精选05 曲线运动(解析版)-2020年高考物理108所名校押题精选
- 格式:pdf
- 大小:205.02 KB
- 文档页数:6
精选05 曲线运动1.有一个竖直固定放置的四分之一光滑圆弧轨道,轨道圆心O 到地面的高度为5 m ,小球从轨道最高点A 由静止开始沿着圆弧轨道滑下,从轨道最低点B 离开轨道,然后做平抛运动落到水平地面上的C 点,B 点与C 点的水平距离也等于5 m ,则下列说法正确的是A .根据已知条件可以求出该四分之一圆弧轨道的轨道半径为1 mB .当小球运动到轨道最低点B 时,轨道对它的支持力等于重力的4倍C .小球做平抛运动落到地面时的速度与水平方向夹角θ的正切值tan θ=1D .小球在圆弧轨道上运动的过程中,重力对小球的冲量在数值上大于圆弧的支持力对小球的冲量 【答案】C【解析】A .小球到达B 的过程中应用动能定理:212mgR mv =,解得在最低点速度:v =小球做平抛运动时,竖直方向:212h R gt -=,水平方向:h vt =,解得 2.5m R =,故A 错误;B .小球在B 点受到的支持力与重力的合力提供向心力,则:2B mv F mg R-=,解得3B F mg =,故B 错误;C .设小球做平抛运动位移与水平方向夹角为α,则tan 0.5h Rhα-==,因为:tan 2tan θα=,所以tan 1θ=,故C 正确;D .小球从A 运动到B ,合外力冲量水平向右,则支持力的冲量在竖直方向的分量与重力的冲量大小相等,故支持力冲量在数值上大于重力的冲量,故D 错误。
2.为了解决高速列车在弯路上运行时轮轨间的磨损问题,保证列车能经济、安全地通过弯道,常用的办法是将弯道曲线外轨轨枕下的道床加厚,使外轨高于内轨,外轨与内轨的高差叫曲线外轨超高。
已知某曲线路段设计外轨超高值为70mm ,两铁轨间距离为1435mm ,最佳的过弯速度为350km/h ,则该曲线路段的半径约为( ) A .40 km B .30 km C .20 kmD .10 km【答案】C【解析】设倾角为θ,列车转弯的合力提供向心力则有2tan v mg m Rθ=,得2tan v R g θ=,由于倾角很小,则有tan sin θθ≈,则有2350()3.619376.9m 20km 70101435R =≈≈⨯,故ABD 错误,C 正确。
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
2020年高考物理曲线运动专项复习试卷(名师精选预测试题+详细解析答案,值得下载)考生注意:1.本试卷共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间90分钟,满分100分.4.请在密封线内作答,保持试卷清洁完整.一、单项选择题(本题共9小题,每小题4分,共36分.在每小题给出的四个选项中只有一个选项正确,选对得4分,选错得0分)1.在力学理论建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法中不正确的是()A.伽利略首先将实验事实和逻辑推理(包括数学推演)和谐地结合起来B.笛卡儿对牛顿第一定律的建立做出了贡献C.开普勒通过研究行星观测记录,发现了行星运动三大定律D.牛顿总结出了万有引力定律并用实验测出了引力常量2.由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.轨道半径可以不同B.质量可以不同C.轨道平面可以不同D.速率可以不同3.(2018·黑龙江齐齐哈尔模拟)如图1所示为一种叫做“魔盘”的娱乐设施,当转盘转动很慢时,人会随着“魔盘”一起转动,当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上,而不会滑下.若“魔盘”半径为r,人与“魔盘”竖直壁间的动摩擦因数为μ,在人“贴”在“魔盘”竖直壁上,随“魔盘”一起运动的过程中,下列说法正确的是(假设最大静摩擦力等于滑动摩擦力)()图1A.人随“魔盘”转动过程中受重力、弹力、摩擦力和向心力作用B.如果转速变大,人与器壁之间的摩擦力变大C.如果转速变大,人与器壁之间的弹力变大D.“魔盘”的转速一定等于12πg μr4.返回式卫星在回收时一般采用变轨的方法:在远地点和近地点分别点火变轨,使其从高轨道进入椭圆轨道,再回到近地轨道,最后进入大气层落回地面.某次回收卫星的示意图如图2所示,则下列说法正确的是()图2A.不论在A点还是在B点,两次变轨前后,卫星的机械能都增加了B.卫星在轨道1上经过B点的加速度大于在轨道2上经过B点的加速度C.卫星在轨道2上运动时,经过A点时的动能大于经过B点时的动能D.卫星在轨道2上运动的周期小于在轨道3上运动的周期5.人站在平台上水平抛出一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,图中能表示出速度矢量的演变过程的是()6.如图3所示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v 1、v 2,则( )图3A.ω1<ω2,v 1=v 2B.