12.1.3垂直平分线习题
- 格式:ppt
- 大小:191.00 KB
- 文档页数:7
垂直平分线的性质练习题练习一:已知直线AB与直线CD相交于O点,且O点在直线AB上。
证明:如果直线AO与直线CO互相垂直,则直线AD与直线BC也互相垂直。
解答:首先,根据条件已知,可以得出AO⊥CO,根据垂直平分线的性质,可以得出AO=CO。
同样地,由于AB⊥CD,所以AO=BO,CO=DO。
我们需要证明AD⊥BC,即证明直线AD与直线BC互相垂直。
假设不然,即假设AD与BC不互相垂直。
由于AO⊥CO且AO=CO,所以OA=OC。
同时,根据勾股定理可得AD²+OA²=OD²以及 BC²+OC²=OB²。
将OA=OC代入上式,得到AD²+OC²=OD²以及 BC²+OC²=OB²。
将AD²+OC²=OD²式子两边同时减去BC²,得到AD²-BC²+OC²-OC²=OD²-OB²,即AD²-BC²=OD²-OB²。
根据差平方公式,可将AD²-BC²因式分解为(AD+BC)(AD-BC),同样地,OD²-OB²可以因式分解为(OD+OB)(OD-OB)。
将AD²-BC²=OD²-OB²式子中的右边代入得到(AD+BC)(AD-BC)=(OD+OB)(OD-OB)。
由于AD+B C≠0,所以可以将上式改写为(AD-BC)/(OD-OB)=(OD+OB)/(AD+BC)。
根据已知条件是AO=BO,我们可以将OD和OB表示为OA和OC 的组合形式。
即OD=OA+AD,OB=OC-BC。
将OD和OB代入上式,就得到了(OA+AD-BC)/(OC-BC)=(OA+OC)/(AD+BC)。
(第2题)E D C BA 垂直平分线的练习题 1、如图,在△ABC 中,AB 的中垂线交BC 于点E ,若BE=2,求A 、E 两点的距离.2、在三角形内部,有一点P 到三角形三个顶点的距离相等,求证点P 一定是三角形三条垂直平分线的交点。
(点P 三角形的外心)3、在三角形内部,有一点P 到三角形三条边的距离相等,求证点P 一定是三角形三条角平分线的交点。
(点P 三角形的内心)6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,判断△ABC 的形状。
5、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,求△BCD 的周长。
8、有特大城市A 及两个小城市B 、C ,这三个城市共建一个污水处理厂,使得该厂到B 、C 两城市的距离相等,且使A 市到厂的管线最短,试确定污水处理厂的位置。
(保留作图痕迹)9、(2009·陕西)如图1,在锐角△ABC 中,AC=4,AB=BC ,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求B M +MN 的最小值。
10、(2009·甘肃)如图2,四边形ABCD 中,AD ∥BC ,若∠DAB 的平分线AE 交CD 于E ,连接BE ,且BE 恰好平分∠ABC ,求AB 的长与AD +BC 的长的大小关系。
8、(2007·绵阳)如图4,在△ABC中,E、F分别是AB、AC上的点。
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF,以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②✂③,①③✂②,②③✂①。
(1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题。
9、如图5,以△ABC两边AB、AC为边,向外作等边△ABD和等边△ACE,连接BE、CD交于O点,求证:OA平分∠DOE10、(2007·日照)如图6,在等腰Rt△ABC中,∠ACB=90,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由。
线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm针对性练习::1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果△EBC的周长是24cm,那么BC=2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是例2. 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
《线段的垂直平分线》同步练习一、选择题(1)如图,已知:BD BC AD AC ==,,那么( )(A )CD 垂直平分AB (B )AB 垂直平分CD(C )CD 与AB 互相垂直平分 (D )以上说法都正确(2)如果三角形三边的垂直平分线的交点正好在三角形的一条边上,那么这个三角形是( )(A )直角三角形 (B )锐角三角形(C )钝角三角形 (D )以上都有可能二、填空题(1)和线段两个端点距离相等的点的集合是________.(2)在ABC ∆中,AC AB =,AD 为角平分线,则有AD______BC (填⊥或//),=BD _____. 如果E 为AD 上的一点,那么=EB _______. 如果︒=∠120BAC ,8=BC ,那么点D 到AD 的距离是______.(3)已知:在ABC ∆中,AC AB =,︒=∠120BAC ,DE 垂直平分AB ,且交CA 的延长线于D ,则DBC ∠的度数为_______.(4)在等腰三角形ABC 中,cm AC AB 8==,腰AB 的垂直平分线交另一腰AC 于D ,若BCD ∆的周长为cm 10,则底边BC 的长为______.(5)如图,在ABC ∆中,︒=∠90ACB ,BC 的垂直平分线交AB 于D ,垂足为E .①若︒=∠60A ,则=∠DCB ______,=∠ADC ________.②若︒=∠30B ,5=BD ,则ACD ∆的周长为______.(6)如图,在ABC ∆中,BC AC >,AB 的垂直平分线交AB 于D ,交AC 于E ,BC_____.∆的周长为12,则=AC,BCE8=(7)如图,在ABCABC,DE是AB的垂直平分线,∠65=∆中,ACAB=,︒则=∠CBE_______..(8)如图,在ABC∆中,AC的垂直平分线交AC于E,交BC于D,ABD∆的周长为cm=,则ABC∆的周长为_______cm.AC512,cm(9)如图,已知在直角三角形ABC中,︒∠15B,DE垂直平分AB,=C,︒=∠90交BC于E,5BE,则=AC______.=(10)在ABCBAC,AC的垂直平分线交BC于D,交∠120∆中,ACAB=,︒=AC于E,若cm=,则BC的长度为______cm.DE5三.证明题(1)如图,已知:︒C,DE是AB的垂直平分线,D为垂足,交BC于E,=∠90CE=.=. 求证:DEACAB2(2)如图,已知:线段CD垂直平分AB,AB平分DACAD//.∠. 求证:BC(3)如图,已知:AD 是ABC ∆的高,E 为AD 上一点,且CE BE =. 求证:ABC ∆是等腰三角形.(4)如图,已知:在ABC ∆中,A B AC AB ∠=∠=2,,DE 垂直平分线AC 交AB 于D ,交AC 于E . 求证:BC AD =.(5)如图,已知:E 是AOB ∠的平分线上的一点,OA EC ⊥,OB ED ⊥,垂足分别是C 、D. 求证:OE 垂直平分CD .(6)如图,已知:在ABC ∆中,AB 、BC 边上的垂直平分线相交于点P . 求证:点P 在AC 的垂直平分线上.(7)如图,已知:AD 是ABC ∆的BAC ∠的平分线,AD 的垂直平分线EF ,交B C 的延长线于F ,交AD 于E ,求证:CAF BAF ∠=∠.