们只要扑捉到这种机会,将会提高中奖纪律.概率分布的四条法则:1. 奇数.偶数出现的次数应占总数的12(由于不确定因素除外).2. 大数.小数出现的次数应占总数的12(由于不确定因素除外).3. 1-10区段,11-20区段,21-31区段,三区段出现的数个占总数的13(由于不确定因素除外).4. 各数出现的次数,随着实验(开奖)次数的增加不断靠近平均值(由于不确定因素除外).综上所述,随机的摇球事件随着实验(开奖)次数的增加都会显示出它的某些规律性,而这种规律性可以借助概率论的知识,利用小概率统计法,分析判断号码.通过数字统计,运用概率论原理来判断冷热号码出现的周期. 分析号码可能出现的区段. 缩小精选号码范围. 为新一期选择号码提供参考依据,从而达到提高中奖得率.实际上,对于彩票而言,也不是完全没有规律可循,只要经过大量的观察,根据大数定律就可以进行统计预测,提高中奖的几率. 概率论是一门系统学科,一般人了解的概率,不是从理论上认识,仅仅限于经验. 时间的表层认识. 与其硬着头皮去盲目猜测,不如运用简单的概率学统计分析方法更简单,更容易掌握. 把每期中奖号码出现的次数累加起来,一一进行统计,累计到一定量后,就能发现奖项及其相关指标的概率波动特性. 彩民再根据这些进行选号投注,就可以大大提高中奖几率.中心极限定理指出:如果一个随机变量有众多的随机因素所引起,每个因素在总的变化里起着不大作用,就可以推断描述这个随机现象的随机变量近似的服从正态分布,所以要求随机变量之和落在某个区间上的概率,只要把它标准化,用正态分布作近似计算即可. 中心极限定理还及时了离散型随机变量与连续型随机变量的内在联系,即离散型随机变量的极限分布是正态分布.中心极限定理对保险业更是具有指导性的意义,一个保险公司的亏盈,是否破产,我们通过学习中心极限定理的知识都可以做到估算和预测. 大数定律是近代保险业赖以建立的基础. 根据大数定律中心极限定理,我们知道承保的危险单位越多,损失概率的偏差越小,反之,承保的危险单位越少,损失概率的偏差越大. 因此,保险人运用大数法则就可以比较精确的预测危险,合理的拟定保险费率. 下面我们以一道具体的有关保险业的实例来阐述一下大数定律和中心极限定理在保险业中的重要作用和具体应用.例 5 已知在某人寿保险公司里有10000个同一年龄段的人参加保险,在同一年里这些人死亡率为0.1% ,参加保险的人在一年的头一天交付保险费10元,死亡是家属可以从保险公司领取2000元的抚恤金. 求保险公司一年中获利不少于40000 元的概率;保险公司亏本的概率是多少?解 设一年中死亡的人数为x 人. 死亡概率为0.001P = ,把考虑10000人在一年里是否死亡看成10000重贝努里试验,保险公司每年收入为10000*10100000= 元,付出2000x 元.(1) P (保险公司获利不少于40000 元){}(1000002000)40000P x =->=。
中心极限定理与大数定律的关系中心极限定理与大数定律是统计学中非常重要且相关的两个概念。
它们都涉及到随机过程和概率分布,但是侧重点不同。
在这篇文章中,我将深入探讨中心极限定理与大数定律之间的关系,并分享我对它们的观点和理解。
一、中心极限定理中心极限定理是概率论和统计学的核心概念之一,它描述了大样本数量下随机变量和的分布趋近于正态分布的现象。
中心极限定理的核心思想是,当我们抽取足够大的样本量时,样本均值的分布将接近于正态分布。
中心极限定理的数学表达可以用公式来表示:_ = (_1 + ?_2 + … + ?_?) /?其中,?_? 表示样本均值;?_1, ?_2, …, ?_? 表示从总体中独立同分布的随机变量;? 表示样本容量。
中心极限定理告诉我们,无论总体分布是什么,当样本数量足够大时,样本均值的分布将近似于正态分布。
这一理论提供了一种对总体分布进行近似和推断的方法。
它在统计学的各个领域广泛应用,例如假设检验、置信区间估计等。
二、大数定律大数定律是概率论和数理统计中的另一个重要概念,它描述了随着样本数量的增加,样本均值趋于总体均值的现象。
大数定律的核心思想是,当我们抽取足够多的样本时,样本均值将逐渐接近于总体均值。
大数定律的数学表达可以用公式来表示:lim (?→∞) ?_? = ?其中,?_? 表示样本均值,? 表示总体均值。
大数定律告诉我们,当样本数量趋于无穷大时,样本均值将收敛于总体均值。
这一理论提供了一种在实践中进行估计和推断的依据。
在统计学中,大数定律的应用非常广泛,例如推断统计、抽样调查等。
三、中心极限定理与大数定律的关系中心极限定理和大数定律都描述了随机变量的分布性质。
它们之间存在紧密的关联,可以说中心极限定理是大数定律的基础。
中心极限定理告诉我们,大样本的样本均值分布近似于正态分布;而大数定律告诉我们,大样本的样本均值趋近于总体均值。
具体而言,中心极限定理为大数定律提供了理论基础。
大数定律和中心极限定理的区别与联系大数定律与中心极限定理有什么区别和联系?对比这两个概念,我们会发现它们之间存在着密切的关系。
其实,大数定律是在前人研究的基础上得出的,从更深层次的角度来讲,中心极限定理也有自己的内涵。
大数定律与中心极限定理的联系与区别中心极限定理:1、大数定律是关于偶数个变量, n个变量连续变化,且n≥2的变量函数f(x)的极限存在的定理,它主要讨论函数f(x)的定义域及对x的依赖性,其主要推论如下:①大数定律不仅适用于任意正实数R,也适用于任意负实数R; ②大数定律在大于等于0的开区间内成立; ③大数定律在等于0的闭区间上的任何一点都成立;④一般地,大数定律只是关于偶数个变量, n个变量连续变化,且n≥2的变量函数f(x)的极限存在的定理。
2、中心极限定理是一种极限计算方法,它可以把一个复杂问题的局部计算过程,表示为分布在全局的、处处有界的近似计算过程的集合。
它所描述的是局部微小变化对整体的影响,而不涉及全局的、根本的变化情况。
中心极限定理建立在“大数定律”的基础之上,但二者并非简单的相互照应,不能混淆。
中心极限定理需要在“大数定律”的基础之上才能成立,如果没有“大数定律”,中心极限定理将不能存在。
在此,“大数定律”是关键,如果“大数定律”不存在,则中心极限定理就无法成立,因为“大数定律”使“中心极限定理”的适用范围更加广泛。
同时,中心极限定理又是“大数定律”的补充,使“大数定律”更加严格和具有实用性,只有这样,才能保证“大数定律”得到有效的推广。
大数定律是中心极限定理的基础,没有大数定律,中心极限定理也就失去了存在的意义,因为其实现需要“大数定律”的支撑,若没有“大数定律”,那么中心极限定理就不能成立。
同时,大数定律和中心极限定理又是相辅相成的,中心极限定理中包含着大数定律的重要思想,没有大数定律,中心极限定理就不完善,也就无法推广。
由此看来,大数定律和中心极限定理既有相同之处,也有区别,我们必须明确这些区别,才能对大数定律和中心极限定理进行更好地理解。
大数定律与中心极限定理总结大数定律和中心极限定理是概率论中两个重要的基本定理,它们对于理解随机事件的规律性和统计推断具有重要的作用。
首先,大数定律是指当重复独立地进行同一试验时,随着试验次数的增加,样本平均值将趋近于总体均值的定理。
在统计学中,我们常常关注样本均值和总体均值之间的关系。
大数定律告诉我们,当样本容量足够大时,样本均值将逼近总体均值。
大数定律的核心思想是随机性的抵消效应。
随机性使得每次试验的结果都有一定的波动,但当试验次数足够多时,各种波动的效应会被抵消掉,使得样本均值逼近总体均值。
大数定律可以分为以下几种形式:1.切比雪夫大数定律:设随机变量X的方差存在,并且有限,那么对任意ε>0,有lim(n->∞) P[|X1+X2+...+Xn - nEX| > ε] = 02.伯努利大数定律:设X1,X2,…,Xn是n个独立同分布的0-1分布的随机变量,p=P(Xi=1), q=1-P(Xi=1),那么对任意ε>0,有lim(n->∞) P[|X1+X2+...+Xn - np| > ε] = 03.辛钦大数定律:设X1,X2,…,Xn是n个独立同分布的随机变量,E(Xi)=μ,D(Xi)=σ^2(有限),那么对任意ε>0,有lim(n->∞) P[|X1+X2+...+Xn/n - μ| > ε] = 0大数定律的应用非常广泛,可以用来解释各种现象,例如:抛硬币的结果、掷骰子的点数、随机抽样的样本均值等等。
它在统计学、经济学、物理学等领域都有应用。
与大数定律相对应的是中心极限定理。
中心极限定理是指当n趋向于无穷大时,独立同分布随机变量的和的分布趋近于正态分布的定理。
中心极限定理揭示了随机变量和的分布的稳定性。
中心极限定理可以分为以下几种形式:1.李雅普诺夫中心极限定理:假设X1,X2,…,Xn是n个独立同分布的随机变量,且具有有限的期望μ和方差σ^2,并且它们的方差和有界,那么当n趋向于无穷大时,lim(n->∞) P[(X1+X2+...+Xn - nμ)/σ√n ≤ x] = Φ(x)2.林德伯格-列维中心极限定理:假设X1,X2,…,Xn是n个独立同分布的随机变量,且具有有限的期望μ和方差σ^2,那么当n趋向于无穷大时,lim(n->∞) P[(X1+X2+...+Xn - nμ)/σ√n ≤ x] = Φ(x)3.棣莫佛-拉普拉斯中心极限定理:当n趋向于无穷大时,二项分布B(n,p)的近似分布近似于正态分布N(np,npq),其中p为成功的概率,q=1-p为失败的概率。
大数定律与中心极限定理的实际应用1. 引言在今天的讨论中,我们将深入探讨大数定律与中心极限定理在实际应用中的重要性和影响。
