高一数学同步练习等比数列 (1)
- 格式:doc
- 大小:343.00 KB
- 文档页数:6
高一下学期期末复习练习等比数列[重点]等比数列的概念,等比数列的通项公式,等比数列的前n 项和公式。
1.定义:数列{a n }若满足nn a a 1+=q(q q ,0≠为常数)称为等比数列。
q 为公比。
2.通项公式:a n =a 1q n-1(a 1≠0、q ≠0)。
3.前n 项和公式:S n =⎪⎩⎪⎨⎧--=--q q a a q q a na n n 11)1(111 (q 1≠)4.性质:(1)a n =a m q n-m 。
(2)若 m+n=s+t ,则a m a n =a s a t ,特别地,若m+n=2p ,则a m a n =a 2p ,(3)记A=a 1+a 2+…+a n ,B=a n+1+a n+2+…a 2n ,C=a 2n+1+a 2n+2…+a 3n ,则A 、B 、C 成等比数列。
5.方程思想:等比数列中的五个元素a 1、q 、n 、a n 、S n 中,最基本的元素是a 1和q ,数列中的其它元素都可以用这两个元素来表示。
函数思想:等比数列的通项和前n 次和都可以认为是关于n 的函数。
[难点]等比数列前n 项和公式的推导,化归思想的应用。
例题选讲1.(湖北)若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a =( ) A .4 B .2 C .-2 D .-42.(辽宁)(9) 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) (A)122n +- (B) 3n (C) 2n (D)31n -3.已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中n=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列;(2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项;(3) 记b n =211++n n a a ,求{b n }数列的前项和S n ,并证明S n +132-n T =1.一、选择题1.在公比q ≠1的等比数列{a n }中,若a m =p,则a m+n 的值为 ( ) (A )pq n+1 (B )pq n-1 (C )pq n (D )pq m+n-12.若数列{a n }是等比数列,公比为q ,则下列命题中是真命题的是 ( ) (A )若q>1,则a n+1>a n (B )若0<q<1,则a n+1<a n(C )若q=1,则s n+1=S n (D )若-1<q<0,则n n a a <+1 3.在等比数列{a n }中,a 9+a 10=a(a 0≠),a 19+a 20=b,则a 99+a 100的值为( )(A )89a b (B )(a b )9 (C )910ab (D )(a b )104.在2与6之间插入n 个数,使它们组成等比数列,则这个数列的公比为 ( ) (A )n 3 (B )n31 (C )13+n (D )23+n5.若x,2x+2,3x+3是一个等比数列的连续三项,则x 的值为 ( ) (A )-4 (B )-1 (C )1或4 (D )-1或-4 6.已知数列{a n }是公比q 1≠的等比数列,给出下列六个数列:(1){ka n }(k 0≠) (2){a 2n-1}(3){a n+1-a n } (4){a n a n+1} (5){na n } (6){a n 3},其中仍能构成等比数列的个数为(A )4 (B )5 (C )6 (D )3 ( ) 7.已知数列{a n }的前n 项和为S n =b ×2n +a(a ≠0,b ≠0),若数列{a n }是等比数例,则a 、b 应满足的条件为 ( ) (A )a-b=0 (B )a-b ≠0 (C )a+b=0 (D )a+b ≠08.一个等比数列共有3n 项,其前n 项之积为A ,次n 项之积为B ,末n 项之积为C ,则一定有(A )A+B=C (B )A+C=2B (C )AB=C (D )AC=B 2 ( )9.在等比数列{a n }中,S n =k-(21)n ,则实数k 的值为 ( )(A )1/2 (B )1 (C )3/4 (D )210.设{a n }为等比数列,S n =a 1+…a n ,则在数列{S n } 中 ( ) (A )任何一项均不为零 (B )必有一项为零(C )至多有一项为零 (D )或有一项为零,或有无穷多项为零 11.在由正数组成的等比数列{n a }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为(A )34 (B )43(C )2 (D )334( )12.在正项等比数列{a n }中,a 21+a 22+……a 2n =314-n,则a 1+a 2+…a n 的值为 ( )(A )2n (B )2n -1 (C )2n +1 (D )2n+1-213.数列{a n }是正数组成的等比数列,公比q=2,a 1a 2a 3……a 20=a 50,,则a 2a 4a 6……a 20的值为 (A )230 (B )283 (C )2170 (D )2102-2 ( ) 14.在数列{a n }中,a 1=2,a n+1=2a n +2,则a 100的值为 ( ) (A )2100-2 (B )2101-2 (C )2101 (D )21515.某商品的价格前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是 ( ) (A )不增不减 (B )约增1.4% (C )约减9.2% (D )约减7.8% 二、填空题 1.在等比数列{a n }中,a 1-a 5=-215,S 4=-5,则a 4= 。
高一数学等比数列试题答案及解析1.在等比数列中,为前n项的积,若,,则的值为()A.16B.12C.8D.4【答案】A【解析】设公比为q,显然,由,,所以===16.【考点】等比数列的通项公式.2.已知{an }是公比为q的等比数列,且a1,a3,a2成等差数列,则q= ( ).A.1或-B.1C.-D.-2[【答案】A.【解析】根据题意,有,因为,所以,解得1或-.【考点】等比数列的通项公式,等差中项的定义.3.已知数列的首项.(1)求证:是等比数列,并求出的通项公式;(2)证明:对任意的;(3)证明:.【答案】(1);(2)见解析;(3)见解析【解析】(1)将两边去倒数并常量分量,然后所得式子变形数列{}的第n+1项是第n项若干倍形式,根据等比数列定义即可判定{}是等比数列,利用等比数列通项公式,先求出{}的通项公式,再解出的通项公式;(2)将不等式右侧式子配凑的通项公式形式,再将其化为关于的二次函数最值问题,通过放缩即可证明该不等式;(3)先将的通项公式常量分量,代入,通过放缩即可证明不等式的左半部分,对利用(2)的结论缩小,出现首项为,公比为的等比数列的前n项和,数列取为该数列前n项和的算术平局值,即可证明该不等式右半部分.试题解析:(1),又所以是以为首项,以为公比的等比数列.5分(2)由(1)知9分(3)先证左边不等式,由知;当时等号成立; 11分再证右边不等式,由(2)知,对任意,有,取,则 14分考点:等比数列定义、通项公式、前n项和公式;二次函数最值;放缩法;转化与化归思想;运算求解能力4.已知等比数列中,,,,分别为△ABC的三个内角A,B,C的对边,且.(1)求数列的公比;(2)设集合,且,求数列的通项公式.【答案】(1)或;(2)或.【解析】(1)根据题意可知,,为等比数列的前三项,因此,结合条件及余弦定理将消去,并且可以得到,即的值:,或,从而或;(2)条件中的不等式含绝对值号,因此可以考虑两边平方将其去掉:∵,∴,即,解得且,从而可得,即有,结合(1)及条件等比数列可知通项公式为或.试题解析:(1)∵等比数列,,,,∴, 1分又∵, 3分而,∴或, 5分又∵在△ABC中,,∴或; 6分(2)∵,∴,即,∴且, 8分又∵,∴,∴, 10分∴或. . 12分【考点】1.等比数列的通项公式;2.余弦定理及其变式;3.解不等式.5.在等比数列中,若,则与的等比中项为()A.B.C.D.前3个选项都不对【答案】C.【解析】由等比数列可知,,∴与的等比中项为.【考点】等比数列的性质.6.已知等比数列满足,,数列的前项和,则=.【答案】【解析】由知等比数列的公比从而.【考点】等比数列.7.在等比数列中,,则= ( )A.B.C.D.【答案】B【解析】由已知及等比数列的性质及得,解之得(舍去)或,又由,得,所以。