ω1>ω2,v 1=v 2C.ω1=ω2,v 1>v 2D.ω1=ω2,v 1<v 27.(2018·甘肃天水一中段考)如图4所示是两颗仅在地球引力作用下绕地球运动的人造卫星轨道示意图,Ⅰ是半径为R 的圆轨道,Ⅱ为椭圆轨道,AB 为椭圆的长轴且AB =2R ,两轨道和地心在同一平面内,C 、D 为两轨道的交点.已知轨道Ⅱ上的卫星运动到C 点时速度方向与AB 平行,下列说法正确的是( )图4A.两个轨道上的卫星在C 点时的加速度相同B.两个轨道上的卫星在C 点时的向心加速度大小相等C.轨道Ⅱ上卫星的周期大于轨道Ⅰ上卫星的周期D.轨道Ⅱ上卫星从C 经B 运动到D 的时间与从D 经A 运动到C 的时间相等8.如图5所示,水平圆盘可绕过圆心的竖直轴转动,质量相等的A 、B 两物块静置于水平圆盘的同一直径上.A与竖直轴距离为2L,连接A、B两物块的轻绳长为3L,轻绳不可伸长.现使圆盘绕竖直轴匀速转动,两物块始终相对圆盘静止,则()图5A.A物块所受摩擦力一定指向圆心B.B物块所受摩擦力一定指向圆心C.A物块所受摩擦力一定背离圆心D.B物块所受摩擦力一定背离圆心9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,双星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3k T C.n2k T D.nk T二、多项选择题(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,至少有两个选项是正确的,全部选对的得5分,选对但不全的得3分,有选错的得0分) 10.假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么()A.地球的公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度C.地球公转的向心加速度大于火星公转的向心加速度D.地球公转的角速度大于火星公转的角速度11.(2018·河北、山西、河南三省联考)如图6所示竖直截面为半圆形的容器,O为圆心,且AB为沿水平方向的直径.一物体在A点以向右的水平初速度v抛出,与此同时另一物A抛出,两物体都落到容器的同一点P.已知∠BAP=37°,体在B点以向左的水平初速度vB不计空气阻力,下列说法正确的是()图6A.B比A先到达P点B.两物体一定同时到达P点C.抛出时,两物体的速度大小之比为v A∶v B=16∶9D.抛出时,两物体的速度大小之比为v A∶v B=4∶112.如图7所示,小滑块a从倾角为θ=60°的固定粗糙斜面顶端以速度v1沿斜面匀速下滑,同时将另一小滑块b在斜面底端正上方与小滑块a等高处以速度v水平向左抛出,两滑2块恰在斜面中点P处相遇,不计空气阻力,则下列说法正确的是()图7A.v1∶v2=2∶1B.v1∶v2=1∶1C.若小滑块b以速度2v2水平向左抛出,则两滑块仍能相遇D.若小滑块b以速度2v2水平向左抛出,则小滑块b落在斜面上时,小滑块a在小滑块b 的下方13.如图8,在水平圆盘上放有质量分别为m、m、2m的可视为质点的三个物体A、B、C,圆盘可绕垂直圆盘的中心轴OO′转动.三个物体与圆盘间的动摩擦因数相同,最大静摩擦力可认为等于滑动摩擦力.三个物体与轴O共线且OA=OB=BC=r,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.当圆盘从静止开始转动,角速度极其缓慢地增大,则对于这个过程,下列说法正确的是()图8A.A、B两个物体同时达到最大静摩擦力B.B、C两个物体的静摩擦力先增大后不变,A物体所受的静摩擦力先增大后减小再增大C.当ω>μgr时整体会发生滑动D.当μg2r<ω<μgr时,在ω增大的过程中B、C间的拉力不断增大14.(2017·天津和平质量调查)航天器关闭动力系统后沿如图9所示的椭圆轨道绕地球运动,A、B分别是轨道上的近地点和远地点,A位于地球表面附近.若航天器所受阻力不计,以下说法正确的是()图9A.航天器运动到A点时的速度等于第一宇宙速度B.航天器由A运动到B的过程中万有引力做负功C.航天器由A运动到B的过程中机械能不变D.航天器在A点的加速度小于在B点的加速度15.已知某卫星在赤道上空轨道半径为r1的圆形轨道上绕地运行的周期为T,卫星运行方向与地球自转方向相同,赤道上某城市的人每三天恰好五次看到卫星掠过其正上方,假设某时刻,该卫星在A点变轨进入椭圆轨道(如图10),近地点B到地心距离为r2.设卫星由A到B运动的时间为t,地球自转周期为T,不计空气阻力,则()图10A.T =38T 0B.t =r 1+r 2T 4r 1 r 1+r 22r 1C.卫星在图中椭圆轨道由A 到B 时,机械能增大D.卫星由图中圆轨道进入椭圆轨道过程中,机械能不变三、非选择题(本题共4小题,共34分)16.(6分)(2015·全国卷Ⅰ·22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).