这两个概念是统计学中非常重要的原理,它们不仅对于理论研究有着重要意义,更在现实世界中的各种领域有着广泛的应用。
通过本文的探讨,我们将了解这两个概念的实际意义,并且深入探讨它们在现实中的具体应用。
2. 大数定律的实际应用大数定律是统计学中最重要的定律之一,它表明在独立随机变量的大量观察中,其平均值趋近于总体期望。
这个理论在实际应用中有着广泛的运用,尤其在金融领域。
举个例子,假设我们在股市中观察某只股票的收益率,根据大数定律,随着观察次数的增加,这只股票的平均收益率将会趋近于其总体收益率。
这种理论在风险管理和投资决策中起着至关重要的作用,投资者可以通过大数定律来对市场的波动进行合理的估计,并做出相应的投资策略。
3. 中心极限定理的实际应用中心极限定理是统计学中另一个非常重要的原理,它表明在独立同分布的随机变量加和后,当样本容量足够大时,其分布将接近于正态分布。
这个理论在实际应用中有着广泛的运用,尤其在质量控制和生产过程中。
在工厂生产线上对产品的重量进行抽样检测,根据中心极限定理,这些样本的平均重量将会呈现出接近正态分布的特性,生产线的稳定性和产品质量就可以通过这个理论进行合理的评估和控制。
4. 个人观点和理解对于大数定律与中心极限定理的实际应用,我个人深有体会。
作为一名统计学研究者,我对这两个概念的重要性有着深刻的认识。
在我自己的研究过程中,我经常会利用这两个概念来分析数据,并且在实际应用中取得了非常好的效果。
在我看来,大数定律与中心极限定理不仅是理论工具,更是现实世界中解决问题的重要指导,它们的应用将为各行各业带来更加严谨有效的决策和管理方式。
5. 总结通过本文的探讨,我们了解了大数定律与中心极限定理的实际应用,深入探讨了它们在金融和生产领域的重要性,并且共享了个人对于这两个概念的观点和理解。
大数定律和中心极限定理的区别与联系大数定律是最著名的定理,而中心极限定理只是它的一个特例。
不过人们更喜欢把大数定律和中心极限定理统称为中心极限定理。
那么,中心极限定理与大数定律有什么关系?它们之间到底有没有必然的联系呢?我们今天就来谈一谈。
中心极限定理也叫罗尔定理。
定理内容:如果P、 Q、 R满足其中P是连续的, Q是离散的, R在0到1之间连续,且R也连续,则P在Q中至多出现一次。
举例说明:设F:=f(x), x>0。
其中f(x)=ax^3+bx+c,则x=1, 2, 3,…。
,由大数定律知道,若f( x),则P在f(x)中至多出现一次,或者说,对任意给定的a>0,均有P在f(a),则一定有Q在Q( a)中至多出现一次。
如果使F在Q( a)中至多出现一次的a取最小值,就能保证此结论成立。
5。
实例1:设A为离散型随机变量, B为连续型随机变量,设C=aB-a,当c=0时,即( b-a) =0时,得到下面的三角函数关系式: f( x)=x+a。
又因为f是连续型随机变量,故有f在0处有最大值。
实例2:设A为连续型随机变量, B为离散型随机变量,设C=aB-a,当c=0时,即( b-a) =0时,得到下面的三角函数关系式: f( x)=x-b。
又因为f是离散型随机变量,故有f在1处有最小值。
从上述两个实例中可以看出,根据大数定律,知道P (或Q)在F(或Q)中至少出现一次,即可推出Q(或F)在Q(或F)中至多出现一次。
中心极限定理和大数定律的关系很简单,即通过大数定律推出中心极限定理。
中心极限定理告诉我们如何根据大数定律来求解中心极限定理,所以说,中心极限定理是大数定律的特殊情况。
一般地,把某些连续型随机变量的实际分布用一个有限区间( 0, 1)来表示,称为这类随机变量的“中心区间”。
连续型随机变量都具有“中心区间”,但离散型随机变量则不一定。
离散型随机变量一定有中心极限定理,但它不一定有大数定律。
大数定律与中心极限定理大数定律与中心极限定理解析大数定律与中心极限定理是概率论中两个重要的定理。
它们揭示了随机现象的一种普遍性规律,对于我们理解和解释实际问题具有重要的参考价值。
大数定律大数定律是概率论中研究随机现象规律性的重要定理之一。
它表明,随着样本数的增加,样本均值趋近于总体均值,即大概率情况下样本的平均值与总体平均值之间的差异会逐渐减小。
这个定律的重要性在于,它提供了一种从有限样本推断总体特征的方法。
大数定律的直观解释如下:假设我们投掷一颗均匀的骰子,每次投掷的结果是随机的。
我们重复投掷100次,并记录每次投掷的点数。
根据大数定律,当投掷次数足够多时,各个点数出现的次数应该接近均匀分布,即每个点数出现的概率接近1/6。
换句话说,大数定律告诉我们,随着投掷次数的增加,样本的平均点数应该接近3.5,即骰子的期望值。
中心极限定理中心极限定理是概率论中的另一个重要定理。
它表明在一定条件下,大量独立随机变量的和近似服从正态分布。
换句话说,中心极限定理告诉我们,当我们将多个随机变量进行加和时,其分布会趋近于正态分布。
中心极限定理的具体形式有多种,其中最为常见的是离散随机变量的中心极限定理和连续随机变量的中心极限定理。
无论是哪种形式,中心极限定理都具有广泛的应用领域。
例如,在统计学中,我们常常借助中心极限定理来进行假设检验、置信区间估计等。
大数定律与中心极限定理的联系尽管大数定律和中心极限定理是两个独立的定理,但它们在解释随机现象时常常相互联系。
大数定律关注的是样本均值与总体均值的关系,探讨样本均值的稳定性。
而中心极限定理则关注的是多个独立随机变量的和服从正态分布的问题,主要研究总体的分布特征。
当样本数足够大时,根据大数定律,样本均值会趋近于总体均值。
而根据中心极限定理,当随机变量的数量足够多时,随机变量的和的分布会趋近于正态分布。
这两个定理的联系在于,当我们用多个样本均值加和来近似总体时,根据中心极限定理,所得到的和的分布会趋近于正态分布,进而可以应用正态分布的一些性质对总体进行研究和推断。
〇教育教学研究大数定律和中心极限定理的思考与应用陈常埼(曲阜师范大学数学科学学院,山东济宁273100)摘要:概率论与数理统计是研究随机现象统计规律性的学科,而统计规律性是通过重复观测来体现,研究极限是对大量的重复观测作数学处理的常用方法%本文将对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质—平均结果的稳定性。
概率论与数理统计是研究随机现象的统计规律的一门学科,只有在相同条件下进行大量重复试验或观察才能呈现出随机现象的统计规律性。
关键词:大数定律;中心极限定理;概率论概率论中一个非常重要的课题就是大数定律,这还是概 率论与数理统计之间一个承前启后的纽带。
大数定律阐明了随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论。
比如说,我们向上拋一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上拋硬币的次数足够多时,达到上万次甚至几十万次之后,我们会发现,硬币向上的 次数约占总次数的二分之一,偶然中包含着必然。
一、大数定律和中心极限定理的概念与关系(一) 大数定律大数定律就是在大量的随机试验中,由于各次的随机性 (偶然性)相互抵消又相互补偿,因而其平均结果趋于稳定,而阐明大量随机现象平均结果稳定性的定理。
利用大数定律使用极限方法研究大量随机现象的统计规律性。
人们在长期的实践中发现,频率以及大量测量值的算术平均值具有稳定性,而大数定律要解决的问题也就是这种稳定性问题如何从理论上给出解释?不难看出大数定律在理论和实际中都有广泛的应用。
(二) 中心极限定理自从高斯指出测量误差服从正态分布后,人们发现,正 态分布在自然界中极为常见。
例如:炮弹的弹落点、人的身 高、体重等都服从正态分布。
中心极限定理的客观背景:如 果一个量是由大量相互独立的随机因素的影响所造成的,而其中每一个因素在总的影响中所起的作用微小,这种随机变 量往往近似地服从正态分布。
论文题目:大数定律与中心极限定理的关系及其应用摘要:本文通过对概率论的经典定理——大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性.经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据.关于大数定律方面,较全面地分析和叙述了几种最常用的大数定律.同样中心极限定理的内容也从独立同分布与独立不同分布两个角度来进行讨论;另外,叙述了各种大数定律以及中心极限定理各自之间,大数定律与中心极限定理之间的关系.同时通过举出很多相关的反例说明二者的关系.最后给出了一些简便的大数定律与中心极限定理在数理统计、误差、彩票学、近似计算、保险业及数学分析等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值.