(8)如图,已知:在ABC∠的平分线交BC于D,且AB∆中,BACDE⊥,DF⊥,垂足分别是E、F. 求证:AD是EF的垂直平分线.AC(9)如图,已知:BC∠45=DMC,DMAMB,︒CD⊥,︒AB⊥,BC=∠75AM=. 求证:BCAB=.参考答案1.选择题(1)B (2)A2.填空题(1)线段的垂直平分线 (2)⊥,CD ,EC ,2 (3)︒90 (4)cm 2(5)①︒30,︒60 ②15 (6)4 (7)︒15 (8)17 (9)5.2 (10)303.证明题(1)证明:连结AE ,由于︒=∠90C ,AC AB 2=,∴︒=∠30B ,︒=∠60CAB ,∵DE 是AB 的垂直平分线,∴BE AE =,∴︒=∠=∠30B EAB ,∴︒=︒-︒=∠303060CAE ,即AE 是CAB ∠的角平分线,∴DE CE =.(2)证明:∵CD 是AB 的垂直平分线,∴BC AC =,∴B CAB ∠=∠,又∵DAB CAB ∠=∠,∴B DAB ∠=∠,∴BC AD //.(3)证明:∵BC AD CE BE ⊥=,,∴AD 是BC 的垂直平分线,∴AC AB =,∴ABC ∆是等腰三角形.(4)证明:DE 垂直平分AC ,∴CD AD =,∴DCA A ∠=∠,∵A DCA A BDC ∠=∠+∠=∠2,又有A B ∠=∠2,∴BDC B ∠=∠,∴AD CD BC ==.(5)证明:OE 是AOB ∠的平分线,∴DE CE =,∴ODE Rt OCE Rt ∆≅∆,∴OD OC =,∴O 与E 都在CD 的垂直平分线上,∴OE 垂直平分CD .(6)证明:P 是AB 、BC 边上的垂直平分线,∴CP BP BP AP ==,,∴CP AP =,∴P 点在AC 的垂直平分线上.(7)证明:EF 垂直平分AD ,∴DF AF =,∴ADF FAD ∠=∠. ∴DAC ADF ACF ∠+∠=∠BAF BAD FAD ∠=∠+∠=(8)证明:∵AD 是BAC ∠的平分线,且AB DE ⊥,AC DF ⊥,∴DF DE =,∴易证ADF Rt ADE Rt ∆≅∆,∴AF AE =,∴A 与D 都在EF 的垂直平分线上,∴AD 就是EF 的垂直平分线.(9)证明:︒=︒-︒-︒=∠604575180AMD ,且DM AM =,∴AD AM =. 又∵︒=︒-︒=∠454590MDC ,∴DMC MDC ∠=∠,∴CM CD =,∴AC 为DM 的垂直平分线,∴︒=︒-︒=∠454590ACM ,∴AB BC =.。
1题A B E C 2题D A B C 3题D AB EC 4题A B C O 5题D A BE C 11题D A B E C O 12题D A B E C 13题D A B E C 14题D A B E C 15题D A B E C6题D A BE C 8题D A B E C 7题D A B E C 10题'9题《垂直平分线》练习题1.如图,△ABC 的边AB 的垂直平分线交AC 于点E,若AE=23,则BE= 。
2.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点D, △ABC 和△DBC 的周长分别为60㎝和38㎝,则△ABC 的腰长为 ,底边长为 。
3.如图,△ABC 中,∠ACB=90°,CB 的垂直平分线DE 交AB 于点D,垂足为E ,①若∠B=20°,则∠ADC 的度数为 ;②若△ADC 的周长为14,AC=4,则AB= ;③若AB=8㎝,则CD= 。
4.如图,△ABC 中,∠A=52°,AB 、AC 的垂直平分线交于点O ,则∠BOC 的度数为 。
5.如图,∠ABC=50°,AD 垂直平分线段BC ,交BC 于点D ,∠ABC 的角平分线BE 交AD 于点E ,连接EC ,则∠AEC 的度数为 。
6.如图,△ABC 中,AC 的垂直平分线交BC 于点D ,垂足为E ,△ABD 的周长为12㎝,AC=5㎝,则△ABC 的周长为 。
7.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点E ,垂足为D, ∠EBC ∶∠EBA=1∶2,则∠A 的度数为 。
8.如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 与点E,则△CDE 的周长为 。
9.如图,某广告公司为一厂家设计的商标图案,AD 垂直平分线段BC ,E 、F 都在线段AD 上,若AB=5,BC=6,则图中阴影部分面积为 。
10.如图,△ABC 中,AB=BC=2,∠ABC=90°,D 为BC 的中点,且它关于AC 的对称点D ’,则 BD ’= 。
1题A B E C 2题D A B C 3题D AB EC 4题A B C O 5题D A BE C 11题D A B E C O 12题D A B E C 13题D A B E C 14题D A B E C 15题D A B E C6题D A BE C 8题D A B E C 7题D A B E C 10题'9题《垂直平分线》练习题1.如图,△ABC 的边AB 的垂直平分线交AC 于点E,若AE=23,则BE= 。
2.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点D, △ABC 和△DBC 的周长分别为60㎝和38㎝,则△ABC 的腰长为 ,底边长为 。
3.如图,△ABC 中,∠ACB=90°,CB 的垂直平分线DE 交AB 于点D,垂足为E ,①若∠B=20°,则∠ADC 的度数为 ;②若△ADC 的周长为14,AC=4,则AB= ;③若AB=8㎝,则CD= 。
4.如图,△ABC 中,∠A=52°,AB 、AC 的垂直平分线交于点O ,则∠BOC 的度数为 。
5.如图,∠ABC=50°,AD 垂直平分线段BC ,交BC 于点D ,∠ABC 的角平分线BE 交AD 于点E ,连接EC ,则∠AEC 的度数为 。
6.如图,△ABC 中,AC 的垂直平分线交BC 于点D ,垂足为E ,△ABD 的周长为12㎝,AC=5㎝,则△ABC 的周长为 。
7.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点E ,垂足为D, ∠EBC ∶∠EBA=1∶2,则∠A 的度数为 。
8.如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 与点E,则△CDE 的周长为 。
9.如图,某广告公司为一厂家设计的商标图案,AD 垂直平分线段BC ,E 、F 都在线段AD 上,若AB=5,BC=6,则图中阴影部分面积为 。
10.如图,△ABC 中,AB=BC=2,∠ABC=90°,D 为BC 的中点,且它关于AC 的对称点D ’,则 BD ’= 。