高一数学同步测试—等比数列高一数学同步测试(13)—等比数列一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内. 1.已知,22,33x x x ++是一个等比数列的前三项,则其第四项等于( )A .272-B .272C .27D .27- 2.已知{}n a 是等比数列且0n a >,569a a =,则3132310log log log a a a +++ ( )A .12B .10C .8D .2+3log 53.某厂2001年12月份产值打算为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( )A .11nB .11nC .112-nD .111-n4.在等比数列{a n }中,若a 3 、a 9是方程3x 2-11x+9=0的两个根,则a 6 等于 ( )A . 3B .±3C .3±D .35.已知数列{}n a 的前n 项和)(3为常数k k S nn +=,那么下述结论正确的是( )A .k 为任意实数时,{}n a 是等比数列B .k = -1时,{}n a 是等比数列C .k =0时,{}n a 是等比数列D .{}n a 不可能是等比数列6.互不相等的三个正数,,a b c 成等差数列,,x a b 是的等比中项,,y b c 是的等比中项,则222,,x b y 三个数( )A .成等差数列但不成等比数列B .成等比数列但不成等差数列C .既成等差数列又成等比数列D .既不成等差数列又不成等比数列7.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅ 等于 ( )A .102B .202C .162D .152 8.在等比数列{}n a 中,7114146,5a a a a =+=,则1020a a 等于 ( )A .32或23 B . 31或-21 C .32 D .23 9.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,如此每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年许多于90万元,则t 的范畴是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6]10.数列{}n a 中,{}10,n n n a a a +>且是公比为()0q q >的等比数列,满足11223n n n n n n a a a a a a ++++++>()*n N ∈,则公比q 的取值范畴是( )A .102q <<B .102q -+<<C .102q -+<<D .102q +<<二、填空题:请把答案填在题中横线上. 11.在11+n n和之间插入n 个正数,使这n +2个正数成等比数列,则插入的n 个正数之积 为 ;12.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a ; 13.若,,,a b c b c a c a b a b c +++-+-+-成等比数列,公比为q ,则32q q q ++= ; 14.已知{}n a 是等比数列,且0n a >,243546225a a a a a a ++=则35a a += .三、解答题:解承诺写出文字说明、证明过程或演算步骤.15.三个数成等比数列,若第二个数加4就成等差数列,再把那个等差数列的第三项加32又成等比数列,求这三个数.16.已知:S n 是等比数列{}n a 的前n 项和,S 3,S 9,S 6成等差数列,求证:582,,a a a 成等差数列.17.已知函数n n n a a a N n x a x a x a x a x f ,,,)()(2133221 且*∈++++=构成一个数列,又2)1(n f =.(1)求数列}{n a 的通项公式; (2)比较)31(f 与1的大小.18.在公差不为0的等差数列{}n a 和等比数列{}n b 中,111a b ==,22a b =,83a b =,(1)求数列{}n a 的公差和数列{}n b 的公比;(2)是否存在,a b 使得关于一切自然数n 都有log n a n a b b =+成立?若存在,求出,a b ;若不存在请说明理由.19.某地区位于沙漠边缘地带,到2000年底全县的绿化率只有30%,其余为沙漠化土地,从2001年开始,打算每年把原有沙漠面积的16%栽树改造为绿洲,而同时,原有绿洲面积的4%,又被腐蚀,变成沙漠. ⑴设该地区的面积为1,2000年底绿洲面积为1031=a ,通过一年绿洲面积为a 2,通过n 年绿洲面积为a n+1,求a n+1与a n 关系式; ⑵求a n 的通项公式;⑶问至少需要通过多青年的努力,才能使该地区的绿洲面积超过60%?(年数取整数, lg2≈0.3010)20.已知0a >且1a ≠,数列{}n a 是首项为a ,公比为a 的等比数列,令lg ()n n n b a a n N *=∈,(1)当2a =时,求数列{}n b 的前n 项和n S ;(2)若数列{}n b 中的每一项总小于它后面的项时,求a 的取值范畴.高一数学(上)同步测试(13)参考答案一、 选择题:ABDCB ABACD二、 填空题:11、2)1(nnn +; 12、123-n ; 13、1; 14、5. 13、解:由题意得:23()(1)()(2)()(3)b c a a b c qc a b a b c q a b c a b c q +-=++⎧⎪+-=++⎨⎪+-=++⎩(1)+(2)+(3)得:23()()a b c a b c q q q ++=++++∵0a b c ++≠,∴32qq q ++=1.三、 解答题:15、解:按等差数列设原数列三个数为:b —d,b —4,b+d ,由已知:三个数成等比数列,即168))(()4(22=-⇒+-=-d b d b d b b ①03232)32)((:,32,,22=--⇒++-=++-d d b d b d b b d b b d b 即成等比数列②由①、②联立.解得:⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧==81038926d b d b 或,∴21050,,2,6,18999-三个数为或. 16、证明:∵S 3,S 9,S 6成等差数列∴S 3+S 6=2S 9若q=1,则S 3=3191619,6,a S a S a ==由96312S 0S S a ≠+≠可得,与题设矛盾.1q ∴≠369111(1)(1)2(1)111a qa q a q qq q---∴+=---整理,得q 3+q 6=2q 9 .,,22)2()1(2q 10q 58287161314115263成等差数列得由a a a a q a q q a q q a q a q a a a q ∴===+=+=+∴=+≠17、解:(1)22212,)1(,1,)1(n S n a a a f x n f n n ==+++===即令1112,1)2(12)1(11=-⨯==⎩⎨⎧≥-==∴a n n n n a n 时 )(12*∈-=∴N n n a n(2)n n f )31()12()31(3311)31(2⨯-++⨯+⨯= 1)31)(1(1)31(<+-=∴n n f (错位相减).18、解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,由已知:111a b ==,1d q +=,217d q +=,解得10q d =⎧⎨=⎩(舍去)或65q d =⎧⎨=⎩,(2)若存在,a b,使得log n a n a b b=+成立,即11(1)5log 6n a n b -+-⋅=+,∴54(1)log 6a n n b -=-+,∴(5log 6)(4log 6)0a a n b --+-=要使上式关于一切自然数n成立,必须且只需5log 604log 60a a b -=⎧⎨+-=⎩,解得1a b ⎧=⎪⎨=⎪⎩1a b ==使得结论成立.19、解:(1)设2000年底沙漠面积为b 1,通过n 年后沙漠面积为b n+1,则1,111=+=+n n b a b a .a n+1=96%·a n +16%b n =96%a n +16%(1-a n )=25454+na(2)由)54{)54(54542545411-∴-=-+=++n n n n n a a a a a得是以21541-=-a 为首项,54为公比的等比数列 n na )54(2154=-∴ 依题意,%601>+n a ;(3)4143(), 4.15255n n ->≈,故至少需要通过5年才能使全地区的绿洲面积超过60%.20、解:(1)由题意得:n n a a =,则lg lg n n n n b a a na a ==,当2a=时2lg 22lg 2n n n n b n ==,∴(22438n S =+⨯+⨯+…2)lg 2n n +⨯ ①2428n S =⨯+⨯+(1…1(1)22)lg 2n n n n ++-+ ②①-②得:nS -(248=+++…122)lg 2n n n ++-12(12)(2)lg 212n n n +-=--11(222)lg 2n n n ++=--, ∴1((1)22)lg 2n n S n +=-+;(2)由题意得:11lg (1)lg n n n n b na a b n a a ++=<=+, ∴()lg 0n a n na a a --<,当1a >时,1a n a >-则11a a >- ∴1a >,当01a <<时,(1)n a a ->即1a n a>-则11a a >- ∴102a <<,综上所述,满足条件a 的范畴为:1a >或102a <<.。
高一数学等比数列练习题【巩固练习】1.等比数列中,,则等于()A.B.C.D.2.(2015 浙江高考)已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( )A.,B. ,C. ,D.,3. 在3和9之间插入两个正数后,使前三个数成等比数列,后三个数成等差数列,则这两个正数之和为()A.1312B.1114C.1012D.104.(2016 桂林模拟)在等比数列{a n}中,S n表示前n项和,若a3=2S2+1,a4=2S3+1,则公比q=()A.﹣3B.﹣1 C.3D.15.已知为等比数列,下面结论种正确的是()。