图11完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图11(a)所示,托盘秤的示数为1.00 kg ;(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为_____ kg ;(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示:(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为________ N ;小车通过最低点时的速度大小为________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)17.(8分)质量为m 的卫星发射前静止在地球赤道表面.假设地球可视为质量均匀分布的球体,半径为R .(1)已知地球质量为M ,自转周期为T ,引力常量为G ,求此时卫星对地表的压力F N 的大小.(2)卫星发射后先在近地轨道上运行(轨道离地面的高度可忽略不计),运行的速度大小为v 1,之后经过变轨成为地球的同步卫星,此时离地面高度为H ,运行的速度大小为v 2.①求比值v 1v 2; ②若卫星发射前随地球一起自转的速度大小为v 0,通过分析比较v 0、v 1、v 2三者的大小关系.18.(10分)(2018·福建师范大学附中期中)如图12所示,滑板运动员从倾角为53°的斜坡顶端滑下,滑下的过程中他突然发现在斜面底端有一高h=1.4 m、宽L=1.2 m的长方体障碍物,为了不触及这个障碍物,他必须在距水平地面高度H=3.2 m的A点沿水平方向跳起离开斜面(竖直方向的速度变为0).已知运动员的滑板与斜面间的动摩擦因数μ=0.1,忽略空气阻力,重力加速度g取10 m/s2.(已知sin 53°=0.8,cos 53°=0.6)求:图12(1)运动员在斜面上滑行的加速度的大小;(2)若运动员不触及障碍物,他从斜面上起跳后到落至水平面的过程所经历的时间;(3)运动员为了不触及障碍物,他从A点沿水平方向起跳的最小速度.19.(10分)“嫦娥一号”探月卫星的成功发射,实现了中华民族千年奔月的梦想.假若我国的航天员登上某一星球并在该星球表面上做了如图13所示的力学实验:让质量为m=1.0 kg=1 m/s的初速度从倾角为53°的斜面AB的顶点A滑下,到达的小滑块(可视为质点)以vB点后恰好能沿倾角为37°的斜面到达C点.不计滑过B点时的机械能损失,滑块与斜面间的动摩擦因数均为μ=0.5,测得A、C两点离B点所在水平面的高度分别为h=1.2 m,1h2=0.5 m.已知sin 37°=0.6,cos 37°=0.8,不计该星球的自转以及其他星球对它的作用.图13(1)求该星球表面的重力加速度g;(2)若测得该星球的半径为R=6×106 m,航天员要在该星球上发射一颗探测器绕其做匀速圆周运动,则探测器运行的最大速度为多少?(3)若测得该星球的半径为R=6×106m,取地球半径R0=6.4×106m,地球表面的重力加速度g0=10 m/s2,求该星球的平均密度与地球的平均密度之比ρρ0.答案精析1.D2.B [不同国家的同步卫星都具有相同的轨道半径、速率、轨道平面、角速度、周期等,故选B.]3.C [人随“魔盘”转动过程中受重力、弹力、摩擦力,故A 错误;人在竖直方向受到重力和摩擦力,二力平衡,则知转速变大时,人与器壁之间的摩擦力不变,故B 错误;如果转速变大,由F =mrω2,知人与器壁之间的弹力变大,故C 正确;人恰好“贴”在“魔盘”上时,有mg ≤F fmax ,F N =mr (2πn )2,又F fmax =μF N ,解得转速为n ≥12πgμr ,故D 错误.]4.C [不论是在A 点还是在B 点的两次变轨前后,都要减速,前者做圆周运动,后者做向心运动,故机械能都要减小,故A 错误;卫星变轨前后都是只有万有引力来提供加速度,加速度a =GMr 2,即变轨前后的加速度是相等的,故B 错误;根据开普勒第二定律可知卫星在远地点B 的速度小于在近地点A 的速度,所以在轨道2上经过A 点时的动能大于经过B 点时的动能,故C 正确;由开普勒第三定律a 3T 2=k 知,卫星在轨道2上运动的周期大于在轨道3上运动的周期,故D 错误.] 5.C 6.A7.A [在C 点,地球对两个轨道上卫星的万有引力相同,故在C 点时的加速度相同,地球对轨道Ⅰ上的卫星的万有引力提供向心力,而轨道Ⅱ上卫星的向心力由万有引力的分力提供,故轨道Ⅰ上的卫星的向心加速度大于轨道Ⅱ上卫星的向心加速度,选项A 正确,选项B 错误;由开普勒第三定律r 3T 2=k ,轨道Ⅰ上卫星的周期T 1=R 3k ,轨道Ⅱ上卫星的周期T 2=⎝⎛⎭⎫AB 23k =R 3k ,故轨道Ⅱ上卫星的周期等于轨道Ⅰ上卫星的周期,选项C 错误;轨道Ⅱ上卫星从C 经B 运动到D 的平均速度小于从D 经A 运动到C 的平均速度,故从C 经B 运动到D 的时间大于从D 经A 运动到C 的时间,选项D 错误.]8.A9.B [如图所示,设两恒星的质量分别为M 1和M 2,轨道半径分别为r 1和r 2.