1.3 线段的垂直平分线练习【同步达纲练习】一、判断(4分×6=24分)( )1.三角形两边的垂直平分线交点在三角形一边上,则该三角形为等边三角形.( )2.到三角形三顶点距离相等的点在三角形内.( )3.到三角形距离三边相等的点是三条中垂线的交点.( )4.四边形ABCD 中共有一点P ,使PA=PB=PC=PD ,则∠A+∠C=180°.( )5.和线段两端距离相等的点只有线段的中点.( )6.和线段两端相等的点不一定在线段上.二、选择题(5分×6=30分)1.到三角形三个顶点距离相等的是( )A.三条中线交点B.三条高的交点C.三条角平分线的交点D.三条中垂线的交点2.线段AB 外有两点C ,D(在AB 同侧)使CA=CB ,DA=DB ,∠ADB=80°, ∠CAD=10°,则∠ACB=( )A.90°B.100°C.110°D.120°3.BD 为CE 的中垂线,A 在CB 延长线上,∠C=34°,则∠ABE=( )A.17°B.34°C.68°D.136°4.O 为△ABC 三边中垂线的交点,则O 称为△ABC 的( )A.外心B.内心C.垂心D.重心5.若三角形一边中垂线过另一边中点,则该三角形必为( )A .钝角三角形 B.锐角三角形C.直角三角形D.等腰三角形6. 如图,△ABC 中,∠ACB=90°, ∠A=30°AC 的中垂线交AC 于E.交AB 于D ,则图中60°的角共有( )A .6个 B.5个 C.4个 D3个三、填空(5分×6=30分)1.△ABC 中,AB=AC ,P 为形内一点,PB=PC ,则P 在 的中垂线上,P 还在∠ 的平分线上.2.△ABC 中,AB=AC=14,腰AB 的中垂线交AC 于D ,△BCD 周长为4cm,则BC= .3.△ABC 中,AB=AC ,∠A=120°,AB 中垂线交BC 于E ,则BCBE = . 4.正△ABC 内一点O 到三边距离相等,且OA=OB=OC.则∠BOC= .5.△ ABC 的边AC 、BC 的中垂线交于AB 上一点O ,且OC=BC ,则∠A= .6.若PA=PB ,DA=DB ,则PD 是AB 的 .四、解答(8分×2=16分)1.△ABC 中,∠C=90°,AB 的中垂线交AB 于D ,AC 于E.且∠EBC=40°,求∠A 及∠BED2.已知O 为等边三角形三边中线交点,求证BO 与CO 的中垂线必三等分BC.【素质优化训练】1.AD 为△ABC 的角平分线,DE ∥AC,交AB 于E.过E 作AD 的垂线交BC 延长线于F(图3.14-8),求证21(∠BAC+∠AFC )=90°-∠B.图3.14-82.如图,△ABC 中,AB=AC ,AE ∥BC,D 为直线AE 上任一点.求证DB+DC >2AB.【同步达纲练习】一、× × × √ × √二、D B C A C B三、1.BC,BAC 2.10 3.1∶3 4.120° 5.30° 6.中垂线四、1. ∠C=180°, ∠EBC=40°∴∠BEC=50°又AE=BE∴∠A=25° ∠DEB=65°2.提示:设CB 中垂线交BC 于D ,OC 中垂线交BC 于E ,连OD ,OE. ∴OD=BD OE=EC. 再证∠BOC=120° ∠BOD=COE=30°∴∠DOE=60° ∠ODE=60°∴OD=OE=DE 得BD=DE=EC.【素质优化训练】1. AD 为角平分线,DE ∥AC∴∠EAD=∠EDA EF 为中垂线∴∠ADF=∠ADF=∠B+∠BAD∴∠CAF=∠B ∠BAC+∠CAF+∠AFC+∠B=180° ∴21(∠BAC+∠AFC)=90°-∠B.2.延长BA 至F ,使BA=AF ,连FD ,AD ∥BC,AB=AC ∠FAD=∠ABC=∠ACB=∠DAC.AF=AC △FAD ≌△CAD FD=DC ,FD+DB >FB∴DB+DC >2AB.。
同步练习(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)数学北师大版八年级下册线段垂直平分线练习题.3线段的垂直平分线同步练习(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)数学北师大版八年级下册线段垂直平分线练习题.3线段的垂直平分线同步练习(含答案)的全部内容。
的垂直平分线同步练习(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)数学北师大版八年级下册线段垂直平分线练习题.3线段的垂直平分线同步练习(含答案)这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)数学北师大版八年级下册线段垂直平分线练习题.3线段的垂直平分线同步练习(含答案)〉这篇文档的全部内容。
1.3线段的垂直平分线一、选择题1.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD〈∠CBDB.∠CAD=∠CBDC.∠CAD>∠CBDD.无法判断2.如图1-75所示,在△ABC中,AD垂直平分扫BC,AC=EC,点B,D,C,E在同一条直线上,则AB+DB与DE之间的数量关系是()A. AB+DB>DE B。
AB+DB<DE C. AB+DB=DE D。
1.3线段的垂直平分线同步练习一.选择题1.如图,在△ABC中,BC=12cm,DE垂直平分AB,△BCE的周长为30cm,则AC的长为()A.18 cm B.12 cm C.10 cm D.8 cm2.如图,CD垂直平分AB,若AC=1.6cm,AD=2.3cm,则四边形ABCD的周长是()A.3.9B.7.8C.4D.4.63.如图,AD⊥BE,BD=DE,点E在线段AC的垂直平分线上,若AB=6cm,BD=3cm,则DC的长为()A.3cm B.6cm C.9cm D.12cm4.下列说法错误的是()A.E,D是线段AB的垂直平分线上的两点,则AD=BD,AE=BEB.若AD=BD,AE=BE,则直线DE是线段AB的垂直平分线C.若P A=PB,则点P在线段AB的垂直平分线上D.若P A=PB,则过点P的直线是线段AB的垂直平分线5.已知线段AB和点C,D,且CA=CB,DA=DB,那么直线CD是线段AB的()A.垂线B.平行线C.垂直平分线D.过中点的直线6.如图,线段AB外有两点C,D(在AB同侧)使CA=CB,DA=DB,∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.100°D.110°7.如图,在△ABC中,∠A=87°,∠ABC的平分线BD交AC于点D,E是BC中点,且DE⊥BC,那么∠C的度数为()A.16°B.28°C.31°D.62°8.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC =4,AC=8,则S△PBC为()A.3B.3.3C.4D.4.59.如图,在△ABC中,DE是边AB的垂直平分线,垂足为E,交BC边于D点,若AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm10.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.15°B.20°C.25°D.30°二.填空题11.如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=.12.如图,已知O为三边垂直平分线交点,∠BAC=60°,则∠BOC=.13.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=2cm,则AE等于.14.如图,△ABC中,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9cm,△BCE 的周长为15cm,则BC的长为cm.15.如图,△ABC中,∠ACB=90°,D、E是边AB上两点,且CD垂直平分BE,CE平分∠ACD,若BC=2,则AC的长为.三.解答题16.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.17.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.18.如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.1.3线段的垂直平分线同步练习参考答案与试题解析一.选择题1.解:∵DE垂直平分AB,∴EA=EB,∵△BCE的周长为30,∴BC+CE+EB=30,∴BC+CE+EA=BC+AC=30,∴AC=30﹣BC=18(cm),故选:A.2.