A a1+a3≥2a2B a12+a32≥2a22C 若a1=a3,则a1=a2D 若a3>a1,则a4>a26. 【2015 安徽高考】已知数列是递增的等比数列,,则数列的前项和等于.7.在等比数列{a n}中,(1)已知:a1=2,S3=26,求q与a3;(2)已知:a n>0且a2a4+2a3a5+a4a6=25,求a3+a5;(3)已知:a4=3, 求a1a2a3 (7)(4)已知:对任意自然数n都有a1+a2+……+a n=2n-1,求+……+.8.有四个数,前三个成等比数列,且和为19;后三个成等差数列,且和为12.求这四个数.9.已知{a n}为等比数列,(1)若a1a4a10a13-a5a9-6=0,求a2a12.(2)若a1+a2+a3=2,a7+a8+a9=8,求a1+a2+a3+…+a3m-2+a3m-1+a3m.10.(2016 全国III高考)已知数列的前n项和,其中.(I(II)若,求.11.若a1=1,q≠1的等比数列前n项和为S,则原等比数列各项的倒数组成的数列的前n项和T是多少?12.一个等比数列{a n}共有2n项,其中偶数项的和是所有项和的,且S3=64,求此等比数列通项.13.已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)若a,b,c成公差d≠0的等差数列,证明 x,y,z成等比数列;(2)若x,y,z成公比q≠1的等比数列,证明a,b,c成等差数列.14.数列{a n}是等比数列,项数为偶数,各项为正,它所有项的和等于偶数项和的4倍,且第2项与第4项的积是第3项与第4项和的9倍,问数列{lga n}的前多少项的和最大?15.已知数列前n项和S n=(p-2)+pa n,n N*,p>1且p≠2(1)证明:{a n}是等比数列;(2)对一切自然数n,当a n+1>a n或a n+1<a n时,分别确定p的取值范围.16.已知数列{a n}为等差数列,公差d≠0,{a n}中部分项组成的数列恰为等比数列,且知k1=1, k2=5,k3=17.(1)求k n;(2)证明: k1+k2+……+k n=3n-n-1.【参考答案与解析】1.C2.【答案】B【解析】,,成等比数列,即解得:又3.B;4.【解析】等比数列{a n}中,因为a3=2S2+1,a4=2S3+1,得a4﹣a3=2S3+1﹣(2S2+1)=2(S3﹣S2)=2a3,即a4=3a3,解得q=3,故选C.5.B6.【答案】【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和.7.解析:(1)2(1+q+q2)=26, 解得q=3或q=-4.当q=3时a3=18;当q=-4时, a3=32.(2)(a3+a5)2=+2a3a5+=a2a4+2a3a5+a4a6=25, 又a n>0, ∴a3+a5=5.(3)∵a1a7=a2a6=a3a5=,∴a1a2a3……a7==37=2187.(4)依题意S n=2n-1,易求得a n=2n-1, a1=1且公比为2,可知,,……成等比数列,公比为4.∴++……+==.8.解析:依题意设这四个数为y, x-d, x,x+d,∵后三个数和为12,∴(x-d)+x+(x+d)=12,解得x=12.又前三个数成等比且和为19,∴, 解得或,∴这四个数为9,6,4,2或25,-10,4,18.9.解析:(1)原式=(a2a12)2-a2a12-6=0a2a12=3或a2a12=-2(舍去);(2)∴,由A1=a1+a2+a3=2a1(1+q+q2)=2,A2=a4+a5+a6=a1q3(1+q+q2),A3=a1q6(1+q+q2),A1,A2,A3成等比数列,且首项为A1公比为q3,由前面得q3=±2,则或.10.【解析】(I)由题意得由由所以因此是首项为,公比为的等比数列,于是(II)由(I)得解得11.解析:∵S=a1+a2+a3+……+a n=,∴T==.12.解析:∵S偶=S n,∴ =×,∴, ∴,又S3=64,∴,∴,∴×9×()n-1=×()n-3.13.证明:(1)由已知有-dlog m x+2dlog m y-dlog m z==0,∴xz=y2,∴x,y,z成等比数列.(2)∵y=xq, z=xq2, ∴(b-c)log m x+(c-a)log m x+(c-a)log m q+(a-b)log m x+2(a-b)log m q=0,即log m q(c-a+2a-2b)=0,又q≠1,∴log m q≠0, ∴c+a-2b=0,∴2b=a+c,∴a,b,c成等差数列.14.解析:由题意可知q≠1且,即,∴又a1q·a1q3=9(a1q2+a1q3),∴a1=22·33,∴∴lga n=2lg2-(n-4)lg3当n≥2时,lga n-lga n-1=2lg2-(n-4)lg3-[2lg2-(n-5)lg3]=-lg3<0∴数列{lga n}是递减的等差数列,且lga1=lg(22×33)>0设数列{lga n}的前n项和最大,则有∴n=5 ∴数列{lga n}的前5项和最大.15.证明:(1)∵S n=(p-2)+pa n,S n+1=(p-2)+pa n+1,∴S n+1-S n=a n+1=pa n+1-pa n(n≥1)∴(p-1)a n+1=pa n,∵p>1,p-1>0,∴∴{a n}是以为公比的等比数列.(2)∵a1=S1=p-2+pa1,∴,∴∴∵p>1,∴若a n+1>a n,只需2-p>0,∴1<p<2若a n+1<a n,只需2-p<0,∴p>2.16.解析:依题意:=a1, =a5=a1+4d, =a17=a1+16d,而,,为等比数列.故有(a1+4d)2=a1(a1+16d),解得a1=2d.因而{}的公比q====3.而在等差数列{a n}中是第k n项,∴=a1+(k n-1)d,即=(k n+1)d (1)又在等比数列{}中是第n项,∴=a1.q n-1即=2d.3n-1 (2)联立(1)(2),解得k n=2·3n-1-1.(2)k1+k2+……+k n=(2·30-1)+(2·31-1)+……+(2·3n-1-1)=2(30+31+……+3n-1)-n =。
高一下数学等比数列一.选择题(共21小题)1.已知等比数列{a n}中,a3a11=4a7,数列{b n}是等差数列,且b7=a7,则b5+b9等于()A.2B.4C.8D.162.已知各项均不相等的等比数列{a n},若3a2,2a3,a4成等差数列,设S n为数列{a n}的前n项和,则等于()A.B.C.3D.13.已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.4.等比数列{a n}满足a1=1,q=﹣3,则a5=()A.81B.﹣81C.243D.﹣2435.已知单调递减的等比数列{a n}中,a1>0,则该数列的公比q的取值范围是()A.q=1B.q<0C.q>1D.0<q<16.已知{a n}为等比数列,且a1=32,a2a3=128,设b n=log2a n,数列{b n}的前n项和为S n,则S n的最大值为()A.13B.14C.15D.167.已知数列{a n}满足a1=2,a n+1﹣a n=2n,则a9=()A.510B.512C.1022D.10248.已知{a n}是等比数列,a2=2,a5=,则公比q=()A.B.﹣2C.2D.9.在△ABC中,角A,B,C所对的边分别为a,b,c,若角A,B,C依次成等差数列,边a,b,c依次成等比数列,且b=2,则S△ABC=()A.B.1C.2D.10.等比数列{a n}的各项均为正数,且a2a9+a5a6=6,则log3a1+log3a2+…+log3a10=()A.6B.5C.4D.1+log3511.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2,a1=2,则a2020=()A.22019B.22020C.22021D.22021﹣212.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里B.48里C.36里D.24里13.在等比数列{a n}中,a1=﹣16,a4=8,则a7=()A.﹣4B.±4C.﹣2D.±214.已知等比数列{a n}中,a1=2,a5=18,则a2a3a4等于()A.36B.216C.±36D.±21615.已知等比数列{a n}满足a n+1<a n,a3=1,2a12+a11=a10,若{a n}的前n项和为S n,则S3为()A.1或7B.﹣1C.7D.116.在等比数列{a n}中,a2,a10是方程x2﹣5x+3=0的两根,则log3a6=()A.1B.C.D.﹣117.已知等比数列{a n}的各项均为正数,若a1=1,a2+a3=6a1,则a5=()A.4B.10C.16D.3218.等比数列{a n}的前n项和为S n,已知S3=1,S6=9,则S9等于()A.81B.17C.24D.7319.在等比数列{a n}中,已知a2a4a6=8,则a3a5=()A.3B.5C.4D.220.等比数列{a n}的各项均为正数,且a6a7+a5a8=18,则log3a1+log3a2+…log3a12=()A.12B.10C.8D.2+log3521.