关键词:随机变量序列;大数定律;中心极限定理;应用ITitle:Law of large numbers and the relationship between the centrallimit theorem and its applicationAbstract: Based on the probability of a classic theorem : the law of large numbers central limit theorem in the independent distribution ; with the different distribution of both cases, it made more systematic exposition, and revealed the phenomenon of the random nature of the most fundamental an average of the results of the Stability . Trough the central limit theorem discussion it will give out the random variables and the distribution of the normal distribution .About the law of large numbers, there are more comprehensive analysis and described several of the most commonly used on it. The content of the same central limit theorem also discussed the independent distribution and independent distribution of the two different perspectives. Also, it will discussed the relationship between the variety of narrative and the law of large numbers between their respective central limit theorem, and that of the law of large numbers and the central limit theorem. At the same time, it demonstrated the relationship between the two aspects through lots of anti-related examples. Finally ,it gave out several aspects of application of a number of simple law of large numbers and the central limit theorem in mathematical statistics, error, lottery school, the approximate calculation, and the insurance industry and mathematical analysis, to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value.Keywords: Random variables ; Law of large numbers; Central limit theorem; ApplicationII目录摘要 (I)Abstract (II)第1章引言 (1)第2章大数定律及其证明 (2)2.1 几个相关定义 (2)2.2 大数定律及其证明 (4)第3章中心极限定理 (8)3.1 中心极限定理的提法 (8)第4章大数定律与中心极限定理的关系 (11)4.1 服从大数定律, 但不服从中心极限定理 (11)4.2 服从中心极限定理, 但不服从大数定律 (12)4.3 大数定律与中心极限定理都不服从 (13)4.4 大数定律、中心极限定理都服从 (13)第5章应用 (14)5.1“概率”及“数学期望”的确切定义 (14)5.2 解释测量(随机) 误差 (14)5.3 在数学分析中的应用 (15)5.4 在计算精确的近似概率方面的应用 (16)5.5 在彩票和保险业的应用 (17)结语 (20)参考文献 (21)致谢 (22)附录 (23)IIIIV第1章引言概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来. 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近. 人们在实践中观察其他一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性. 这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的特征无关,且不再是随机的. 深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么? 在什么条件下具有稳定性? 这就是大数定律要研究的问题.众所周知,中心极限定理是概率论中最重要、最基本的一个定理.中心极限定理揭示了离散型随机变量与连续型随机变量之间的内在联系, 为用连续型随机变量的分布,特别是标准正态分布对离散型随机变量进行概率计算提供了理论基础.基于中心极限定理的概率统计方法在生活中的应用,本文利用中心极限定理,分析了保险业和近似计算中的应用.第 1 页共27页第 2 页 共 27 页第2章 大数定律及其证明2.1 几个相关定义定义1[1] 设n (1,2,)n ξ= 为概率空间(,,)F P Ω上定义的随机变量序列(简称随机序列),若存在随机变数ξ,使对任意0ε>,恒有:l i m {}0nn p ξξε→∞-≥=或lim {}1n n p ξξε→∞-≤=, 则称随机序列{}n ξ概率收敛于随机变量ξ(ξ也可以是一个常数),并用下面的符号表示:lim ()n n p ξξ→∞=或pn ξξ−−→.定义 2[2][6][8] 设{}n ξ为随机变量序列, 数学期望n E ξ存在()1n ≥,如果对任意的0ε>.恒有:1111lim (())1nniin i i p E nnξξε→∞==-<=∑∑, 则称随机变量序列{}n ξ服从大数定律.定义 3 设{}n ξ为随机变量序列, 如果存在常数序列{}n a .对任意的0ε>.恒有:11lim ()1nin n i p a nξε→∞=-<=∑, 则称随机变量序列{}n ξ服从大数定律.注:定义2和定义3两种大数定律定义的讨论所谓大数定律, 它是揭示大量随机现象的平均结果稳定于平均值的极限理论.而大量随机现象即{}n ξ的平均结果是11nii n ξ=∑(n 充分大),其平均值是11()nii E nξ=∑.因此, 从这一角度来考虑,定义2是恰当的.定义3与定义2的不同点在于它并不要求随机变量n ξ的期望n E ξ存在(1n ≥),只要存在常数序列{}n a ,使对任意的0ε>.恒有11l i m ()1ni n n i pa nξε→∞=-<=∑即可.为了弄清这两种定义的异同,我们必须讨论数列{}n a 与数列{11()nii E nξ=∑}之间的关系.首先,当n E ξ(1n ≥)存在时,我们不难证明:0δ∀>,11lim (())0nn in i p a E nξδ→∞=-≥=∑这个结果表明在n E ξ(1n ≥)异存在时,只需取11()nn ii a E nξ==∑,(1n ≥).此时, 定义2 与定义第 3 页 共 27页3 是等价的.其次,当n E ξ(1n ≥)不存在时, 由定义2知{}n ξ不服从大数定律, 而此时, 存在常数列{}n a 使定义3仍然成立.综合上述定义2与定义3不是等价的.定义3不仅在形式上而且在内涵上比定义2更广泛.定义 4[3] 设{()}n F x 是分布函数序列,若存在一个非将函数()F x ,对于它的每一连续点x ,都有li m ()()n n F x F x →∞=,()()w n F x F x −−→,则称分布函数序列{()}n F x 弱收敛于()F x .定义5 设n ()(1,2,)F x n = , ()F x 分别是随机变量(1,2,)n n ξ= 及ξ的分布函数,若()()wn F x F x −−→,则称{}n ξ依分布收敛于ξ,亦记为Ln ξξ−−→,且有: (1)若p n ξξ−−→,则Ln ξξ−−→; (2)设c 为常数,则p n c ξ−−→的充要条件是Ln c ξ−−→. 逆极限定理:设特征函数列{()}n f x 收敛于某一函数()f t ,且()f t 在0t =时连续,则相应的分布函数列{()}n F x 弱收敛于某一分布函数()F x ,而且()f t 是()F x 的特征函数.车比雪夫不等式[4]:设ξ是一个随机变量,它的数学期望为a ,方差为2σ,则对任意的正常数ε恒有:22{},p a σξεε-≥≤(2-1)或有22{}1p a σξεε-<≥- (2-2)称(2-1)式或(2-2)式为车比雪夫不等式.以下就连续型随机变量来证明这个不等式.证 设的密度函数为()f x ,则有222()()()()()x EX x EX DX x EX f x dx x EX f x dx f x dx εεε+∞-∞-≥-≥=-≥-≥⎰⎰⎰{}22()x EX f x dx P x E X εεεε-≥==-≥⎰,第 4 页 共 27 页于是 {}2D XP x E X εε-≥≤这个不等式可解释为:对任意给定的正常数ε,可以作为两个区间(,)a ε-∞-和(,)a ε++∞.(1)式表示,在一次试验中,随机变量ξ的取值落在(,)(,)a a εε-∞-⋃++∞的概率小于等于22σε.不等式说明D X 越小,则X 的取值越集中在E X 附近.这进一步说明了方差是反映随机变量取值的离散程度的.2.2 大数定律及其证明大数定律形式有很多,我们仅介绍几种最常用的大数定律. 