解:∵CD垂直平分AB,∴BC=AC=1.6,BD=AD=2.3,∴四边形ABCD的周长=BC+AC+BD+AD=7.8,故选:B.3.解:∵AD⊥BE,BD=DE,∴AE=AB=6,∵点E在线段AC的垂直平分线上,∴EA=EC,∴DC=DE+EC=AB+BD=9(cm),故选:C.4.解:A、∵E是线段AB的垂直平分线上的点,∴AE=BE.同理AD=BD.故A正确;B、若AD=BD,∴D在AB的垂直平分线上.同理E在AB的垂直平分线上.∴直线DE是线段AB的垂直平分线.故B正确;C、若P A=PB,则点P在线段AB的垂直平分线上,故C正确;D、若P A=PB,则点P在线段AB的垂直平分线上.但过点P的直线有无数条,不能确定过点P的直线是线段AB的垂直平分线.故D错误.故选:D.5.解:根据线段垂直平分线的性质的逆定理,点C和D都在AB的垂直平分线上,那么直线CD是线段AB的垂直平分线.故选:C.6.解:∵CA=CB,DA=DB,∴CD垂直平分AB且垂足为M.∵∠ADB=80°,∠CAD=10°,∴∠ACM=50°,∴∠ACB=100°.故选:C.7.解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE⊥BC,E是BC中点,∴DB=DC,∴∠DBC=∠C,∴∠ABD=∠CBD=∠C,∴∠ABD+∠CBD+∠C=180°﹣87°,解得,∠C=31°,故选:C.8.解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=×CD×BC=×3×4=6,∵P是BD的中点,∴S△PBC=S△BCD=3,故选:A.9.解:∵AB的垂直平分线DE交BC于点D,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+DC+AC=17cm,∴AD+DC=BD+DC=BC=12cm.故选:C.10.解:∵AB边的垂直平分线交AB于点D,AC边的垂直平分线交AC于点F,∴AG=CG,AE=BE,∴∠C=∠CAG,∠B=∠BAE,∴∠BAE+∠CAG=∠B+∠C=180°﹣∠BAC=100°,∴∠EAG=∠BAE+∠CAG﹣∠BAC=100°﹣80°=20°,故选:B.二.填空题11.解:∵DE是AC的垂直平分线,∴AD=DC,∴BC=BD+DC=BD+DA,∵AB=4,△ABD的周长为12,∴BC=12﹣4=8.故答案为:8.12.解:∵已知点O为三边垂直平分线交点,∴点O为△ABC的外心,∴∠BOC=2∠BAC,∵∠BAC=60°,∴∠BOC=120°,故答案为:120°.13.解:∵DE是线段AB的垂直平分线,∴EA=EB,∴∠A=∠2,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,在Rt△BCE中,∠1=30°,∴BE=2CE=4,∴AE=4(cm),故答案为:4cm.14.解:∵DE是AB的垂直平分线,∴AE=BE,∵△BCE的周长为15cm,∴BC+CE+BE=15cm,∴BC+CE+BE=BC+CE+AE=BC+AC=15cm,∵AC=9cm,∴BC=6cm,故答案为:6.15.解:∵CD垂直平分BE,∴CE=CB,∠BDC=90°,∴CD平分∠BCE,即∠BCD=∠ECD,∵CE平分∠ACD,∴∠ECD=∠ACE,而∠ACB=90°,∴∠BCD=∠ACB=30°,∴∠B=60°,∴∠A=30°,∴AC=BC=2.故答案为2.三.解答题16.解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16﹣(BE+AE)=16﹣9=7cm.17.解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠F AC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+F A=20,由(2)可知,DA=DB,F A=FC,∴BC=DB+DF+FC=DA+DF+F A=20.18.解:(1)∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;(2)∵∠MON=30°,∴∠OMN+∠ONM=150°,∴∠BME+∠CNF=150°,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300°,∴∠AMN+∠ANM=360°﹣300°=60°,∴∠MAN=180°﹣60°=120°;(3)由(2)的作法可知,∠MAN=90°,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12﹣3﹣x=9﹣x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9﹣x)2,解得,x=5,即MN=5.。
2021年北师大版八年级下册1.3《线段的垂直平分线》课时练习一.选择题1.到△ABC三个顶点的距离相等的点是△ABC()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处3.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm4.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=4cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm5.如图,△ABC中,DE垂直平分AC交AB于点E,∠A=30°,∠B=70°,则∠BCE 等于()A.40°B.45°C.50°D.60°6.在△ABC中,∠B=50°,∠C=35°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.60°B.70°C.75°D.85°7.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二.填空题8.已知点P在线段AB的垂直平分线上,PA=4cm,则PB=cm.9.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=20°,则∠C=.10.如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=.11.如图,△ABC中,BC的垂直平分线l与AC相交于点D,AB+AC=20cm,则△ABD的周长为cm.12.如图,在△ABC中,AB=AC,∠A=120°,BC=12cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为.三.解答题13.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.14.如图,在△ABC中,∠1=∠2,添加什么条件可得AD垂直平分BC?证明你的判断.15.已知:如图,在△ABC中,AB,AC的垂直平分线l1、l2相交于点P.求证:点P在BC 的垂直平分线上.16.如图,△ABC中,DE是AC的垂直平分线,△ABC的周长为21cm,△ABD的周长为13cm,求AE的长.17.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.18.在△ABC中,DE,HG分别为AB、AC的垂直平分线,与BC交于E、G两点,D、H 分别为垂足,直线DE、HG交于点F.(1)若BC=12,求△AEG的周长;(2)若∠DFH=80°,求∠EAG的度数.参考答案一.选择题1.解:∵线段垂直平分线上任意一点,到线段两端点的距离相等,∴到△ABC三个顶点的距离相等的点是△ABC三条边的垂直平分线的交点.