已知各项不为0的等差数列{a n},满足a72﹣a3﹣a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=()A.2B.4C.8D.16二.填空题(共3小题)22.已知等差数列{a n}的前n项和为S n,若,则cos(a2+a4)=23.若{a n}是等比数列,且前n项和为S n=3n﹣1+t,则t=.24.正项等比数列{a n}其中a2•a5=10,则lga3+lga4=.三.解答题(共16小题)25.已知△ABC的面积为S,且.(1)求tan2A的值;(2)若,,求△ABC的面积S.26.在等比数列{a n}中,a1+a2=6,a2+a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设{b n}是等差数列,且b2=a2,b4=a4.求数列{b n}的公差,并计算b1﹣b2+b3﹣b4+…﹣b100的值.27.已知数列{a n}的前n项和为S n,且满足2S n=3a n﹣3.(1)证明数列{a n}是等比数列;(2)若数列{b n}满足b n=log3a n,记数列{}前n项和为T n,证明:≤T n<1.28.已知等差数列{a n}的前n项和为S n,S5=30,S7=56;各项均为正数的等比数列{b n}满足b1b2=,b2b3=.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.29.已知数列{a n}的前n项和S n和通项a n满足S n=2a n﹣1,n∈N*.(1)求数列{a n}的通项公式;(2)已知数列{b n}中,b1=3a1,b n+1=b n+3,n∈N*,求数列{a n+b n}的前n项和T n.30.已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.31.设递增等差数列{a n}的前n项和为S n,已知a3=1,a4是a3和a7的等比中项,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.32.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列的前n项和T n.33.在公差不为零的等差数列{a n}中,a1+a3=8,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求证:S n<.34.已知各项均为正数的等比数列{a n}满足:,且3a3是a4,a5的等差中项.(1)求a n;(2)若,求数列{b n}的前n项和T n.35.在公差不为零的等差数列{a n}中,若首项a1=1,a4是a2与a8的等比中项.(1)求数列{a n}的通项公式;(2)求数列{2n•a n}的前n项和S n.36.已知{a n}是公差不为0的等差数列,满足a3=7,且a1、a2、a6成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.37.已知数列{a n}中,a1=1,a n=2a n﹣1+1(n≥2,n∈N*).(Ⅰ)记b n=a n+1,求证:{b n}为等比数列;(Ⅱ)在(Ⅰ)的条件下,设c n=(n+1)b n,求数列{c n}的前n项和T n.38.已知等比数列{a n}的公比q>1,且a1,a3的等差中项为5,a2=4.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.39.(1)设等差数列{a n}的前n项和为S n,若a6=S3=12,求{a n}的通项a n;(2)等比数列{a n}中,a5﹣a1=15,a4﹣a2=6,求公比q.40.在等比数列{a n}中a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.高一下数学等比数列参考答案一.选择题(共21小题)1.C;2.A;3.A;4.A;5.D;6.C;7.B;8.D;9.D;10.B;11.B;12.B;13.A;14.B;15.C;16.B;17.C;18.D;19.C;20.A;21.B;二.填空题(共3小题)22.;23.;24.1;。
等比数列性质练习题
在学习等比数列的性质时,我们需要通过一些具体的练习题来巩固和应用所学知识。
下面是一些等比数列性质练习题,帮助大家更好地理解和掌握等比数列的特点和性质。
练习题1:
已知等比数列的首项为a,公比为q,前n项和为Sn。
求证等比数列的前n项和的通项公式为:
Sn = (a * (q^n - 1)) / (q - 1)
练习题2:
已知等比数列的首项为3,公比为0.5,求证等比数列的第n项为:an = 3 * (0.5)^(n-1)
练习题3:
已知等比数列的首项为2,公比为1/3,前n项和为10。
求证等比数列的第n项为:
an = 2 * (1/3)^(n-1)
练习题4:
已知等比数列的首项为2,公比为3,第n项为162。
求证等比数列的前n项和为:
Sn = (2 * (3^n - 1)) / 2
练习题5:
已知等比数列的首项为10,公比为2,前n项和大于1000。
求证等比数列的第n项为:
an = 10 * (2^n - 1)
练习题6:
已知等比数列的前三项为2,6,18,求证等比数列的第n项为:an = 2 * (3^(n-1))
以上是一些关于等比数列性质的练习题,通过这些题目的解答和证明,可以更加全面地了解等比数列的性质和规律。
在解答过程中,注意使用等比数列的定义和性质,合理运用相关公式和推导方法。
通过大量的练习,相信大家能够熟练掌握等比数列的特点和运算,提高解题能力。
高一数学等比数列试题答案及解析1.已知是等比数列,且,,那么的值等于()A.5B.10C.15D.20【答案】A【解析】由于是等比数列,,,又.故选A.【考点】等比中项.2.在各项都为正数的等比数列{an}中,公比q=2,前三项和为21,则( ).A.33B.72C.84D.189【答案】C【解析】由,故选C.【考点】等比数列性质.3.在等比数列中,已知前n项和=,则的值为()A.-1B.1C.5D.-5【答案】D【解析】当=1时,===,当≥2时,==-=,∵是等比数列,∴公比为5,∴==5,解得=-5.【考点】等比数列定义;数列前n项和与第n项关系4.已知等比数列公比,若,,则 .【答案】42【解析】因为所以【考点】等比数列的有关运算5.已知数列{an }的前n项和为Sn,满足an¹ 0,,.(1)求证:;(2)设,求数列{bn }的前n项和Tn.【答案】(1)见解析(2)Tn=【解析】(1)由,变形为,然后利用累加法可证得结果. (2)由,.两式相减得,即,然后利用等差等比数列的前n项和公式即可求得结果.试题解析:(1)证明:∵,an¹ 0,∴.则,,…,(n≥2,).以上各式相加,得.∵,∴.∴(n≥2,).∵n = 1时上式也成立,∴().(2)∵,∴.两式相减,得.即.则.= =.【考点】递推关系式;累加法求和;等差等比数列的前n项和公式.6.已知实数列成等比数列,则()A.B.C.D.【答案】C【解析】记该数列为,并设该等比数列的公比为,则有,所以所以,故选C.【考点】等比数列的通项公式.7.等比数列满足,则公比__________.【答案】【解析】设公比为,根据等比数列的通项公式可得,,两式相除可得.【考点】等比数列的通项公式.8.已知等比数列的公比为2,前4项的和是1,则前8项的和为()A.23B.21C.19D.17【答案】D【解析】法一:设公比为,则依题意有,所以,所以,选D;法二:依题意可知,所以,所以,选D.【考点】等比数列的通项及其前项和公式.9.在等比数列中,如果,那么等于()A.2B.C.D.4【答案】D【解析】∵,∴,故选D.【考点】等比数列的性质.10.设成等比数列,其公比为2,则的值为( ) A.B.C.D.1【答案】A【解析】因为成等比数列,其公比为2,所以.因此.【考点】等比数列11.设,则等于 ( )【答案】C【解析】因为为一个以为首项,为公比等比数列前项的和,所以选C.【考点】等比数列求和12.已知等比数列中,则 ( )A.6B.﹣6C.±6D.18【答案】C【解析】因为,在等比数列中,如果,,那么,。
第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