定理1[5][6] (车比雪夫大数定律)设随机变量12n ,,,,ξξξ 相互独立,它们的数学期望依次为12n ,,,,a a a ,方差依次为22212,,,,n σσσ 而且存在正常数k ,使得对一切1,2,i = 有2i k σ<,则对任意给定的正常数ε,恒有1111lim {}1nniin i i p annξε→∞==-<=∑∑证 设11nii nξξ==∑,则ξ的数学期望和方差分别为: 111111nnni ii i i i E E E a nn nξξξ===⎛⎫===⎪⎝⎭∑∑∑,222111111n nni iii i i D D D n n nξξξσ===⎛⎫===⎪⎝⎭∑∑∑由车比雪夫不等式,对任意给定的正数ε,有11111{}nni i i i p a nnξε==≥-<∑∑=22221222{}1111ni i D p E nk n k n n σξξξεεεεε=-<≥-=->-=-∑即 211111{}1nniii i p a k n nnξεε==≥-<=-∑∑.对不等式取极限,则得1111lim {}1nniin i i p a nnξε→∞==-<=∑∑车比雪夫大数定律表明,在一定条件下,当n 充分大时,n 个随机变量的算术平均值11nii nξ=∑偏离其数学期望的可能性很小.这也正是用一系列测量值的平均值来近似代替真值的做法的原则.第 5 页 共 27页推论 1 设随机变量12n ,,,,ξξξ 相互独立,且它们具有相同的分布及有限的数学期望和方差:E a ξ=,2(1,2,)D i ξσ== ,则对任意给定的正数ε,有11lim {}1nin i p a nξε→∞=-<=∑.此推论证明:n 个相互独立的具有相同数学期望和方差的随机变量,当n 很大时,它们的算术平均值几乎是一个常数,这个常数就是它们的数学期望.定理 2[7](辛钦大数定律)设12n ,,,,ξξξ 是相互独立的随机变量,而且有相同是的分布,具有有限的数学期望k ,(1,2,)E a k ξ== ,则对任意给定的0ε>,有11lim {}1nkn k p a nξε→∞=-<=∑.注:定理2中条件比定理1中的条件要宽,在定理1中要求方差有限,而定理2不需要这个条件.辛钦大数定律说明独立同分布的随机变量的算术平均值依概率收敛于它的数学期望值,它为在实际应用中用算术平均值估计数学期望提供了理论依据.证 因为12n ,,,,ξξξ 是具有相同分布的随机变量序列,故它们有相同的特征函数.设它们的特征函数为()f t ,由于k E ξ存在,故()f t 有展开式:'()(0)(0)()1()f t f f t ti a t οο=++=++,其中()t ο表示关于t 的高阶无穷小量. 再由独立性知,11nk k n ξ=∑的特征函数为:1nnt t t f ia n n n ο⎡⎤⎡⎤⎛⎫⎛⎫=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.对任意取定的数t ,有lim lim 1n niat n n t t t f ia e n n n ο→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=++= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.而iat e 是连续函数,且是单点分布的特征函数,由逆极限定理知:11nk k nξ=∑的分布函数弱收敛于()F x .其中,1,(),0,x a F x x a>⎧=⎨=⎩因此,11,nLkk a nξ=−−→∑由(2)式知:11nPkk anξ=−−→∑.定理 3[8](贝努利大数定律)设n μ是n 次独立试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率,则对任意给定的正数ε,有lim {}1nn p p nμε→∞-<= 或 lim {}0nn p p nμε→∞-≥=第 6 页 共 27 页证 令 0,1,2,1n k A Y k k A ⎧==⎨⎩ 第试验不发生,,第试验发生.显然12n n Y Y Y μ=+++ ,由于各次试验是独立的,从而12,,,,n Y Y Y 相互独立,又k Y 服从参数为P 的两点分布,所以(),()(1),(1,2,k k E Y P D Y P Pk ==-= . 由定理1有 lim {}1nn p p nμε→∞-<=.此定理表明:当n 很大时, n 重贝努利试验中事件A 发生的频率几乎等于事件A 在每次试验中发生的概率,这个定理以严格的数学形式刻画了频率的稳定性,因此,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率.证 作一次观察时n μ是定值, 作多次观察时n μ是随机变量,而且(,),n B n p μ 因此:n E np μ=,n D npq μ=,()n E n pμ=,()n D n pq n μ=.在车比雪夫不等式中,取 n n ξμ=,则a p =,2pq n σ=,于是对任意给定的正数ε,有21{}11()npq p p n nn μεε≥-<≥-→→∞,因而lim {}1nn p p nμε→∞-<=.定理 4 (泊松大数定律)设12n ,,,,ξξξ 是相互独立的随机变量, P{1}n n P ξ==, P{0}n n q ξ== (其中n P 1n q =-) ,则{}n ξ服从大数定律.证 由定理所设可得:11E()nn ini P P nξ===∑,2221111111()()24nnnn n n iiii i i P q D D P qnnnn ξξ===+⎛⎫==≤= ⎪⎝⎭∑∑∑. 由车比雪夫不等式得,对任意0ε>,有22()10{}4n n n D P P n ξξεεε≤-≥≤≤.两边取极限,得lim {}0n n n P P ξε→∞-≥=.泊松大数定律是贝努利大数定律的推广, 贝努利大数定律证明了事件在完全相同条件下重复进行的随机试验中频率的稳定性;而泊松定理表明,当独立进行的随机试验的条件变化时, 频率仍然具有稳定性:随着n 的无限增大,在n 次独立试验中,事件 A 的频率趋于稳定在各次试验中事件A 出现概率的算术平均值附近.定理5[9][10] 马尔可夫(Marrkov) 大数定律)设{}k ξ是随机变量序列,若211lim()0nk n k D nξ→∞==∑,则对任意>0ε,均有1111lim {}1nnkkn k k p E nnξξε→∞==-<=∑∑,即{}k ξ服从大数定律.证 车比雪夫不等式得212111()111{}1nk nnk kkk k D np E nnξξξεε===≥-<≥-∑∑∑,取极限得:1111lim {}1nnkkn k k p E nnξξε→∞==-<=∑∑注:车比雪夫大数定律可又马尔可夫大数定律推出,更重要的是马尔可夫大数定律已经没有任何关于独立性的规定.第3章 中心极限定理直观上,如果一随机变量决定于大量(乃至无穷多个)随机.因素的总合,其中每个随机因素的单独作用微不足道,而且各因素的作用相对均匀,那么它就服从(或近似地服从)正态分布,下面我们将按严格的数学形式来表述这一直观.3.1 中心极限定理的提法定理 6[3][11](林德贝格——列维定理(Lindeberg-Levy)中心极限定理)设随机变量12,,ξξ 是一列独立同分布的随机变量,并且具有数学期望k E a ξ=和方差22(0),1,2,k D k ξσσ=>= ,则对任意实数x ,有22lim ()t nkx n na P x edt x ξ--∞→∞⎛⎫-⎪⎪<==Φ ⎪ ⎪⎝⎭∑ (3-1)证 设k a ξ-的特征函数为()t ϕ,1nknk na ξ=-=∑∑的特征函数为nϕ⎡⎤⎢⎥⎣⎦又因为()()20,k k E a D a ξξσ-=-=,所以'''2(0)0,(0)ϕϕσ==- 于是特征函数()t ϕ有展开式:2'''22221()()(0)(0)()1()22tt t t t t t ϕϕϕϕοσο=+++=-+,从而对任意固定的t ,有22221(),2nntt t t e n n n ϕο-⎡⎤⎡⎤=-+→→∞⎢⎥⎢⎥⎣⎦⎣⎦ 而22te-是()0,1N 分布的特征函数,因此由特征函数的连续性定理即知(3-1)成立,定理得证.定理6又称独立同分布的中心极限定理,它表达了正态分布在概率论中的特殊地位,尽管k ξ的分布是任意的,但只要n 充分大,nkna ξ-∑近似服从标准正态分布(0,1)N .或者说,当n 很大时,独立同分布的随机变量kξ的和1nk k ξ=∑ 近似地服从正态分布2(,)N n n μσ.这就是那些(可以看作有许多微小的、独立的随机因素作用的总结果,而每一个因素的影响却都很小)随机变量,一般都可以近似地服从正态分布的理论依据,因而正态分布在理论上和应用上都具有极大的重要性.若(,)B n p ξ ,则当n 很大时,有()P a b ξ⎛⎫⎛⎫≤≤≈Φ-Φ⎝定理 7 (棣莫弗—拉普拉斯(De Moivre-Laplace)中心极限定理) 设随机变量n η服从二项分布(,)B n p ,则对于任意区间[,]a b ,恒有22lim t nkb an na P a b dt ξ-→∞⎛⎫- ⎪ ⎪≤<=⎪ ⎪⎝⎭∑⎰二项分布的极限分布是正态分布 即如果(,)X B n p ,则221()()t nk b anaP a b dt b a ξ-⎛⎫- ⎪ ⎪≤<≈=Φ-Φ ⎪ ⎪⎝⎭∑⎰一般地,如果(,)X B n p ,则()P a X b P ⎛⎫≤<=≤<⎝b np a np --≈Φ-Φ说明:这个公式给出了n 较大时二项分布的概率计算方法.