故选:C.2.解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC 的垂直平分线上,故选:B.3.解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴∠BCE=∠B=15°,BE=CE,∴∠ACE=∠BCA﹣∠BCE=75°﹣15°=60°,∵Rt△AEC中,∠ACE=∠BCA=60°,AC=8cm,∴∠AEC=90°﹣∠ACE=90°﹣60°=30°,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C.4.解:∵DE是AB的垂直平分线,∴DB=DA,AB=2AE=8(cm),∵△ADC的周长为9cm,∴AC+CD+DA=AC+CD+DB=AC+BC=9(cm),∴△ABC的周长=AC+BC+AB=17(cm),故选:D.5.解:∵∠A=30°,∠B=70°,∴∠ACB=180°﹣30°﹣70°=80°,∵DE垂直平分AC,∴EA=EC,∴∠ECA=∠A=30°,∴∠BCE=∠ACB﹣∠ECA=80°﹣30°=50°,故选:C.6.解:∠BAC=180°﹣∠B﹣∠C=95°,由作图可知,MN是线段AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=35°,∴∠BAD=∠BAC﹣∠DAC=95°﹣35°=60°,故选:A.7.解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.二.填空题8.解:∵点P在线段AB的垂直平分线上,∴PB=PA,∵PA=4cm,∴PB=4cm.故答案为4cm.9.解:∵DE是AC的垂直平分线,∴AE=CE,∴∠C=∠CAE,∵在Rt△ABE中,∠ABC=90°,∠BAE=20°,∴∠AEB=70°,∴∠C+∠CAE=70°,∴∠C=35°.故答案为:35°.10.解:∵DE是AC的垂直平分线,∴AD=DC,∴BC=BD+DC=BD+DA,∵AB=4,△ABD的周长为12,∴BC=12﹣4=8.故答案为:8.11.解:∵l是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=20(cm),故答案为:20cm.12.解:∵AB=AC,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°,连接AM,AN,∵ME是AB的垂直平分线,∴AM=BM,∠BAM=∠B=30°,∴∠CAM=∠BAC﹣∠BAM=120°﹣30°=90°,∴CM=2AM=2BM,∴3BM=BC=12cm,∵BM=4cm,同理可得,CN=4,∴MN=BC﹣CN﹣BM=12﹣4﹣4=4(cm).故答案为:4cm.三.解答题13.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.14.解:添加:AB=AC,理由:∵∠1=∠2,∴BD=CD,∴点D在线段BC的垂直平分线上,∵AB=AC,∴当A在线段垂直平分线上,∴AD垂直平分BC.15.证明:连接PA、PB、PC,∵l1是AB的垂直平分线,∴PA=PB,∵l2是AC的垂直平分线,∴PA=PC,∴PB=PC,∴点P在BC的垂直平分线上.16.解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为21cm,∴AB+BC+AC=21cm,∵△ABD的周长为13cm,∴AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=8cm,∴AE=4cm.17.解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.18.解:(1)∵DE,FG分别是△ABC的边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴△AEG的周长=AE+EG+AG=BE+EG+CG=BC=12,∴△AEG的周长是12.(2)∵DE,FG分别是△ABC的边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴∠DAE=∠B,∠HAG=∠C,∵∠B+∠C+∠BAC=180°,∠DFH=80°,∴∠BAC=100°,∴∠B+∠C=80°,∴∠DAE+∠HAG=80°,∵∠DAE+∠HAG+∠EAG=∠BAC=100°,∴∠EAG=40°.。
3 线段的垂直平分线一、选择题1.如图,在钝角三角形ABC 中,∠ABC 为钝角,以点B 为圆心,AB 长为半径画弧;再以点C 为圆心,AC 长为半径画弧;两弧交于点D,连接AD,CB 的延长线交AD 于点E.下列结论错误的是( )A.CE 垂直平分ADB.CE 平分∠ACDC.△ABD 是等腰三角形D.△ACD 是等边三角形2.如图,△ABC 中,AB 、BC 的垂直平分线相交于点O,∠BAC=70°,则∠BOC 的度数为( )A.140°B.130°C.125°D.110°3.如图,在△ABC 中,AB=AC,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D,再分别以点B,D为圆心,大于21BD 长为半径画弧,两弧相交于点M,作射线CM 交AB 于点E,若AE=2,BE=1,则EC的长度是 ( )A.2B.3C.3 D.54.如图,已知AB=AC,AB=5,BC=3,以A,B 两点为圆心,大于21AB 的长为半径画弧,两弧相交于点M,N,连接MN 与AC 相交于点D,则△BDC 的周长为( )A.8B.10C.11D.135.如图,在△ABC 中,∠B=32°,∠C=48°,AB 和AC 的垂直平分线分别交BC 于点D 、E,且点D 在点E 的左侧,BC=6 cm,则△ADE 的周长是 ( )A.3 cmB.12 cmC.9 cmD.6 cm6.如图所示的四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是 ( )A.①B.②C.③D.④7.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,直线m 平分∠ABC,l 与m 交于点P.若∠A=60°,∠ACP=24°,则∠ABP 的度数为( )A.24°B.30°C.32°D.36°8.如图所示,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线交AB于D,交AC于E,连接BE,则∠EBC的度数是( )A.15°B.20°C.65°D.100°二、填空题9.如图,△ABC中,∠A=60°,分别以A,B为圆心,大于AB长的一半为半径画弧,交于两点,过两点的直线交AC于点D,连接BD,则△ABD是三角形.10.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,则∠C 的大小为.11.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,BD=8,则AC= .12.如图所示,在△ABC中,∠BAC=74°,直线EF、MN分别是AB、AC的垂直平分线,点E、M在BC 上,则∠EAM= °.13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.三、解答题14.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE 交AC于点F.求证:点E在AF的垂直平分线上.15.