高一数学等比数列 练习题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数列{}n a 中,122a a +=,3450a a +=,则公比q 的值为 ( )A .25B .5C .-5D .±52.等比数列{}n a 中, 0>n a ,443=a a ,则622212log log log a a a +++ 值为( )A .5B .6C .7D .83.等比数列,45,10,}{6431=+=+a a a a a n 中则数列}{n a 的通项公式为( )A .nn a -=42B .42-=n n aC .32-=n n aD .nn a -=324.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( )A .–4B .–6C .–8D .–10 5.等比数列{}n a 中29,a = 5243a =,则{}n a 的前4项和为 ( )A .81B .120C .140D .1926.设等比数列{}n a 的前n 项和为n S ,若63:1:2S S =,则93:S S =( )A .1:2B .2:3C .3:4D .1:37.已知等比数列{}n a 的首项为8,n S 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65, 后来该同学发现了其中一个数算错了,则该数为( )A . S 1B .S 2C . S 3D . S 48.已知()1f x bx =+为x 的一次函数,b 为不等于1的常量,且()g n =1(0)[(1)],(1)n f g n n =-≥⎧⎨⎩, 设()()()1n a g n g n n N +=--∈,则数列{}n a 为( )A .等差数列B .等比数列C .递增数列D .递减数列9.某人为了观看2008年奥运会,从2001年起,每年5月10日到银行存入a 元定期储蓄, 若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将 所有的存款及利息全部取回,则可取回的钱的总数(元)为( )A .7(1)a p +B .8(1)a p +C .7[(1)(1)]ap p p+-+D .()()811ap p p +-+⎡⎤⎣⎦10.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则c b a ++的值为( ) A .1 B .2C .3D .411.已知等比数列1},{32=>a a a n ,则使不等式0)1()1()1(2211≥-++-+-nn a a a a a a 成立的最大自然数n 是 ( )A .4B .5C .6D .712.在等比数列{}n a 中,公比1q ≠,设前n 项和为n S ,则2224x S S =+,246()y S S S =+的大小关系是( )A .x y >B .x y =C .x y <D .不确定第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题4分,共16分.把答案填在题中的横线上. 13.等比数列{}n a 的前n 项和n S =22-+⋅a a n,则n a =_______.14.已知数列前n 项和S n =2n-1,则此数列的奇数项的前n 项的和是________15.已知等比数列{}n a 及等差数列{}n b ,其中10b =,公差0d ≠.将这两个数列的对应项相加,得一新数列1,1,2,…,则这个新数列的前10项之和为 . 16.如果b 是a 与c 的等差中项,y 是x 与z 的等比中项,且,,y x z 都是正数,则()log ()log ()log m m m b c x c a y a b z -+-+-= (0,1m m >≠)三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程及演算步骤. 17.已知数列}{,}{n n b a 满足22,,4,21121+=-===++n n n n n b b a a b a a .(12分) (1)求证:数列{b n +2}是公比为2的等比数列; (2)求n a .18.已知数列{}n a 的前n 项和为).)(1(31,*∈-=N n a S S n n n (12分) (1)求21,a a ;(2)求证数列{}n a 是等比数列.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明:(12分) (1)数列{nS n}是等比数列; (2)S n +1=4a n .20.已知数列}{n a 满足:n n n a a a 21,2111=-=-且. (12分) (1)求432,a a a ,; (2)求数列}{n a 的通项n a .21.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (12分)(1)求数列{}n a 的通项公式; (2)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.22.甲、乙、丙3人互相传球,由甲开始传球,并作为第一次传球. (14分) (1)若经过5次传球后,球仍回到甲手中,则不同的传球方式有多少种? (2)设第n 次传球后,球回到甲手中不同的传球方式有a n 种,求a n参考答案一、选择题 1.B 2.D 3.A 4.B 5.B 6.C 7.C 8.B 9.D 10.A 11.B 12.B 二、填空题 13. 12-n . 14.)12(312-n. 15. 978. 16. 0. 三、解答题17. (1)由2242222211=++=+++=++n n n n n n b b b b b b 得, }2{+∴n b 是公比为2的等比数列.(2)由(1)可知22.22.224211111-=--=∴=⋅=+++++-n n n n n n n n a a b b 则.令n =1,2,…n -1,则22,22,221323212-=--=--=--n n n a a a a a a , 各式相加得)2222(32n n a ++++= n n n n n 222222)1(211-=+--=--++.18. (1)由)1(3111-=a S ,得)1(3111-=a a ,∴=1a 21-,又)1(3122-=a S , 即)1(31221-=+a a a ,得412=a .(2)当n>1时,),1(31)1(3111---=-=--n n n n na a S S a 得,211-=-n n a a 所以{}n a 是首项21-,公比为21-的等比数列. 19. (1)由a 1=1,a n+1=n n 2+S n (n=1,2,3,…),知a 2=112+S 1=3a 1,224212==a S , 111=S,∴21212=S S .又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列 .(2) 由(I )知,)2(14111≥-∙=+-+n n S n S n n ,于是S n+1=4(n+1)·11--n Sn =4a n (n 2≥).又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.(1)234a =,278a =,31516a =. (2)21212a a -=,32312a a -=,43412a a -=,……nn n a a 211=--,以上等式相加得 n n a a 212121321+++=- ,则n n a 2121212132++++= =211)211(21--n =n 211-. 21.(1)设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a 所以.2n a n =(2)令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ①,2)22(42132++-+++=n n n nx x n x x xS ②当1≠x时,①式减去②式,得,21)1(22)(2)1(112++---=-++=-n nn n n nx xx x nx x x x S x所以 .12)1()1(212x nx x x x S n n n----=+当1=x时, )1(242+=+++=n n n S n综上可得当1=x时,)1(+=n n S n ;当1≠x 时,.12)1()1(212xnx x x x S n n n----=+22. (1) 采用列表法由1可知总的传球方式有25=32种,回到甲手中的有10种.(2)设第n 次传球后,球回到甲手中的方式总数为a n ,球没有回到在甲手中的方式总数为n a ',球在甲手中的概率为nnn n n a a p p 2)(==,球不在甲手中的概率为nnn n na a p p 2)('='='n 次传球后,球在甲手中的方式总数为a n ,就等于n-1次传球后,球不在甲手中的方式总数为1-'n a ,∴n a =1-'na , 212222211111------='='='==n n nn n n nn n n p p p a a p ,显然01=a ,则01=p ,由于21212111+-=-=--n n n p p p , )31(21311--=-∴-n n p p ,显然{}31-n p 是首项为31311-=-p ,公比为 21-的等比数列,1)21(3131---=-n n p ,12.3)1(31--+=n n n p .+∈-+==∴N n p a nn n nn ,3)1.(22.2.。