根据万有引力定律及牛顿第二定律可得G M 1M 2r 2=M 1⎝⎛⎭⎫2πT 2r 1=M 2⎝⎛⎭⎫2πT 2r 2,解得G M 1+M 2r 2=⎝⎛⎭⎫2πT 2(r 1+r 2),即G M r 3=⎝⎛⎭⎫2πT 2,当两星的总质量变为原来的k 倍,它们之间的距离变为原来的n 倍时,有G kMnr 3=⎝⎛⎭⎫2πT ′2,联立得T ′=n 3k T ,选项B 正确.]10.CD11.BC [两物体同时抛出,都落到P 点,由平抛运动规律可知两物体下落了相同的竖直高度,由H =gt 22,得t =2Hg,同时到达P 点,A 错误,B 正确.在水平方向,抛出的水平距离之比等于抛出速度之比,设圆的半径为R ,由几何关系得x AM =2R cos 237°,而x BM =x MP tan 37°,x MP =x AP sin 37°,x AP =2R cos 37°,联立上述表达式得x AM ∶x BM =16∶9,C 正确,D 错误.]12.AD [两小滑块恰在斜面中点P 相遇,由几何关系可知两小滑块水平位移相等,有v 1t sin 30°=v 2t ,解得v 1∶v 2=2∶1,选项A 正确,B 错误.小滑块b 以速度2v 2水平向左抛出时,若没有斜面,将到达与P 点等高的B 点;若有斜面则落在斜面上A 点,如图所示.设斜面长为2L ,小滑块b 在水平方向做匀速直线运动,由几何知识得,其运动到A 点的水平位移大于2L 3,且水平分速度大小等于v 1,小滑块b 运动到A 点的时间t b >2L 3v 1,由几何关系有,小滑块a 运动到A 点的位移小于2L 3,则其运动到A 点的时间t a <2L3v 1,t b>t a ,两小滑块不能相遇,小滑块b 运动到A 点时,小滑块a 已经运动到A 点下方,选项C 错误,D 正确.]13.BCD [当圆盘转速增大时,静摩擦力提供向心力,三个物体的角速度相等,由F 0=mω2r ,由于C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时μ(2m )g =2m ·2rω12,解得ω1=μg2r,当C 的摩擦力达到最大静摩擦力之后,BC 间细线开始提供拉力,B 的摩擦力增大,达到最大静摩擦力后,A 、B 之间细线开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 的摩擦力也达到最大时,且BC 间细线的拉力大于A 、B 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到细线的拉力,对C 有F T +μ·2mg =2m ·2rω22,对A 、B 整体有F T =2μmg ,解得ω2=μgr ,当ω2>μgr 时整体会发生滑动.]14.BC [由于A 点位于地球表面附近,若航天器以R A 为半径做圆周运动时,速度应为第一宇宙速度,现航天器过A 点做离心运动,则其过A 点时的速度大于第一宇宙速度,A 项错误.由A 到B 高度增加,万有引力做负功,B 项正确.航天器由A 到B 的过程中只有万有引力做功,机械能守恒,C 项正确.由G Mm R 2=ma ,可知a A =GM R A2,a B =GMR B2,又R A <R B ,则a A >a B ,D 项错误.]15.AB [根据题意有:2πT ·3T 0-2πT 0·3T 0=5·2π,得T =38T 0,所以A 正确;由开普勒第三定律有⎣⎡⎦⎤12r 1+r 23t2=r 13T 2,得t =r 1+r 2T4r 1 r 1+r 22r 1,所以B 正确;卫星在椭圆轨道中运行时,机械能是守恒的,所以C 错误;卫星从圆轨道进入椭圆轨道过程中在A 点需点火减速,卫星的机械能减小,所以D 错误.] 16.(2)1.40 (4)7.9 1.4解析 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求得m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R ,解得v ≈1.4 m/s. 17.(1)G Mm R 2-m 4π2RT2 (2)①R +HR②v 1>v 2>v 0 解析 (1)卫星静止在地球赤道表面时,随地球一起做匀速圆周运动,根据牛顿第二定律得G Mm R 2-F N ′=m 4π2R T 2, 解得F N ′=G Mm R 2-m 4π2RT 2.根据牛顿第三定律可知卫星对地表的压力 F N =F N ′=G Mm R 2-m 4π2RT2.(2)①卫星围绕地球做匀速圆周运动,万有引力提供向心力,则有G Mm R 2=m v 12R ,GMm R +H 2=m v 22R +H , 解得v 1v 2=R +HR. ②同步卫星与地球自转的角速度相等,而半径大于地球半径,根据v =ωr 可知v 2>v 0,由①知v 1>v 2,所以v 1>v 2>v 0. 18.(1)7.4 m/s 2 (2)0.8 s (3)6.0 m/s解析 (1)设运动员连同滑板的质量为m ,运动员在斜面上滑行的过程中,根据牛顿第二定律有mg sin 53°-μmg cos 53°=ma ,解得运动员在斜面上滑行的加速度a =7.4 m/s 2. (2)运动员从斜面上起跳后沿竖直方向做自由落体运动, 根据自由落体运动规律有H =12gt 2,解得t =0.8 s.