如图,在△ABC中,AB=AC,∠A=36°,直线DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)答案1.D2.A3.D4.A5.D6.C7.C8.A9.等边 10. 78° 11. 4 12. 32 13. 214.证明如图,过E作EG⊥AC于点G,∵∠ACB=90°,∠AGE=90°,∴EG∥BD,∴∠AEG=∠B,∠D=∠DEG.∵E是BD的垂直平分线与AB的交点,∴BE=DE,∴∠B=∠D,∴∠AEG=∠DEG.在△AEG 与△FEG 中,{∠AEG =∠FEG,EG =EG,∠AGE =∠FGE,∴△AEG ≌△FEG(ASA),∴EA=EF. 又∵EG ⊥AC,∴EG 垂直平分AF, ∴点E 在AF 的垂直平分线上. 15.(1)证明:∵AB=AC,∠A=36°, ∴∠B=∠ACB=2180A∠-︒=72°, ∵直线DE 是AC 的垂直平分线,∴AD=DC, ∴∠ACD=∠A=36°, ∵∠CDB 是△ADC 的外角, ∴∠CDB=∠ACD+∠A=72°, ∴∠B=∠CDB,∴CB=CD, ∴△BCD 是等腰三角形.(2)∵AD=CD=CB=b,△BCD 的周长是a, ∴AB=a-b,∵AB=AC,∴AC=a-b,∴△ACD 的周长=AC+AD+CD=a-b+b+b=a+b.。
垂直平分线专项练习30题(有答案)1.如图,在△ABC中,∠BAC=2∠B,DE⊥AB于点D,交BC于点E,AC=AD=BD,请你猜想∠C的度数并证明.2.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC 于点M,求证:BN=CM.3.如图,在△ABC中,D是BC的垂直平分线DH上一点,DF⊥AB于F,DE⊥AC交AC的延长线于E,且BF=CE.(1)求证:AD平分∠BAC;(2)若∠BAC=80°,求∠DCB的度数.4.如图,在△ABC中,AB=AC,∠A=52°,AB的垂直平分线MN交AC于点D.求∠DBC的度数.5.如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC 交AF的延长线于E.求证:BC垂直且平分DE.6.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.7.如图,△ABC中,边AB、BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)点P是否也在边AC的垂直平分线上?由此你还能得出什么结论?8.如图,在Rt△ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,求BD的长.9.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.10.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.11.如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF 的理由.12.如图所示,在△ABC中,AB=AC=16cm,D为AB的中点,DE⊥AB交AC于E,△BCE的周长为26cm,求BC的长.13.如图,在△ABC中,EN,DM分别是AB,AC边的垂直平分线,BC=8cm.求△AED的周长.14.如图,在△ABC中,0E,OF分别是AB,AC的中垂线,∠ABO=20°,∠ABC=45°,求∠BAC和∠ACB的度数.15.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.16.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?17.如图1,△ABC中,AB=AC,∠BAC=130°,边AB、AC的垂直平分线交BC于点P、Q.(1)求∠PAQ的度数;(2)如图2,△ABC中,AB>AC,且90°<∠BAC<180°,边AB、AC的垂直平分线交BC于点P、Q.①若∠BAC=130°,则∠PAQ=_________°,若∠BAC=α,则∠PAQ用含有α的代数式表示为_________;②当∠BAC=_________°时,能使得PA⊥AQ;③若BC=10cm,则△PAQ的周长为_________cm.18.如图,△ABC中,AB=AC=14cm,D是AB的中点,DE⊥AB于D交AC于E,△EBC的周长是24cm,求BC 的长度.19.已知:如图,在△ABC中,AB=AC=32,AB的垂直平分线DE分别交AB、AC于点E、D.(1)若△DBC的周长为56,求BC的长;(2)若BC=21,求△DBC的周长.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE 的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.21.如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于P、Q.(1)若BC=10,求△APQ周长是多少?(2)若∠BAC=110°,求∠PAQ的度数是多少?24.已知,如图,AD是BC的垂直平分线,DE⊥AB于点E,DF⊥AC于点F,求证:(1)∠ABD=∠ACD;(2)DE=DF.25.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF.求证:AD垂直平分EF.26.如图,△ABC中,E是BC边上的中点,DE⊥BC于E,DM⊥AB于M,DN⊥AC于N,BM=CN 试证明:点D在∠BAC的平分线上.27.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.28.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.29.已知,如图,DE为△ABC的边AB的垂直平分线,CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,求证:AN=BM.30.如图所示,在△ABC中,AB=8,AC=4,∠BAC的平分线与BC的垂直平分线交于点D,过点D作DE⊥AB 于点E,DF⊥AC(或AC的延长线)于点D.(1)求证:BE=CF;(2)求AE的长.参考答案:1.解:∠C=90°.证明:如图,连接AE,在Rt△AED和Rt△BED中,,∴△AED≌△BED(HL),∴∠DAE=∠B,又∵∠BAC=2∠B,∴∠DAE=∠CAE,在△AED和△BED中,,∴△ACE≌△ADE,∴∠C=∠ADE=90°.2.证明:连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.3.(1)证明:如图,连接BD,∵DH垂直平分BC,∴BD=CD,在Rt△BDF和Rt△CDE中,,∵DF⊥AB于F,DE⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BDF≌Rt△CDE,∴∠CDE=∠BDF,∴∠BDC=∠EDF,∵∠BAC=80°,∴∠EDF=360°﹣90°×2﹣80°=100°,∴∠BDC=100°,∵BD=CD,∴∠DCB=(180°﹣100°)=50°4.解:∵AB=AC,∠A=52°,∴∠ABC=∠ACB==64°,∵AB的垂直平分线MN,∴AD=BD,∠A=∠ABD=52°,∴∠DBC=∠ABC﹣∠ABD=64°﹣52°=12°5.证明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°﹣45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且平分DE6.