第二章 数列2.4等比数列测试题知识点一: 等比数列的概念及等比中项的求解1.下面有四个结论:①由第1项起乘相同常数得后一项,这样所得到的数列一定为等比数列;②常数列b ,…,b 一定为等比数列;③等比数列{a n }中,若公比q =1,则此数列各项相等;④等比数列中,各项与公比都不能为零.其中正确的结论的个数是( )A .0B .1C .2D .32.2+1与2-1,两数的等比中项是( )A .1B .-1C .±1 D.123.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列知识点二: 等比数列的通项公式及运算4.已知一等比数列的前三项依次为x,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .85.(2014·东营高二检测)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A .1+ 2 B .1- 2C .3+2 2D .3-2 26.一个各项均为正数的等比数列,其任何项都是后面两项的和,则其公比是( )A.52B.1-52C.25D.5-12 7.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 014,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2 014×1010B .2 014×1011C .2 015×1010D .2 015×10118.(2015·山西四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)29.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.10.等比数列{a n }中,a 1=98,a n =13,公比q =23,则n =________.11.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.知识点三: 等比数列通项的简单应用12.在6和768之间插入6个数,使它们组成共8项的等比数列,则这个等比数列的第6项是________.13.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.14.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.15.(2014·潍坊高二检测)在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827.(1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项?16.等比数列{a n }中,a 2=32,a 8=12,a n >a n +1.(1)求数列{a n }的通项公式;(2)设T n =log 2a 1+log 2a 2+log 2a 3+…+log 2a n ,求T n 的最大值.知识点四:等比数列的判断与证明17.已知等比数列{b n }与数列{a n }满足b n =3a n (n ∈N *).(1)判断{a n }是何种数列,并给出证明;(2)若a 8+a 13=m ,求b 1·b 2·…·b 20.18.已知数列{a n }满足a 1=78,且a n +1=12a n +13,n ∈N *.(1)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列; (2)求数列{a n }的通项公式.19.数列{a n }中,a 1=2,a 2=3,且{a n a n +1}是以3为公比的等比数列,记b n =a 2n -1+a 2n (n ∈N *).(1)求a 3,a 4,a 5,a 6的值;(2)求证:{b n }是等比数列.20.已知数列{a n }是首项为2,公差为-1的等差数列,令b n =⎝ ⎛⎭⎪⎫12a n ,求证数列{b n }是等比数列,并求其通项公式.【参考答案】。
考点1等比数列的通项与前 n 项和 题型1已知等比数列的某些项,求某项【例1】已知a n 为等比数列,a 2 2,a 6 162,则a 10【解题思路】可以考虑基本量法,或利用等比数列的性质【解析】方法 1:a 2 a eag 5a&162813109a 1q4a 6q162 81 13122方法a 6 a 2162 2813104a 6q162 81 13122方法a n为等比数列a 2 3102 a6a 102 a6a 2夢13122【名师指引】给项求项问题,先考虑利用等比数列的性质, 再考虑基本量法题型2已知前n 项和S n 及其某项,求项数. 【例2】⑴已知S n 为等比数列a n 前n 项和,S n93,a n 48,公比q 2,则项数n⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.【解题思路】⑴利用等比数列的通项公式 a nn 1ag及S na1 (1求出a 1及q ,代入S n 可求项数n ;⑵利用等差q数列、等比数列设出四个实数代入已知,可求这四个数 【解析】⑴由S n 93, a n 48,公比qna 1 (2 2n a 11) 19348 2n 32 n 5.⑵方法1:设这四个数分别为 a, b,c,d ,则2b2c bd 方法2:设前2个数分别为a,b ,则第3、4个数分别为 2b (36 b) a (36 b)2b(37 a)解得a 12或b 1637 3636 b,37 方法3 :设第2、3个数分别为 b , c ,则第1个数为 99 4 ; 81 ; 42b c ,第1个数为2—,则b23【例4】已知s n 为等比数列a n 前n 项和,a n 1 3 33【解题思路】可以先求出a n ,再根据a n 的形式特点求解【解析】a n 1 3 32 333n 11(1 3n)11 32 21 23n 、1 1 3(1 3n ) 1S n -(3 32 33 3n)n —— n 22 2 13 2【解析】 a n (2n 1) 3nS n2 13 3 3 5 33 (2n 1)3n3S n 1 323 335 34(2n 3) 3nn 1(2n 1) 3 ---------②①一②,得 2S n 3 2( 3233 343n ) (2n 1) 3n 12c 2b c bb c 3620或:81 4 63~4方法4:设第2、个数分别为b , c设第1,4个数分别为2a c 2c2 ' a c方法5 :设第34个数分别为c,d ,则设第1,2个数分别为37d,36 c ,则 2(36 c) (37 d) c c 20 16 63 49 2 或 c , d .c 2d(36 c)d 2544【名师指引】 平时解题时,应注意多方位、多角度思考问题,加强一题多解的练习,这对提高我们的解题能力大有裨益 题型3求等比数列前n 项和【例3】等比数列 124,8, 中从第5项到第10项的和.【解题思路】可以先求出S 10,再求出S 4,利用S 10 S 4求解;也可以先求出 a 5及a 10,由a 5,a 6,a 7, ,a 10成等比数列求解 【解析】由a 1 1,a 2 2,得q 2, S 10 1(1 210) 1 21023,S 415,1 2編 S 41008. 3n 1 —n2 34 4 即S n 3n,求 S n【例5】已知S n 为等比数列a n 前n 项和,a n(2n 1) 3n ,求 S n .【解题思路】分析数列通项形式特点,结合等比数列前 n 项和公式的推导,采用错位相减法求和n 1S n (n 1) 3 3.【名师指引】根据数列通项的形式特点,等比数列求和的常用方法有:公式法、性质法、和从“通项”入手.【新题导练】3 29(1 3n1) (2n 1) 3n1(2 2n) 3n 1 6【解析】a2a1q 35a6 a〔q 243a1 1,q3或a11,q当a1 1, q 3 时,S n 1(13n)364n 6 ;13当a11,3 时,S n11 ( 3)n364n无整数解1 34.已知等比数列a n 中,a2,则其前3项的和S3的取值范围是的前n项和,a2 3, a63.已知S n为等比数列a n 分解重组法、错位相减法,即数列求1.已知a n为等比数列,6 a2 a3 3,a6 a7 a$ 6,求a〔1 a〔2a i3的值.【解析】设等比数列a na3 3, a6 a7 a8 6,a4 a5 a62,a〔1a12 a13 ;a1 a? a32.如果将20,50,100依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为【解析】设这个常数为x,则20 x,50x,100 x成等比数列,2(50 x) (20 x)(100 x),解得50 -454205 412085 17364 ,243, S n【解析】丁等比数列 a n 中a 2 1 .• S 3 a 1 a 2 a 3 a 2 1 q当公比q 0时,S 3 1 q 1 2打 7 3 ;q Yq当公比q 0时,S 3 1 1 q - 1 2 q 1 1,. S 3 q Vq5.已知S n 为等比数列a n 前n 项和, a n 0,S n 80 ,S 2n 6560, 【解析】由a n 0,S n 80, S 2n6560, 知q 1, S n a 1(1『)80, S 2na 1(1 2n q ) 6560.1 q1 q3,前n 项中的数值最大的项为 54,求So 。