(3)为了不触及障碍物,运动员以速度v 沿水平方向起跳后竖直下落高度为H -h 时,他沿水平方向运动的距离为H tan 53°+L ,设该段时间为t ′,则H -h =12gt ′2,Htan 53°+L =vt ′,解得v =6.0 m/s.19.(1)6 m/s 2 (2)6×103 m/s (3)0.64解析 (1)小滑块从A 到C 的过程中,由动能定理得mg (h 1-h 2)-μmg cos 53°·h 1sin 53°-μmg cos 37°·h 2sin 37°=0-12mv 02,代入数据解得g =6 m/s 2. (2)设探测器质量为m ′,探测器绕该星球表面做匀速圆周运动时运行速度最大,由牛顿第二定律和万有引力定律得 G Mm ′R 2=m ′v 2R , 又G Mm ′R 2=m ′g , 解得v =gR =6×103 m/s. (3)由星球密度ρ=M43πR 3和GM =gR 2得该星球的平均密度与地球的平均密度之比为ρρ0=gR 0g 0R ,代入数据解得ρρ0=0.64.。
专题9.2 曲线运动(精讲精练)目录第一部分、基础知识快速过 (1)一、曲线运动的条件规律及相关说明 (1)二、运动的合成与分解的两种典型模型 (3)三、平抛运动的运动规律及分析特点 (4)四、圆周运动的规律、特点及分析方法 (6)第二部分、重点题型详细讲 (7)题型一、考查曲线运动的条件及规律的相关题型 (7)题型二、小船渡河模型的应用 (9)题型三、关联速度问题的应用 (10)题型四、利用分解速度的思路处理平抛运动的相关问题 (11)题型五、利用分解位移的思路处理平抛运动的相关问题 (13)题型六、平抛运动的实验类相关问题 (14)题型七、平抛运动规律以及临界问题 (16)题型八、平抛运动的规律以及两个重要推论的应用 (18)题型九、常见的几种圆周模型即分析思路 (19)第一部分、基础知识快速过一、曲线运动的条件规律及相关说明1.曲线运动的定义、条件和特点(1)定义:轨迹是一条曲线的运动叫做曲线运动。
(2)条件:质点所受合外力的方向跟它的速度方向不在同一直线上(v0≠0,F≠0)。
(3)特点:①轨迹是一条曲线;②某点的瞬时速度的方向,就是通过这一点的切线的方向;③曲线运动的速度方向时刻在改变,所以是变速运动,必具有加速度;④合外力F始终指向运动轨迹的内侧。
2.运动的合成与分解(1)合运动与分运动的关系(2)运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解。
由于它们都是矢量,所以合成与分解都遵循平行四边形定则。
3.概念辨识:(1)曲线运动一定是变速运动。
()(2)曲线运动的速度大小可能不变。
()(3)曲线运动的加速度可以为零。
()(4)曲线运动的加速度可以不变。
()(5)合运动不一定是物体的实际运动。
()(6)合运动的速度一定大于分运动的速度。
()答案(1)√(2)√(3)× (4)√(5)×(6)×合外力和运动轨迹存在怎样的关系?4.规律总结:a、无力不拐弯,拐弯必有力,两向夹一线,轨迹在中间,合力指凹侧,曲线向力方向弯。
高考物理曲线运动真题汇编(含答案)及解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
精选08 动量1.如图所示,质量为M 的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m 的木块以初速度v 0水平地滑至车的上表面,若车足够长,则A .木块的最终速度为mM m+v 0B .由于车表面粗糙,小车和木块所组成的系统动量不守恒C .车表面越粗糙,木块减少的动量越多D .车表面越粗糙,因摩擦产生的热量越多 【答案】A【解析】AB .以小车和木块组成的系统为研究对象,系统所受的合外力为零,因此系统动量守恒,由于摩擦力的作用,m 速度减小,M 速度增大,m 速度减小到最小时,M 速度达最大,最后m 、M 以共同速度运动。
以初速度方向为正方向,根据动量守恒定律有:()0mv m M v =+,解得最终两者的共同速度为0mv v M m=+,故A 正确,B 错误;C .根据A 选项分析,木块减少的动量为:010Mmv P mv mv M m∆=-=+,与车面粗糙程度无关。
故C 错误;D .根据能量守恒,可得产生的热量为:()2201122Q mv m M v =-+,将0mv v M m=+代入,得:()22mMv Q m M =+,与车面粗糙程度无关。
故D 错误。
2.如图所示的木块B 静止在光滑的水平面上,木块上有半径为0.4m r =的光滑14圆弧轨道,且圆弧轨道的底端与水平面相切,—可视为质点的物块A 以水平向左的速度0v 冲上木块,经过一段时间刚好运动到木块的最高点,随后再返回到水平面。
已知两物体的质量为1kg A B m m ==、重力加速度g =10 m/s 2。