证明:∵AD是∠BAC的平分线,∴∠1=∠2,∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠FDA(等边对等角),∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF7.证明:(1)∵边AB、BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.还可得出结论:①三角形三边的垂直平分线相交于一点.②这个点与三顶点距离相等8.解:因为CE垂直平分AD,所以AC=CD=5cm.所以∠ACE=∠ECD.因为CD平分∠ECB,所以∠ECD=∠DCB.因为∠ACB=90°,所以∠ACE=∠ECD=∠DCB=30°.所以∠A=90°﹣∠ACE=60°.所以∠B=90°﹣∠A=30°.所以∠DCB=∠B.所以BD=CD=5cm9.证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B10.解:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD=∠CAD,∠EAD=∠EDA,∴∠EAC=∠B11.解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF12.解:∵点D中AB的中点,DE⊥AB,∴DE是AB的中垂线,∴AE=BE,∴△BCE的周长=BE+EC+BC=AE+EC+BC=AC+BC=26,∴BC=26﹣AC=26﹣16=10cm13.解:∵EN,DM分别是AB,AC边的垂直平分线,∴BE=AE,CD=AD,14.解:连接AO并延长,交BC于点D,∵0E,OF分别是AB,AC的中垂线,∴OB=OA,OC=OA,∴OC=OB,∠ABO=∠BAO=20°,∠CBO=∠BCO,∠CAO=∠ACO,∵∠ABC=45°,∴∠CBO=∠BCO=25°,∴∠BOC=180°﹣∠CBO﹣∠BCO=130°,∵∠BOD=∠ABO+∠BAO,∴∠BOD=40°,∠COD=90°.∵∠COD=∠CAO+∠ACO,∴∠CAO=45°,∴∠BAC=∠BAO+∠CAO=65°,∠ACB=∠BCO+∠ACO=70°15.解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG16.解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是817.解:(1)∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;(2)①∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=α,∴∠B+∠C=180°﹣∠BAC=180°﹣α,∴∠BAP+∠CAQ=180°﹣α,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=α﹣(180°﹣α)=2α﹣180°;②当∠PAQ=90°,即2α﹣180°=90°时,PA⊥AQ,解得:α=135°,∴当∠BAC=135°时,能使得PA⊥AQ;③∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∵BC=10cm,即BP+PQ+CQ=AP+PQ+AQ=10cm,∴△PAQ的周长为10cm.故答案为:①80,2α﹣180°;②135;③1018.解:在△ABE中,∵D是AB的中点,DE⊥AB于D交AC于E,∴AE=BE;在△ABC中,∵AB=AC=14cm,AC=AE+EC,又∵CE+BE+BC=24cm,∴BC=10cm19.解:(1)∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD=AC,∵△DBC的周长为56,AC=32,∴BC=56﹣32=24;(2)∵AD=BD,AC=32,∴AD+CD=BD+CD=AC=32,∵BC=21,∴△DBC的周长=BD+CD+BC=32+21=53.故答案为:24;5320.解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.21.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∴∠EDA=180°﹣∠AED﹣∠EAD,∠FDA=180°﹣∠AFD﹣∠FAD,∴∠EDA=∠FDA,∵DE=DF(已证),∴DG垂直平分EF(三线合一),即AD垂直平分EF.22.证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B23.解:(1)∵MP、NQ分别是AB、AC的垂直平分线,∴AP=BP,AQ=CQ,∴△APQ周长=AP+PQ+AQ=BP+PQ+QC=BC,∵BC=10,∴△APQ周长=10;(2)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AP=BP,AQ=CQ(已证),∴∠BAP=∠B,∠CAQ=∠C,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=∠BAC﹣∠B﹣∠C=110°﹣70°=40°24.证明:(1)∵AD是BC的垂直平分线,∴AB=AC,BD=CD,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABD=∠ACD;(2)∵AB=AC,AD是BC的垂直平分线,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF25.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在△ADE和△ADF中,,∴△ADE≌△ADF(HL),∴AE=AF,又∵AD平分∠BAC,∴AD垂直平分EF26.证明:如图,连接BD、CD,∵DE⊥BC,E是BC边上的中点,∴BD=CD,在△BDM和△CDN中,,∴△BDM≌△CDN(HL),∴DM=DN,又∵DM⊥AB,DN⊥AC,∴点D在∠BAC的平分线上.27.解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.故答案为:728.解:连接DB.∵点D在BC的垂直平分线上,∴DB=DC;∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,∴DE=DF;∵∠DFC=∠DEB=90°,在Rt△DCF和Rt△DBE中,,∴Rt△DCF≌Rt△DBE(HL),∴CF=BE(全等三角形的对应边相等).29.证明:∵DE为△ABC的边AB的垂直平分线,∴AD=BD,∵CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,∴DN=DM,在Rt△ADN和Rt△BDM中,,∴Rt△ADN≌Rt△BDM(HL),∴AN=BM.30.(1)证明:连结BD,CD.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠BED=∠AFD=90°,DE=DF.∵DE垂直平分BC,∴DB=DC.在Rt△DEB和Rt△DFC中,∴Rt△DEB≌Rt△DFC(HL),∴BE=CF;(2)解:在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AB=AE+BE,∴AB=AF+EB,∴AB=AC+CF+EB.∵AB=8,AC=4,∴8=4+CF+EB,∴CF+EB=4,∴2EB=4,∴EB=2.∴AE=8﹣2=6.答:AE的长为6.。