高一数学等比数列练习题1【等比数列】本卷共100分,考试时间90分钟 一、选择题 (每小题4分,共40分) 1. 已知等比数列}{na 中1n naa +>,且37283,2aa a a +=⋅=,则117a a =( )A.21B. 23C. 32D. 22.已知等比数列}{n a 的公比为正数,且3a ·9a =225a2a =1,则1a = ( )A.21B. 22C. 2D.23. 在等比数列}{na 中,,8,1685=-=a a 则=11a ( )A. 4-B. 4±C. 2- D .2±4. 等比数列{}na 的前n 项和为nS ,已知2110m m m a a a -++-=,2138m S-=,则m =( )A.38B.20C.10D.9 5.设等比数列{ na }的前n 项和为nS ,若63S S =3 ,则 69SS =( )(A ) 2 (B ) 73(C ) 83 (D )36. 已知等比数列的首项为8,S n 是其前n 项的和,某同学计算得到S 2=20,S 3=36,S 4=65,后来该同学发现了其中一个数算错了,则该数为( ) A .S 1 B .S 2 C . S 3D .S 47. 已知nS 是公差不为0的等差数列{}na 的前n 项和,且421,,S S S 成等比数列,则132a a a +等于( )A. 4B.6C.8D.108. 已知等比数列{}na 的公比0q >,其前n 项的和为nS ,则45S a 与54S a 的大小关系是( )A.4554S a S a < B.4554S aS a > C.4554S aS a = D.不确定9. 已知等比数列aa Sn a n nn则项和的前,612}{1+⋅=-的值为( ) A .31 B .21 C .—31 D .—2110. 若{}na 是等比数列,前n 项和21n nS=-,则2222123n a a a a ++++=( )A.2(21)n- B.21(21)3n- C.41n- D.1(41)3n-二、填空题 (每小题4分,共16分)11. 已知数列1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则=+221b a a _______.12. 已知等差数列{a n },公差d ≠0,431a a a ,,成等比数列,则18621751a a aa a a++++=13. 等比数列{na }的公比0q >, 已知2a =1,216n n na a a +++=,则{na }的前4项和4S = 。
高一数学等比数列试题答案及解析1.在正项等比数列中,,则()A.B.C.D.【答案】B【解析】由等比数列的性质得,则.【考点】等比数列的性质和对数的运算.2.已知{an }是公比为q的等比数列,且a1,a3,a2成等差数列,则q= ( ).A.1或-B.1C.-D.-2[【答案】A.【解析】根据题意,有,因为,所以,解得1或-.【考点】等比数列的通项公式,等差中项的定义.3.公比为的等比数列的各项都是正数,且,则= ()A.B.C.D.【答案】B【解析】由等比数列性质知,=,由是各项都是正数且公比为2的等比数列求得=4,∴==2.【考点】等比数列性质4.在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.【答案】C【解析】设等比数列的公比,则,由数列也是等比数列得是等比数列,所以有,,为等比数列,所以得即,所以;【考点】等比数列的通项及前项和;5.在数列中,已知,则【答案】【解析】构造数列,将等式两边同时加1得,即得到,所以构成以首项为2,公比为3的等比数列,所以有,所以有;【考点】等比数列性质6.在中的内角所对的边分别为,若成等比数列,则的形状为A.直角三角形B.等腰三角形C.等边三角形D.不确定【答案】C【解析】由余弦定理得,又成等比数列,,联立,得,,所以是等边三角形.【考点】余弦定理、等比中项7.已知数列{an }中,a1=1,an+1= (n∈N*).(1)求证:数列{+}是等比数列,并求数列{an }的通项an(2)若数列{bn }满足bn=(3n-1)an,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.【答案】(1) an= ;(2) -1<λ<2.【解析】(1)将已知an+1=取倒数可得: +1进而利用待定系数法将此式转化为: +=3从而可证数列{+}是等比数列,然后应用等比数的通项公式可求得数列{an }的通项an; (2)由(1)及已知可得bn=(3n-1)·=n· n-1,此数列是由一个等差数列{n}与一个等比数列{ n-1}对应项的积构成的一个数列,此数列的前n项和应用乘公比错位相减法就可求得其前n项和Tn ;然后研究数列{Tn}的单调性可知:{Tn}为递增数列,最后通过讨论n的奇偶性及不等式恒成立的知识就可求得λ的取值范围.注意不等式:对一切n∈N*恒成立等价于,同理:不等式:对一切n∈N*恒成立等价于.试题解析:(1)由题知,+1, . .1分∴+=3, 2分∴数列{+}是以3为公比以=为首项的等比数列。
必修5《数列》同步训练(共7份)含答案2.1 数列的概念与简单表示法一、选择题:1.下列解析式中不.是数列1,-1,1,-1,1,-1…,的通项公式的是 ( ) A.(1)n n a =- B.1(1)n n a +=- C.1(1)n n a -=- D.{11n n a n =-,为奇数,为偶数2,的一个通项公式是 ( )A. n aB. n a =C. n a =D.n a =3.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第 ( )项. A. 9 B. 10 C. 11 D. 124.数列{}n a ,()n a f n =是一个函数,则它的定义域为 ( )A. 非负整数集B. 正整数集C. 正整数集或其子集D. 正整数集或{}1,2,3,4,,n5.已知数列{}n a ,22103n a n n =-+,它的最小项是 ( )A. 第一项B. 第二项C. 第三项D. 第二项或第三项6.已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-二.填空题:7、观察下面数列的特点,用适当的数填空(1),14,19,116,; (2)32,54,,1716,3332,。
8.已知数列{}n a ,85,11n a kn a =-=且,则17a =.9.根据下列数列的前几项的值,写出它的一个通项公式。
(1)数列0.7,0.77,0.777,0.7777,…的一个通项公式为.(2)数列4,0,4,0,4,0,…的一个通项公式为.(3)数列1524354863,,,,,,25101726的一个通项公式为.10.已知数列{}n a 满足12a =-,1221n n na a a +=+-,则4a =.三.解答题11.已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数,①求{}n a 的通项公式,并求2005a ;②若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.12.已知{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.2.2等差数列一.选择题:1、等差数列{a n }中,a 1=60,a n+1=a n+3则a 10为………………………………( ) A 、-600 B 、-120 C 、60 D 、-602、若等差数列中,a 1=4,a 3=3,则此数列的第一个负数项是……………………( )A 、a 9B 、a 10C 、a 11D 、a 12 3.若数列{}n a 的通项公式为25n a n =+,则此数列是 ( )A.公差为2的等差数列B. 公差为5的等差数列C.首项为5的等差数列D. 公差为n 的等差数列4.已知{a n }是等差数列,a 7+a 13=20,则a 9+a 10+a 11=……………………( ) A 、36 B 、30 C 、24 D 、185.等差数列3,7,11,,---的一个通项公式为 ( )A.47n -B.47n --C.41n +D.41n -+6.若{}n a 是等差数列,则123a a a ++,456a a a ++,789a a a ++,,32313n n n a a a --++,是 ( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D.一定是递减数列二.填空题:7.等差数列{}n a 中,350a =,530a =,则7a =.8.等差数列{}n a 中,3524a a +=,23a =,则6a =.9.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a =.10.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8=.三.解答题11.判断数52,27()k k N ++∈是否是等差数列{}n a :5,3,1,1,,---中的项,若是,是第几项?12.等差数列{a n}中,a1=23,公差d为整数,若a6>0,a7<0.(1)求公差d的值;(2)求通项a n.13、若三个数a-4,a+2,26-2a,适当排列后构成递增等差数列,求a的值和相应的数列.2.3等差数列的前n 项和一.选择题:1.等差数列{}n a 中,10120S =,那么110a a += ( )A.12B.24C.36D.482.从前180个正偶数的和中减去前180个正奇数的和,其差为 ( )A.0B.90C.180D.3603.已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数D.有最大值且是分数4.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A.130B.170C.210D.2605.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为 ( )A.0B.100C.1000D.100006.若关于x 的方程20x x a -+=和20x x b -+=()a b ≠的四个根组成首项为14的等差数列,则a b += ( ) A.38B.1124C.1324D.3172二.填空题:本大题共4小题,每小题 4分,共16分,把正确答案写在题中横线上.7.等差数列{}n a 中,若638a a a =+,则9s =.8.等差数列{}n a 中,若232n S n n =+,则公差d =.9.有一个 凸n 边形,各内角的度数成等差数列,公差是100,最小角为1000,则边数n=.10.若两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+,则88a b =. 三.解答题11.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.12.已知等差数列{a n}的项数为奇数,且奇数项的和为44,偶数项的和为33,求此数列的中间项及项数。