则下列说法正确的是A .物块A 滑到最高点的速度为零B .物块A 的初速度大小为4 m/sC .物块A 返回水平面时的速度为4 m/sD .木块B 的最大速度为2 m/s 【答案】B【解析】AB .物块A 刚好运动到木块B 的最高点时,两者共速为v ,对物块A 和木块B 组成的系统,由机械能守恒和水平方向动量守恒得:2012A m v =m A gR +21)2A B m m v (+,0()A A B m v m m v =+,解得v 0=4 m/s 、v =2 m/s ,故A 错误,B 正确;CD .当物块A 返回到水平面时,木块B 的速度最大,由机械能守恒和水平方向动量守恒得:2012A m v =2112A m v +2212B m v ,A 0A 1B 2m v m v m v =+,解得v 2=4 m/s 、v 1=0 m/s ,另一组解v 1=4 m/s 、v 2=0(舍去),故CD 错误。
高考物理曲线运动试题经典含解析一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v o 水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动•圆形轨道半径 为R ,木板B 和圆形轨道总质量为 12m ,重力加速度为g ,不计小球与圆形轨道和木板间 的摩擦阻力.求: ⑴子弹射入小球的过程中产生的内能;(2) 当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3) 为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. 1 2 1 2由能量守恒定律得:Q mv o 4mv 22 23 代入数值解得:Qmv 2 8(2) 当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得 F 1 (m 3m)g (m严以木板为对象受力分析得 F 2 12mg F 1 根据牛顿第三定律得木板对水平的压力大小为冋2木板对水平面的压力的大小F 2 16mg 空0"4R(3) 小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径RV o 8 2gR(1)子弹射入小球的过程,由动量守恒定律得:mv 0 (m 3mM1 2由机械能守恒定律得:m 3m w m 3m gR解得:v04 2gR②若小球能通过圆形轨道的最高点小球能通过最高点有:(m 3m)g (m響21 2 1 2 由机械能守恒定律得:(m 3m)V| 2(m 3m)gR (m 3m) v22 2代入数值解得:v0 4 5gR要使木板不会在竖直方向上跳起,木板对球的压力:F3 12 mg在最高点有:(m 3m)v3 F3 (m 3m)g R3由机械能守恒定律得:〔(m 3m)v22(m 3m)gR 」(m 3m) v f 2 2解得:V。
专题05曲线运动1.(2020·新课标卷)如图,一同学表演荡秋千。
已知秋千的两根绳长均为10m ,该同学和秋千踏板的总质量约为50kg 。
绳的质量忽略不计,当该同学荡到秋千支架的正下方时,速度大小为8m/s ,此时每根绳子平均承受的拉力约为()A.200NB.400NC.600ND.800N2.(2020·新课标Ⅱ卷)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。
若摩托车经过a 点时的动能为E 1,它会落到坑内c 点。
c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。
21E E 等于()A.20B.18C.9.0D.3.03.(2020·江苏卷)如图所示,小球A 、B 分别从2l 和l 的高度水平抛出后落地,上述过程中A 、B 的水平位移分别为l 和2l 。
忽略空气阻力,则()A.A 和B 的位移大小相等B.A 的运动时间是B 的2倍C.A 的初速度是B 的12D.A 的末速度比B 的大4.(2020·浙江卷)如图所示,底部均有4个轮子的行李箱a 竖立、b 平卧放置在公交车上,箱子四周有一定空间。
当公交车()A.缓慢起动时,两只行李箱一定相对车子向后运动B.急刹车时,行李箱a 一定相对车子向前运动C.缓慢转弯时,两只行李箱一定相对车子向外侧运动D.急转弯时,行李箱b 一定相对车子向内侧运动5.(2020·浙江省高三月考)如图所示,在圆柱形房屋天花板中心O 点悬挂一根L 的细绳,绳的下端挂一个质量m 的小球,重力加速度为g ,已知细绳能承受的最大拉力为2mg ,小球在水平面内做圆周运动,当速度逐渐增大到绳断裂后,小球恰好以u 的速度落在墙角边,以下选项正确的是()A .悬点到轨迹圆的高度h 与角速度的平方ω2成正比B .绳断裂瞬间的速度v 0C .圆柱形房顶的高度H =3.25LD .半径R L6.(2020·浙江省高三模拟)2022年冬奥会将在北京举行,滑雪是冬奥会的比赛项目之一。