引理 设12,,ξξ 是独立随机变量序列,又k k E a ξ=,2(1,2,)k k D k ξσ== ,221nnkk B σ==∑,这时:(1) 若{}k ξ是连续型随机变量,密度函数为{}()n P x ,如果对任意0τ>,有2211lim()()0k nnk k x a B n k n x a P x dx Bτ->→∞=-=∑⎰(2) 若{}k ξ是离散型随机变量,k ξ的分布列为(),1,2,n nj nj P x P j ξ=== ,如果对任意0τ>,有()2211lim0nj k nnnjk kj n k x a B nxa P B τ→∞=->-=∑∑则称{}k ξ满足林德贝尔格条件.定理 8 (林德贝格定理) 设独立随机变量序列12,,ξξ 满足林德贝尔格条件,则当时,对任意的,有()2211lim y nx k k n k nP a x edy B ξ--∞→∞=⎛⎫-<=⎪⎝⎭∑这个定理证明了由大量微小而且独立的随机因素引起并积累而成的变量,必将是一个正态随机变量,由林德贝尔格条件可看到定理并不要求各个加项“同分布”,因而它比前述的林德贝尔格——勒维定理更强,事实上林德贝尔格——勒维定理可以由它推出.定理 9 (李雅普诺夫定理) 设12,,ξξ 是独立随机变量序列,又k kE a ξ=,2(1,2,)k k D k ξσ== ,记221nnkk B σ==∑,若存在0δ>,使有22110,nk kk nE a n B δδξ++=-→→∞∑,则对任意的实数x ,有()2211lim y nx k k n k n P a x edy B ξ--∞→∞=⎛⎫-<= ⎪⎝⎭∑定理9又称独立非同分布的中心极限定理,李雅普诺夫定理可以解释如下:假定被研究的随机变量可以表示为大量独立随机变量的总和,且总和中的每个单独的随机变量对于总和又不起主要作用,那么可以认为这个随机变量近似地服从正态分布.讨论了独立随机变量和的分布的极限问题,在一定条件下,这些分布弱收敛于退化分布,这就是大数定律.凡是在一定条件下断定随机变量之和的极限分布是正态分布的定理,在概率论中统称为中心极限定理.具体一点说,中心极限定理回答的是(独立或弱相依)随机变量之和的极限分布在什么条件下是正态的.中心极限定理是揭示产生正态分布的源泉,是应用正态分布来解决各种实际问题的理论基础.第4章 大数定律与中心极限定理的关系概率论中关于独立随机变量序列的极限理论, 已相当完整, 各种问题已有了令人满意的回答,但由于一般教材中, 特别是工科教材, 只介绍一、二个最简单的基本定理,若弱大数定律只介绍切比契夫定理的特殊情况, 中心极限定理只介绍同分布的林德贝格——列维定理(Lindeberg-Levy)的特殊情况——德莫弗—拉普拉斯(De Moivre-Laplace)定理.仅少数教材提及林德贝格条件. 这几个定理的条件又都是充分条件, 我们容易产生这样的问题: 大数定律与中心极限定理之间究竟有什么关系? 服从大数定律的是否服从中心极限定理? 反之又如何? 是否有两者都服从或都不服从的随机序列?因教材知识所限, 这些问题不太好回答, 现拟补充几个定理, 以简单的例子加以说明.定理10[12](格涅坚克定理) 设有相互独立的随机变量序列{}k ξ, 则对0ε∀>,11lim {()}1nkk n k p E nξξε→∞=-<=∑的充要条件是2221()lim[]0()nk k n k k k E E nE ξξξξ→∞=-=+-∑.定理11 (马尔科夫定理) 随机变量序列{}k ξ, 若211()0nk k D nξ=→∑,则对0ε∀>, 有11lim {()}1nkk n k p E nξξε→∞=-<=∑.定理12 (费勒定理) 对相互独立随机变量序列{}k ξ, 若∃常数n M ,使1max k n k nM ξ≤≤≤,且limn n nM B →∞=, 则{}k ξ服从中心极限定理.设{}k ξ为相互独立的随机变量序列, 以下在,,()k k j k j P P ξα==中, 令,,,k j k j P α取不同的值, 以说明不同的情形.4.1[12][13] 服从大数定律, 但不服从中心极限定理令(),1,1210,121k k P k α==-+,(),2,221,21k k k P k α==+,(),3,321,21k k k P k α==+,1,2,3,k = ,即()21(0)11k P k ξ==-+,()21()()21k k P k P k k ξξ===-=+可知0,k E ξ=()2221k k kD E k ξξ==+,()222111nnnk k k kB D k ξ====+∑∑因222110,n B n n nn<⋅→→∞, 由马尔科夫定理知, 大数定律成立, 但中心极限定理不成立. 这是因为12111(0)(0,0,,0)(0)(0)nnk n kkk k k P P P P ξξξξξξ∞==========≥=∑∏∏()2111(1)021nk k ==-=>+∏若服从中心极限定理,则取120,0x x <>,有22211211()t nx kx k nP x x edt B ξ-=<<=∑, 当12,x x 充分靠近 0 时,222112t x x e dt -<. 这就出现了矛盾. 所以中心极限定理不成立.4.2 服从中心极限定理, 但不服从大数定律取,,()k k j k j P P ξα==,为1()2k P k ξ==,1()2k P k ξ=-=,1,2,,k = 可知0,k E ξ=2k D kξ=,221nn k B k ==∑, 又 3333322221(1)(1)lim limlim3(1)n n n nn nnn n n n BB B n →∞→∞→∞++-+-===-+,即 313223limlim13n n nnnn B B -→∞→∞==,()12133lim1n nnB -→∞=又 1ax k k nM n ξ≤≤≤,()1213limlim03n n nn nB n→∞→∞-==则由费勒定理知中心极限定理成立, 但不服从大数定律, 这是因为2()x x R n x∈+, 为凸函数, 由琴生不等式222222222()kkkkE kE n n E n kξξξξ≥=+++,而 222222111111,244nnn k k k kkn k n n knnnn===+≥==→→∞++∑∑∑由格涅坚克定理知, {}k ξ不服从大数定律.4.3 大数定律与中心极限定理都不服从取,,()k k j k j P P ξα==,为1(2)2k k P ξ==,1(2)2k k P ξ=-=,可知0,k E ξ=4k k D ξ=,21144(41)3nnknnk k k B D ξ=====-∑∑, 当 n充分大时24n n B >,即2n n B >21112222(21)2n nn n n kk k k ξξ+==≤≤+++=-<∑∑,112nkk nB ξ=<∑故11lim (2)1(2)(2)1nkn k nP B ξ→∞=<=≠Φ-Φ-<∑可知不服从中心极限定理, 又22222222111144()44kknnnnkkknk k k k kkE E nn E n n ξξξξ====≥=>++++∑∑∑∑22111444(41),4433nknnnk n n n ===⋅-→→∞++∑,由格涅坚克定理知不服从大数定律.4.4 大数定律、中心极限定理都服从若{}k ξ为同分布且有有限期望及大于零的方差, 则由教材中定理易知两者都服从. 这时有11lim (())1nkk n k P E nξξε→∞=-<=∑.但括号中的事件概率, 究竞有多大? 大数定律未能回答. 而根据中心极限定理有22111(())()x nnkk kk k k P E P E edx nεξξεξξσ-==≤-<=-<≈∑其中2k D σξ=, 这样看来在所假定的条件下, 中心极限定理比大数定律更精确.第5章 应用大数定律以严格的数学形式表达了随机现象最根本的性质——平均结果的稳定性,它是随机现象统计规律性的具体表现. 因此,大数定律在理论和实际中都有广泛的应用.5.1[3] “概率”及“数学期望”的确切定义在给出二者定义时,都采用“稳定”一词,这是一种不确切的描述.依据大数定律可给出更确切的表达,即:概率——独立重复实验中,事件A 出现的频率11nPii Pnξ=−−→∑,则该常数P 即为概率.数学期望——对于任一0ε>,有11lim ()1nin i p nξμε→∞=-<=∑,则()k E μξ=称为数学期望.5.2 解释测量(随机) 误差根据大数定律,对于随机误差12,,,n δδδ ,应有11nPii nδ=−−→∑.这说明当测量次数较多时, 实测数据的平均值11nii a nδ=+∑和预测真值a 的差值能以很大概率趋于0,因此,用求样本数据平均值的方法来进行测量是可行的.例1[14] 某种仪器测量已知量A 时,设n 次独立得到的测量数据为12,,,n x x x ,如果仪器无系统误差,问:当n 充分大时, 是否可取作为仪器测量误差的方差的近似值?解 把(1,2,,)i x i n = 视作n 个独立同分布的随机变量的观察值,则()i E x μ=,2(),(1,2,,)i D x i n σ== .仪器第i 次测量的误差i x A -的数学期望()i E x A A μ-=-,方差2()i D x A σ-=.设2(),1,2,,i i Y x A i n =-= ,则i Y 也相互独立服从同一分布.