高一数学同步测试—等比数列
一、选择题:
1.{a n }是等比数列,下面四个命题中真命题的个数为
( )
①{a n 2}也是等比数列 ②{ca n }(c ≠0)也是等比数列 ③{
n
a 1
}也是等比数列 ④{ln a n }也是等比数列A .4 B .3
C .2
D .1
2.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为
( )
A .216
B .-216
C .217
D .-217
3.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为
( )A .1
B .-
2
1 C .1或-1 D .-1或
2
14.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )
A .4
B .
2
3
C .
9
16 D .2
5.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为
( )
A .x 2-6x +25=0
B .x 2+12x +25=0
C .x 2+6x -25=0
D .x 2-12x +25=0
6.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该
厂的总产值是
( )
A .1.1 4 a
B .1.1 5 a
C .1.1 6 a
D . (1+1.1 5)a
7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ( )
A .89a
b
B .(a
b )
9
C .910a
b
D .(
a
b )10
8.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为
( )
A .32
B .313
C .12
D .15
9.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为
( )
A .
11
n B .11n C .112-n D .1
11-n 10.已知等比数列{}n a 中,公比2q =,且30
123302a a a a ⋅⋅⋅⋅=L ,那么
36930a a a a ⋅⋅⋅⋅L 等于
( )
A .10
2 B .20
2 C .162 D .15
2
11.等比数列的前n 项和S n =k ·3n +1,则k 的值为
( )
A .全体实数
B .-1
C .1
D .3
12.某地每年消耗木材约20万3
m ,每3
m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少
t 2
5
万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是
( )
A .[1,3]
B .[2,4]
C .[3,5]
D .[4,6]
二、填空题:
13.在等比数列{a n }中,已知a 1=2
3
,a 4=12,则q =_____ ____,a n =____ ____.
14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___
___.
15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .
16.数列{n a }中,31=a 且n a a n n (2
1=+是正整数),则数列的通项公式
=n a .
三、解答题:
17.已知数列满足a 1=1,a n +1=2a n +1(n ∈N *)
(1) 求证数列{a n +1}是等比数列;(2) 求{a n }的通项公式.
18.在等比数列{a n }中,已知对n ∈N*,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.
19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .
20.求和:S n =1+3x +5x 2+7x 3+…+(2n -1)x n -
1(x ≠0).
21.在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前n 项和S n =126,求n 及公比q .
22.某城市1990年底人口为50万,人均住房面积为16 m 2,如果该市每年人口平均增
长率为1%,每年平均新增住房面积为30万 m 2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m 2)
参考答案
一、选择题: BDCAD BACDB BC 二、填空题:13.2,
3·2n -
2.
14.2
51+.15.512 .16.1
23-n .
三、解答题:
17.(1)证明: 由a n +1=2a n +1得a n +1+1=2(a n +1)
又a n +1≠0 ∴
1
1
1+++n n a a =2
即{a n +1}为等比数列.
(2)解析: 由(1)知a n +1=(a 1+1)q n -
1
即a n =(a 1+1)q n -1-1=2·2n -
1-1=2n -1
18.解析: 由a 1+a 2+…+a n =2n -1 ①
n ∈N*知a 1=1
且a 1+a 2+…+a n -1=2n -
1-1 ②
由①-②得a n =2n -
1,n ≥2
又a 1=1,∴a n =2n -
1,n ∈N*
212
2
2
1)
2()2(-+=n n n
n a a =4 即{a n 2}为公比为4的等比数列
∴a 12+a 22+…+a n 2=
)14(3
141)41(2
1
-=--n n
a 19.解析一: ∵S 2n ≠2S n ,∴q ≠1
②÷①得:1+q n =45
即q n =4
1
③ ③代入①得q
a -11
=64
④ ∴S 3n =
q a -11 (1-q 3n )=64(1-34
1
)=63 解析二: ∵{a n }为等比数列
∴(S 2n -S n )2=S n (S 3n -S 2n )
∴S 3n =48
)4860()(2
2222-=
+-n n n n S S S S +60=63 根据已知条件⎪⎪⎩
⎪⎪
⎨⎧-=-=--q q a q
q a n
n
160)1(481)
1(211
① ②
20.解析:当x =1时,S n =1+3+5+…+(2n -1)=n 2
当x ≠1时,∵S n =1+3x +5x 2+7x 3+…+(2n -1)x n -
1, ① 等式两边同乘以x 得:
xS n =x +3x 2+5x 3+7x 4+…+(2n -1)x n . ②
①-②得:
(1-x )S n =1+2x (1+x +x 2+…+x n -
2)-(2n -1)x n =1-(2n -1)x n +
1
)
1(21---x x x n ,
∴S n =2
1)
1()1()12()12(-+++--+x x x n x n n n . 21.解析:∵a 1a n =a 2a n -1=128,又a 1+a n =66,
∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64, ∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1.
若a 1=2,a n =64,由q
q
a a n --11=126得2-64q =126-126q ,
∴q =2,由a n =a 1q n
-1
得2n -
1=32, ∴n =6.
若a 1=64,a n =2,同理可求得q =
2
1
,n =6. 综上所述,n 的值为6,公比q =2或
2
1. 22.解析:依题意,每年年底的人口数组成一个等比数列{a n }:a 1=50,q =1+1%=1.01,
n =11
则a 11=50×1.0110=50×(1.015)2≈55.125(万),
又每年年底的住房面积数组成一个等差数列{b n }:b 1=16×50=800,d =30,n =11 ∴b 11=800+10×30=1100(万米2)
因此2000年底人均住房面积为:1100÷55.125≈19.95(m 2)。