【2019最新】精选高考物理试题分项版汇编系列专题05曲线运动含解析一、单选题1.如图所示,将一质量为m 的小球从空中O 点以速度水平抛出,飞行一段时间后,小球经过P 点时动能,不计空气阻力,则小球从O 到P 过程中()0v 205K E mv =A. 经过的时间为03v gB. 速度增量为,方向斜向下03vC. 运动方向改变的角度的正切值为13D. 下落的高度为205v g 【答案】A2.类比是一种常用的研究方法.对于直线运动,教科书中讲解了由图像求位移,由 (力-位移)图像求做功的方法.请你借鉴此方法分析下列说法,其中正确的是()v t -F x -A. 由 (力-速度)图线和横轴围成的面积可求出对应速度变化过程中力做功的功率F v -B. 由 (力-时间)图线和横轴围成的面积可求出对应时间内力所做的冲量F t -C. 由 (电压-电流)图线和横轴围成的面积可求出对应的电流变化过程中电流的功率U I -D. 由 (角速度-半径)图线和横轴围成的面积可求出对应半径变化范围内做圆周运动物体的线速度r ω-【答案】B【解析】图线中任意一点的横坐标与纵坐标的乘积等于,即瞬时功率,故图象与横轴围成的面积不一定等于,即不是对应速度变化过程中力做功的功率,A 错误;(力-时间)图线和横轴围成的面积表示冲量, B 正确;由(电压-电流)图线,根据公式可知,根据与的坐标值的乘积,求出对应电流做功的功率,C 错误;图线中任意一点的横坐标与纵坐标的乘积等于,即线速度;故图象与横轴围成的面积不一定等于,即不一定等于线速度,D 错误.选B .F v -Fv Fv F t -U I -P UI =U I r ω-r ωr ω3.下列说法中正确的是.A. 物体速度变化越大,则其加速度越大B. 物体的加速度越大,则其速度一定增大C. 原来平衡的物体,突然撤去一个外力,物体可能做曲钱运动,也可能做直线运动D. 原来平衡的物体,突然撤去一个外力,则一定会产生加速度且方向与撤去的外力的方向相同【答案】C【解析】A 项:根据加速度定义:,可知,物体速度变化越大,则其加速度不一定越大,选项A 错误;v a t∆= B 项:若物体的速度方向与加速度方向相反,即使物体的加速度增大,但其速度仍减小,选项B 错误;C 项:若撤去某一个力后,其余力的合力与撤去的力等值、反向、共线,若与速度方向不共线时,物体做曲线运动,若与速度方向共线时,物体做直线运动,故C 正确;D 项:原来平衡的物体,突然撤去一个外力,若所剩的其它外力不变,则一定会产生加速度,且方向与撤去的外力的方向相反,故D 错误。
2020年全国大市名校高三期末一模物理试题全解全析汇编(四)曲线运动1、(2020·福建省福州市第一中学高三下学期开学质检).为了研究平抛物体的运动,用两个完全相同的小球A、B做下面的实验:如图所示,用小锤打击弹性金属片,A球立即水平飞出,同时B球被松开,做自由落体运动,两球同时落地.A、B两小球自开始下落到落地前的过程中,两球的A.速率变化量相同B.速度变化率不同C.动量变化量相同D.动能变化量不同【答案】C【解析】速率是标量,其变化量直接相减,A的速率变化量等于末速度的大小减小水平方向初速度的大小,B的速率变化量等于落地时竖直方向的速度大小,两者大小不相等,A错误;速度变化率指的就是两球的加速度,均为g,相同,B错误;两个小球所受重力相同,落地时间相同,动量的变化量相同为mgt,C正确;下落高度相同,重力做功相同,动能的变化量等于重力做功,相同,D错误.2、(2020·广东省中山市中山纪念学校高三第一次质检)如图所示,将小球以速度v沿与水平方向成37θ= 角斜向上抛出,结果球刚好能垂直打在竖直墙面上,球反弹的瞬间速度方向水平,且速度大小为碰撞前瞬间速度大小的34,已知sin370.6= ,cos370.8= ,空气阻力不计,则当反弹后小球的速度大小再次为v时,速度与水平方向夹角的正切值为()A.34 B.43 C.35 D.53【答案】B【解析】采用逆向思维,小球做斜抛运动看成是平抛运动的逆运动,将抛出速度沿水平和竖直方向分解,有:v x =v cosθ=v •cos37°=0.8v ,v Y =v •sin37°=0.6V球撞墙前瞬间的速度等于0.8v ,反弹速度大小为:'3 0.80.64xv v v ==⨯;反弹后小球做平抛运动,当小球的速度大小再次为v 时,竖直速度为:'2'222 (0.6)0.8y x v v v v v v ===--速度方向与水平方向的正切值为:''0.840.63yx v v tan v v θ===,故B 正确,ACD 错误;故选B.3、(2020·广东省中山市中山纪念学校高三第一次质检)如图所示,ABC 为竖直平面内的金属半圆环,AC 连线水平,AB 为固定在A 、B 两点间的直金属棒,在直棒和圆环的BC 部分上分别套着小环M 、N(棒和半圆环均光滑),现让半圆环绕竖直对称轴以角速度1ϖ做匀速转动,小环M 、N 在图示位置.如果半圆环的角速度变为2ϖ,2ϖ比1ϖ稍微小一些.关于小环M 、N的位置变化,下列说法正确的是A .小环M 将到达B 点,小环N 将向B 点靠近稍许B.小环M 将到达B 点,小环N 的位置保持不变C.小环M 将向B 点靠近稍许,小环N 将向B 点靠近稍许D.