在仪器无系统误差时()0i E x A -=,即有A μ=,222()()()()(1,2,,)i i i i i E Y E x A E x Ex D x i n σ⎡⎤⎡⎤=-=-===⎣⎦⎣⎦由车比雪夫定律,可得: 211lim {}1nin i p Ynσε→∞=-<=∑即 ()2211lim {}1nin i p x A nσε→∞=--<=∑从而确定,当n →∞时,随机变量()211ni i x A n=-∑依概率收敛于2σ,即当n 充分大时可以取()211nii x A n=-∑作为仪器测量误差的方差.5.3 在数学分析中的应用例2[1] 假设()22212121,,,:,0,,12n n n n nG x x x x x x x x ⎧⎫=+++≤≤≤⎨⎬⎩⎭,求其极限. 解 假设随机变量(1,2,)n n ξ= 在[]0,1上有均匀分布,而且相互独立,有112D ξ=,2112E ξ=,易见(){}22111,,2nn n n n Gn dx dx P G P ξξξξ⎧⎫=∈=++≤⎨⎬⎩⎭⎰⎰ ()()222222211111111111266nn n ii P P E P E n n nξξξξξξξ=⎧⎫⎧⎫⎧⎫=++≤=++-≤≥-≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭∑ 由1,,n ξξ 独立同分布,可见221,,,n ξξ 独立同分布.根据辛钦大数定律知:2111lim ()16ni i n i p E nξξ→∞=-≤=∑从而1lim1nn G n dx dx →∞=⎰⎰ .例3 用概率方法证明维尔斯特拉斯[w eierstrass ]定理.假定()f x 在闭区间[],a b 上是连续的,那么,存在一列多项式12(),(),B x B x ,一致收敛于函数()f x ,[],x a b ∈.证 不妨设0,1a b ==.假设()f x ,[]0,1x ∈是连续函数,那么()f x 在[]0,1上一致连续并且有界.对于任意[]120,0,0,1x x ε>≤∈存在0δ>,使12()()2f x f x ε-<,只要12x x ε-<.此外,对于一切01x ≤≤,有()f x k ≤(常数).现在,建立一多项式:()(1)nm m n m n n n m m B x Ef f C x x n n ξ-=⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭∑,其中n ξ服从二项分布, 参数为1n ≥, 而[]0,1x ∈, 显然(0)(0)n B f =,(1)(1)n B f =.由贝努利大数定律知()limnn x P nξ→∞=,[]0,1x ∈现在证明()n n B x f n ξ⎛⎫= ⎪⎝⎭一致收敛于()f x ,[]0,1x ∈.由于0(1)1nm m n m n m C x x -=-=∑,可见()()0()(1)nmmn mn n m m B x f x f f x C x x n -=⎡⎤⎛⎫-=-- ⎪⎢⎥⎝⎭⎣⎦∑,由此可得:()()0()(1)nm m n m n n m m B x f x f f x C x x n -=⎛⎫-≤-- ⎪⎝⎭∑()()(1)(1)m m n m m m n mn n mm x x nnm m f f x C x x f f x C x x n n δδ---<-≥⎛⎫⎛⎫=--+-- ⎪ ⎪⎝⎭⎝⎭∑∑2(1)222m m n mn n mx nkC x x kP x n δεεξδ--<⎧⎫<+-=+-≥⎨⎬⎩⎭∑. 由于对任意[]0,1x ∈,Pnxnξ−−→可见存在N ,使当时n N ≥,4nP x n kξεδ⎧⎫-≥≤⎨⎬⎩⎭ 从而,当n N ≥时,对于一切[]0,1x ∈,有:()()22422n B x f x k kεεεεε-<+=+= .即()n B x 关于[]0,1x ∈一致收敛于()f x .5.4 在计算精确的近似概率方面的应用例4[15] 现有一大批种子,其中良种占1/6 ,今在其中任选6000 粒,试分别用切比雪夫不等式估计和用中心极限定理计算在这些种子中良种所占的比例与1/6之差小于1%的概率是多少?解 设取出的种子中的良种粒数为X ,则1(6000,)6X B 于是1600010006E X n p ==⨯= 155(1)60001000666D X np p =-=⨯⨯=⨯(1) 要估计的规律为{}1110006060006100XP P X ⎧⎫-<=-<⎨⎬⎩⎭相当于在切比雪夫不等式中取60ε=,于是{}21110006016000610060X D X P P X ⎧⎫-<=-<≥-⎨⎬⎩⎭ 由题意得 25111100010.23150.76856063600D X-=-⨯⨯=-= 即用切比雪夫不等式估计此概率不小于0.7685.(2) 由拉普拉斯中心极限定理,对于二项分布1(6000,)6B ,可用正态分布5(1000,1000)6N ⨯近似, 于是所求概率为{}11940106060006100X P P X ⎧⎫-<=<<⎨⎬⎩⎭ 2(2.0785)10.9625≈Φ-Φ≈Φ-≈从本例看出:用切比雪夫不等式只能得出来要求的概率不小于0.7685,而用中心极限定理可得出要求的概率近似等于0.9625.从而知道由切比雪夫不等式得到的下界是十分粗糙的.但由于它的要求比较低,只要知道X 的期望和方差,因而在理论上有许多运用.当i X 独立同分布(可以是任何分布),计算1()n P a X X b <++≤ 的概率时,利用中心极限定理往往能得到相当精确的近似概率,在实际问题上广泛运用.5.5[16][17] 在彩票和保险业的应用大数定律和中心极限定理是概率论中两类具有极大意义的重要定理. 大数定律证明了在大样本条件下,样本平均值可以看作是总体平均值(数学期望) ,它是“算术平均值法则”的理论基础;中心极限定理比大数定律更为详细具体,它以严格的数学形式阐明了在大样本条件下,不论总体的分布如何,样本均值总是近似的服从正态分布. 正是这个结论使得正态分布在数理统计和误差分析中占有特殊的地位,是正态分布得以广泛应用的理论基础. 本文通过对彩票学和保险业等几个具体事例的引用展现了大数定律和中心极限定理的实际应用.大数定理在实际生活中应用十分广泛,我们现在以生活中最平常的但都很感兴趣的事情——彩票为例来详细阐述一下大数定理在彩票学中的应用.我们知道概率论是研究现实世界随机现象的科学,是近代数学的重要组成部分. 它在自然科学以及经济工作中都有着广泛的应用,同时也是数理统计的基础. 彩票投注的中奖概率分布完全符合它的原理. 彩票的投注方法是一个玩数字游戏. 彩票号码的摇出是随机事件,也可以说是一随机现象,属概率论的一个基本概念. 首先我们应该先清楚什么是随机现象? 我们说随机现象的特点是:事先不能预言其结果,具有偶然性;另一方面,在相同条件进行大量的重复试验,会呈现出某种规律性(特别是随机开奖次数的不断增多).例如:在相同条件下,多次抛掷质量均匀的同一枚硬币,则出现正面向上的次数约占总抛次数的一半,而且随着抛掷次数的增加,正面向上次数是总抛次数的12.这就是概率论的统计结果.(请看下面5次抛币的试验结果)有人曾经做过抛掷硬币的试验,试验结果记录如下:投掷次数N,正面向上次数M.M0.5181=2048N=1061N M==4040M0.5069N=2048N M=M0.5016N=6019=12000N M=M0.5005=24000N=12012N M==30000M0.4996N=14984N M=M0.5011N=36124=72088N M=由上述情况可以看出投掷次数很大时,其频率稳定于0.5彩票每期摇出的中奖号码(基本号码和特别号码)是一个随机事件,既然是随机事件,必有其分布规律.1. 2001010期至2001023期“上海风采”电脑福利彩票开奖计14期共摇出14*8112=个球.2. 每个球平均出现3.6次3. 奇数出现59次;偶数出现53次4. 小于或等于15的数47次;大于或等于16的数出现65次由此,我们引入彩票的一对常用语“冷门号码”及“热门号码”.有了“冷门号码”及“热门号码”,我们只要扑捉到这种机会,将会提高中奖纪律.概率分布的四条法则:1. 奇数.偶数出现的次数应占总数的12(由于不确定因素除外).2. 大数.小数出现的次数应占总数的12(由于不确定因素除外).3. 1-10区段,11-20区段,21-31区段,三区段出现的数个占总数的13(由于不确定因素除外).4. 各数出现的次数,随着实验(开奖)次数的增加不断靠近平均值(由于不确定因素除外).综上所述,随机的摇球事件随着实验(开奖)次数的增加都会显示出它的某些规律性,而这种规律性可以借助概率论的知识,利用小概率统计法,分析判断号码.通过数字统计,运用概率论原理来判断冷热号码出现的周期. 分析号码可能出现的区段. 缩小精选号码范围. 为新一期选择号码提供参考依据,从而达到提高中奖得率.实际上,对于彩票而言,也不是完全没有规律可循,只要经过大量的观察,根据大数定律就可以进行统计预测,提高中奖的几率. 概率论是一门系统学科,一般人了解的概率,不是从理论上认识,仅仅限于经验. 时间的表层认识. 与其硬着头皮去盲目猜测,不如运用简单的概率学统计分析方法更简单,更容易掌握. 把每期中奖号码出现的次数累加起来,一一进行统计,累计到一定量后,就能发现奖项及其相关指标的概率波动特性. 彩民再根据这些进行选号投注,就可以大大提高中奖几率.中心极限定理指出:如果一个随机变量有众多的随机因素所引起,每个因素在总的变化里起着不大作用,就可以推断描述这个随机现象的随机变量近似的服从正态分布,所以要求随机变量之和落在某个区间上的概率,只要把它标准化,用正态分布作近似计算即可. 中心极限定理还及时了离散型随机变量与连续型随机变量的内在联系,即离散型随机变量的极限分布是正态分布.中心极限定理对保险业更是具有指导性的意义,一个保险公司的亏盈,是否破产,我们通过学习中心极限定理的知识都可以做到估算和预测. 大数定律是近代保险业赖以建立的基础. 根据大数定律中心极限定理,我们知道承保的危险单位越多,损失概率的偏差越小,反之,承保的危险单位越少,损失概率的偏差越大. 因此,保险人运用大数法则就可以比较精确的预测危险,合理的拟定保险费率. 下面我们以一道具体的有关保险业的实例来阐述一下大数定律和中心极限定理在保险业中的重要作用和具体应用.例 5已知在某人寿保险公司里有10000个同一年龄段的人参加保险,在同一年里这些人死亡率为0.1% ,参加保险的人在一年的头一天交付保险费10元,死亡是家属可以从保险公司领取2000元的抚恤金. 求保险公司一年中获利不少于40000 元的概率;保险公司亏本的概率是多少?解设一年中死亡的人数为x人. 死亡概率为0.001P= ,把考虑10000人在一年里是否死亡看成10000重贝努里试验,保险公司每年收入为10000*10100000=元,付出2000x元.(1) P(保险公司获利不少于40000 元){}=->=(1000002000)40000P x。
大数定律和中心极限定理的证明及应用大数定律和中心极限定理是概率论的两个基础定理,它们是理解概率论的重要桥梁,也是进行统计分析的基础。
本文将针对这两个定理进行证明和应用的探讨。
一、大数定律大数定律是概率论的重要定理,它指出在独立、同分布的随机变量序列t1、t2、…、tn中,随着n的增大,它们的算术平均值趋近于它们的数学期望。
设t1、t2、…、tn是n个独立同分布的随机变量,它们的数学期望为μ,方差为σ^2,则对于任意ε>0,有:P(|(t1+t2+…+tn)/n - μ| ≥ ε) → 0(n → ∞)即随着n的无限增大,随机变量序列的样本平均值与总体平均值之间的差值会趋近于0。
大数定律的证明有多种方法,这里介绍一种重要的方式——切比雪夫不等式证明法:对于随机变量序列t1、t2、…、tn,根据切比雪夫不等式有:P(|(t1+t2+…+tn)/n - μ| ≥ ε) ≤ σ^2/nε^2由于随机变量t1、t2、…、tn是独立同分布的,因此其样本方差为:sn^2 = (t1-μ)^2 + (t2-μ)^2 + … + (tn-μ)^2按此可得到:σ^2 = sn^2/n因此有:P(|(t1+t2+…+tn)/n - μ| ≥ ε) ≤ sn^2/nε^2从而有:P(|(t1+t2+…+tn)/n - μ| ≥ ε) ≤ σ^2/nε^2由此,对于任意ε>0,当n很大时,都有:P(|(t1+t2+…+tn)/n - μ| ≥ ε) → 0 (n → ∞)即可证明大数定律成立。
大数定理有广泛的应用。
以森林面积估计为例,若要估算某森林面积,可以随机抽取森林中若干个点,计算这些点所在的小区域内的树木密度,通过求平均值来估算森林的总面积。
根据大数定律,随着抽样点数增加,估算结果会趋近于真实面积。
二、中心极限定理中心极限定理(Central Limit Theorem)是概率论的又一个基础定理,它指出在独立、同分布的随机变量序列t1、t2、…、tn中,随着n的增大,这些随机变量的和的分布趋近于正态分布。
巢湖学院毕业论文课题名称:大数定理与中心极限定理间的关系及其他们的应用学生姓名:曹明君学号:07025069专业:数学与应用数学班级:07数本(1)班指导教师:赵开斌2011年3月20日大数定律与中心极限定理间的关系及其他们的应用【论文学科】基础数学论文【论文级别】学士论文【中文关键词】随机变量的收敛论文; 独立随机变量论文; 特征函数论文; 大数定律论文; 中心极限定理论文【中文题名】大数定律与中心极限定理间的关系及其他们的应用【英文题名】The Law of Large Number and Central Limit Theorem of Independent Random Sequence and Their Applications【所属分类】基础科学,数学,概率论、数理统计【英文关键词】convergence of random variables; independent random variables; characteristic function; laws of large number; central-limit theorem【中文摘要】本文从随机变量序列的各种收敛与它们间的关系谈起,通过对概率论的经典定理——大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。
经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示的理论依据。
关于大数定律方面,较全面地分析和叙述了独立不同分布条件下的马尔科夫定理以及作为它的推论的切比雪夫定理、伯努利定理、泊松定理和同分布条件下的辛钦定理,而且把这些定理推广到以概率1收敛意义下的强大数定律。
同样中心极限定理的内容也从独立同分布与独立不同分布两个角度来进行讨论;另外,叙述了各种大数定律以及中心极限定理各自之间,大数定律与中心极限定理之间的关系。
同时通过举出很多相关的正反例子,进行说明这些定理所给出的条件是否充要条件;来强调在实际问题中灵活地应用和辨别是否服从我们给出的定理条件。
最后给出了一些简便的大数定律与中心极限定理在数理统计、管理决策、近似计算、以及保险业等方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。
【英文摘要】This paper concerns on the convergence and relation of the series of random variable. By means of the studying on laws of large numbers and central-limit theorems under the condition either of independent and identically distributions or independent but different-distributions comprehensively, we illuminate that the mean value is stable which is the essential property for the stochastic event. And we enplaned the theoretical rules that the sum of independent random variables submited the normal distribution according to central-limit theorems. At the same time, we analyzed and stated the Markov theorem under the different terms and conditions, So its deductive theorems, i.e. Chebyshev theorem, Bernoulli theorem, Poisson theorem including Khintchine theorem based on the identically distribution. Moreover, we have got the strong laws of large numbers in the sense of its probability with 1 by generalization. Central-limit theorems were studied in the same way.In addition, we showed the relations between various laws of large numbers, various central-limit theorems and themselves mutually. The more interesting is that plenty of correlative examples including positive and negative are illustrated toemphasize the importance of identifying the conditions of these theorems in all sorts of their applications.At last, we brought forth the value of laws of large numbers and central-limit theorems in some subjects such as mathematical statistics, administrative decision-making, approximate calculation, insurance and so on. 