小环M 向B 点靠近稍许,小环N 的位置保持不变【答案】A【解析】M 环做匀速圆周运动,则2tan 45mg m r ω︒=,小环M 的合力大小为定值,如果角速度变小,其将一直下滑,直到B 点,N 环做匀速圆周运动,设其与ABC 环圆心连线夹角为θ,则2tan mg m r θω=,sin r R θ=,2cos R rωθ=,如果角速度变小,则cos θ变大,θ变小,小环N 将向B 点靠近稍许,因此A 正确.4、(2020·广东省中山市中山纪念学校高三第一次质检)如图所示一个做匀变速曲线运动的物块的轨迹示意图,运动至A 时速度大小为v 0,经一段时间后物块运动至B 点,速度大小仍为v 0,但相对A 点时的速度方向改变了90°,则在此过程中()A.物块的运动轨迹AB 可能是某个圆的一段圆弧B.物块的动能可能先增大后减小C.物块的速度大小可能为02v D.B 点的加速度与速度的夹角小于90°【答案】D【解析】A .由题意,物体做匀变速曲线运动,则加速度的大小与方向都不变,所以运动的轨迹是一段抛物线,不是圆弧。
2020年高考物理真题分类汇编(详解+精校) 曲线运动1.(2020年高考·全国卷新课标版)一带负电荷的质点,在电场力作用下沿曲线abc 从a 运动到c ,已知质点的速率是递减的。
关于b 点电场强度E 的方向,下列图示中可能正确的是(虚线是曲线在b 点的切线)A .B .C .D .1.D 解析:主要考查电场力方向和曲线运动所受合外力与轨迹的关系。
正确答案是D 。
2.(2020年高考·上海卷)如图所示,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。
当绳与河岸的夹角为α时,船的速率为A .vsinαB .v/sinαC .vcosαD .v/cosα2.C 解析:本题考查运动的合成与分解。
本题难点在于船的发动机是否在运行、河水是否有速度。
依题意船沿着绳子的方向前进,即船的速度就是沿着绳子的,根据绳子连接体的两端物体的速度在绳子上的投影速度相同,即人的速度v 在绳子方向的分量等于船速,故v 船=vcosα,C 对。
3.(2020年高考·江苏理综卷)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA=OB 。
若水流速度不变,两人在靜水中游速相等,则他们所用时间t 甲、t 乙的大小关系为A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定3.C 解析:设游速为v ,水速为v 0,OA =OB =l ,则甲时间00l lt v v v v =++-甲;乙沿OB 运动,乙的速度矢量图如图,合速度必须沿OB方向,则乙时间2t =乙,联立解得:t t >乙甲, C 正确。
4.(2020年高考·广东理综卷)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球刚好落在底线上。
精选02 直线运动1.如图所示为某质点做直线运动的v-t图像。
已知t0时刻质点的速度为v0,2t0时刻质点的速度为2v0。
图中OA与AB是关于A点中心对称的曲线,由此可求出的物理量有A.2t0时刻的加速度B.0~t0时间内的位移C.0~2t0时间内的位移D.t0~2t0时间内的平均速度【答案】C【解析】A.对于速度-时间图象,速度的斜率表示加速度,但2t0时刻的斜率无法求解,即无法求解2t0时刻的加速度,故A错误;B.对于速度时间图象,图线与坐标轴围成面积表示位移,0~t0时间内的图象是曲线且不知是何种线,故无法求解0~t0时间内的位移,故B错误;C.图中OA与AB是关于A点中心对称的曲线,利用割补法可知图线围成面积等于连接OB,OB图象与坐标轴围成三角形面积,该面积可求,即可求0~2t0时间内的位移,故C正确;D.对于速度时间图象,图线与坐标轴围成面积表示位移,t0~2t0时间内的图象是曲线且不知是何种线,故无法求解t0~2t0时间内的位移,则无法求解t0~2t0时间内的平均速度,故D错误。
故选C。
2.在一平直的水平路面上有甲、乙两辆汽车同向行驶。
某时刻乙车在甲车前方15m处,从该时刻开始计时,0~4s内甲、乙两车做匀变速直线运动的速度与时间的关系图像如图所示。
下列说法中正确的是A .t =2s 时刻,甲车刚好追上乙车B .t =4s 时刻,甲车刚好追上乙车C .乙车的加速度大小大于甲车的加速度大小D .此过程中甲、乙两车之间的距离一直减小 【答案】A【解析】A .速度图像中面积表示位移,所以前2s 内甲的位移10202m 30m 2x +=⨯=甲 乙的位移1052m 15m 2x +=⨯=乙 因为x 甲-x 乙=15m=x 0,所以t =2s 时刻,甲车刚好追上乙车,故A 正确; B .同理前4s 内甲的位移1204m 40m 2x '=⨯⨯=甲前4s 内乙的位移5154m 40m 2x +'=⨯=乙前4s 内的甲、乙位移相同,但初时刻乙车在甲车前方15m 处,所以t =4s 时刻,甲、乙没有相遇,故B 错误;C .速度图像中斜率表示加速度,所以甲的加速度大小25m/s a =甲乙的加速度大小22.5m/s a =乙所以乙车的加速度大小小于甲车的加速度大小,故C 错误;D .因为t =2s 时刻,甲车刚好追上乙车,所以前2s 甲、乙距离减小,后2s 甲、乙距离增大,故D 错误。