第一章:绪论 1.1课题的研究意义概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题. 在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 一、依概率收敛与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性.定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞→εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为).(∞→−→−n a X Pn定理1 设,,b Y a X Pn P n −→−−→−又设函数),(y x g 在点),(b a 连续, 则),(),(b a g Y X g Pn n −→−.二、切比雪夫不等式定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有22}|{|εσεμ≤≥-X P .上述不等式称切比雪夫不等式.注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件}|)({|ε<-X E X的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度.(ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有.111.09}3|)({|22≈≤≥-σσσX E X P故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.三、大数定理1.切比雪夫大数定律定理3 (切比雪夫大数定律)设 ,,,,21n X X X 是两两不相关的随机变量序列,它们数学期望和方差均存在, 且方差有共同的上界, 即,,2,1,)( =≤i K X D i 则对任意0>ε, 有1)(11lim 11=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-∑∑==∞→εn i i n i i n X E n X n P 注: 定理表明: 当n 很大时,随机变量序列}{n X 的算术平均值∑=ni i X n 11依概率收敛于其数学期望∑=ni i X E n 1)(1.2.伯努利大数定理定理4 (伯努利大数定律)设A n 是n 重伯努利试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率, 则对任意的0>ε, 有1lim =⎭⎬⎫⎩⎨⎧<-→∞εp n n P A n 或 0l i m =⎭⎬⎫⎩⎨⎧≥-→∞εp n n P A n . 注:(i) 伯努利大数定律是定理1的推论的一种特例, 它表明: 当重复试验次数n 充分大时, 事件A 发生的频率nn A依概率收敛于事件A 发生的概率p .定理以严格的数学形式表达了频率的稳定性. 在实际应用中, 当试验次数很大时,便可以用事件发生的频率来近似代替事件的概率.(ii) 如果事件A 的概率很小,则由伯努利大数定律知事件A 发生的频率也是很小的,或者说事件A 很少发生. 即“概率很小的随机事件在个别试验中几乎不会发生”,这一原理称为小概率原理,它的实际应用很广泛. 但应注意到,小概率事件与不可能事件是有区别的. 在多次试验中,小概率事件也可能发生.3.辛钦大数定理 定理5 (辛钦大数定律) 设随机变量 ,,,,21n X X X 相互独立, 服从同一分布,且具有数学期望,,2,1,)( ==i X E i μ 则对任意0>ε, 有11lim 1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i n X n P .注: (i) 定理不要求随机变量的方差存在;(ii) 伯努利大数定律是辛钦大数定律的特殊情况;(iii) 辛钦大数定律为寻找随机变量的期望值提供了一条实际可行的途径. 例如, 要估计某地区的平均亩产量, 可收割某些有代表性的地块, 如n 块,计算其平均亩产量, 则当n 较大时,可用它作为整个地区平均亩产量的一个估计. 此类做法在实际应用中具有重要意义.四、中心极限定理在实际问题中, 许多随机现象是由大量相互独立的随机因素综合影响所形成, 其中每一个因素在总的影响中所起的作用是微小的. 这类随机变量一般都服从或近似服从正态分布. 以一门大炮的射程为例, 影响大炮的射程的随机因素包括: 大炮炮身结构的制造导致的误差, 炮弹及炮弹内炸药在质量上的误差, 瞄准时的误差, 受风速、风向的干扰而造成的误差等. 其中每一种误差造成的影响在总的影响中所起的作用是微小的, 并且可以看成是相互独立的, 人们关心的是这众多误差因素对大炮射程所造成的总影响. 因此需要讨论大量独立随机变量和的问题.中心极限定理回答了大量独立随机变量和的近似分布问题, 其结论表明: 当一个量受许多随机因素(主导因素除外) 的共同影响而随机取值, 则它的分布就近似服从正态分布.1.林德伯格—勒维定理定理6 (林德伯格—勒维) 设 ,,,,21n X X X 是独立同分布的随机变量序列, 且,,,2,1,)(,)(2n i X D X E i i ===σμ则 ⎰∑∞--=∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-x t n i i n dt e x n n X P 2/1221lim πσμ 注: 定理6表明: 当n 充分大时, n 个具有期望和方差的独立同分布的随机变量之和近似服从正态分布. 虽然在一般情况下, 我们很难求出n X X X +++ 21的分布的确切形式, 但当n 很大时, 可求出其近似分布. 由定理结论有.1),/,(~)1,0(~/1)1,0(~1211∑∑∑====⇒-⇒-n i i ni i ni i X n X n N X N nX n N n n X σμσμσμ近似近似故定理又可表述为: 均值为μ, 方差的02>σ的独立同分布的随机变量 ,,,,21n X X X 的算术平均值X , 当n 充分大时近似地服从均值为μ,方差为n /2σ的正态分布. 这一结果是数理统计中大样本统计推断的理论基础.2. 棣莫佛—拉普拉斯定理在第二章中,作为二项分布的正态近似,我们曾经介绍了棣莫佛—拉普拉斯定理,这里再次给出,并利用上述中心极限定理证明之.定理7(棣莫佛—拉普拉斯定理)设随机变量n Y 服从参数p n ,)10(<<p 的二项分布, 则对任意x , 有)(21)1(lim 22x dt e x p np np Y P x tn n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--∞→π注: 易见,棣莫佛—拉普拉斯定理就是林德伯格—勒维定理的一个特殊情况.3.用频率估计概率的误差设n μ为n 重贝努里试验中事件A 发生的频率, p 为每次试验中事件A 发生的概率,,1p q -=由棣莫佛—拉普拉斯定理,有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-<-=⎭⎬⎫⎩⎨⎧<-pq n npqnp pq nP p n P n n εμεεμ .12-⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-⎪⎪⎭⎫ ⎝⎛Φ≈pq n pq n pq n εεε这个关系式可用解决用频率估计概率的计算问题:4. 李雅普诺夫定理定理8(李雅普诺夫定理) 设随机变量 ,,,,21n X X X 相互独立, 它们具有数学期望和方差: ,2,1,0)(,)(2=>==i X D X E kk k k σμ,记.122∑==nk k nB σ 若存在正数δ, 使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE Bδδμ则随机变量之和∑=n k k X 1的标准化变量:nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x , 满足).(21lim )(lim 2/112x dt e x B X P x F x t n n k k n k k n n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎰∑∑∞--==∞→∞→πμ注:定理8表明, 在定理的条件下, 随机变量.11nnk kn k kn B X Z ∑∑==-=μ当n 很大时,近似地服从正态分布)1,0(N . 由此, 当n 很大时,∑∑==+=nk k n n nk k Z B X 11μ近似地服从正态分布⎪⎪⎭⎫ ⎝⎛∑=21,n n k k B N μ.这就是说,无论各个随机变量),2,1( =k X k 服从什么分布,只要满足定理的条件,那么它们的和∑=nk k X 1当n 很大时,就近似地服从正态分布.这就是为什么正态随机变量在概率论中占有重要地位的一个基本原因.在很多问题中,所考虑的随机变量可以表示成很多个独立的随机变量之和,例如,在任一指定时刻,一个城市的耗电量是大量用户耗电量的总和;一个物理实验的测量误差是由许多观察不到的、可加的微小误差所合成的,它们往往近似地服从正态分布.例1 对于n 重伯努利试验,事件A 发生的概率为0.7,若要使A 的频率在0.68到0.72之间的概率不小于0.90。