垂直平分线练习题垂直平分线练习题垂直平分线是几何学中的一个重要概念,它在很多数学题目中经常被用到。
垂直平分线是指将一条线段垂直平分为两段相等的线段的直线。
在本文中,我们将探讨一些与垂直平分线相关的练习题,帮助读者更好地理解和应用这一概念。
练习题一:垂直平分线的构造假设有一条线段AB,我们的目标是通过构造一条垂直平分线来将其平分为两段相等的线段。
请你描述一下如何进行这一构造。
解答:首先,我们需要绘制一条与线段AB垂直的直线。
可以使用直尺和铅笔来辅助作图。
接下来,在线段AB的两个端点上分别作两个等长的弧,这两个弧的半径可以任意选择。
然后,我们将直尺的一边放在其中一个端点上,另一边与另一个端点的弧交点相连,得到的直线就是垂直平分线。
练习题二:垂直平分线的性质垂直平分线具有一些重要的性质,下面我们来探讨其中的一些。
性质一:垂直平分线将线段分为两段相等的部分。
证明:由于垂直平分线将线段分为两个等长的弧,所以它也将线段分为两段相等的部分。
性质二:垂直平分线与线段的中垂线重合。
证明:设垂直平分线为CD,线段AB的中点为E。
由于CD与AB垂直且等分,所以CD与AE、BE都垂直。
而根据垂直平分线的定义,CD与AE、BE也相等。
因此,CD即为线段AB的中垂线。
练习题三:垂直平分线的应用垂直平分线在几何学中有着广泛的应用,下面我们来看一个实际问题。
问题:假设有一个正方形ABCD,以及一条通过点A和点C的直线l。
请你证明直线l是正方形ABCD的对角线,并找出它的垂直平分线。
解答:首先,我们知道正方形的对角线互相垂直且相等。
因此,我们只需要证明直线l与正方形的两条对边垂直,并且它们的长度相等。
设正方形的边长为a。
由于直线l通过点A和点C,所以它与正方形的边AB和边CD相交。
设交点分别为E和F。
我们可以通过计算证明AE=CF=a/2,从而证明直线l与正方形的两条对边相等。
接下来,我们需要证明直线l与正方形的两条对边垂直。
由于正方形的两条对边互相垂直,所以我们只需要证明直线l与边AB垂直即可。
1.3线段的垂直平分线同步练习题一、判断题1.如图(1),OC=OD直线AB是线段CD的垂直平分线2.如图(1),射成OE为线段CD的垂直平分线3.如图(2),直线AB的垂直平分线是直线CD4.如图(3),PA=PB,P′A=P′B,则直线PP′是线段AB的垂直平分线(1)(2)(3)二、填空题1.如下图,已知直线MN是线段AB的垂直平分线,垂足为D,点P是MN上一点,若AB=10 cm,则BD=__________cm;若PA=10 cm,则PB=__________cm;此时,PD=__________cm.2.如下图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12 cm,AC=5cm,则AB+BD+AD=________cm;AB+BD+DC=__________cm;△ABC的周长是__________cm.3.如右上图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC 于E,BE=5,则AE=__________,∠AEC=__________,AC=__________ .4.已知线段AB及一点P,PA=PB=3cm,则点P在__________上.5.如果P是线段AB的垂直平分线上一点,且PB=6cm,则PA=__________cm.6.如图(1),P是线段AB垂直平分线上一点,M为线段AB上异于A,B的点,则PA,PB,PM的大小关系是PA__________PB__________PM.7.如图(2),在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交BC于D,则点D在__________上.(1)(2)(3)8.如图(3),BC是等腰△ABC和等腰△DBC的公共底,则直线AD必是__________的垂直平分线.三、选择题1.下列各图形中,是轴对称图形的有多少个①等腰三角形②等边三角形③点④角⑤两个全等三角形A.1个B.2个C.3个D.4个2.如左下图,AC=AD,BC=BD,则A.CD垂直平分ADB.AB垂直平分CDC.CD平分∠ACBD.以上结论均不对3.如右上图,△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC 的周长是A.6 cmB.7 cmC.8 cmD.9 cm4.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形四、解答题如下图,P是∠AOB的平分线OM上任意一点,PE⊥CA于E,PF⊥OB于F,连结EF.求证:OP垂直平分EF.参考答案一、1.× 2.× 3.× 4.√二、1.5 10 52.12 12 173.5 30° 2154.线段AB的垂直平分线5.66.= >7.线段AB的垂直平分线8.线段BC三、1.D 2.B 3.D 4.C四、证明:∵PE⊥OA于E,DF⊥OB于F∴∠PEO=90°=∠PFO∴在△PEO和△PFO中,∴△PEO≌△PFO,∴PE=PF,EO=FO∴O、P在EF的中垂线上,∴OP垂直平分EF.。
线段的垂直平分线---知识讲解(提高)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了.(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.【答案】C;【解析】∵在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:【变式】阅读“作线段的垂直平分线”的作法,完成填空及证明.已知:线段AB,要作线段AB的垂直平分线.2.(2019秋•和县期中)如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【思路点拨】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【答案与解析】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.【总结升华】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.举一反三:【变式】如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长.【答案】∵DE是AB的垂直平分线,∴BE=AE,∴BE+EC=AE+EC=AC.∴△BEC的周长=BE+EC+BC=AC+BC=23.要点二、线段的垂直平分线的逆定理3.(2019春•鄄城县期中)如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【答案与解析】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.【总结升华】本题考查了线段的垂直平分线的应用,掌握线段垂直平分线的性质和判定定理是解题的关键.类型三、线段的垂直平分线定理与逆定理的综合应用4.联想三角形外心的概念,我们可引入如下概念.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=110°,则∠EAG=________.【答案】40°;解:∠B=x,∠c=y,则,∠B+∠C=180°-∠BAC,即x+y=70°①,∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,AG=CG,∴∠BAE=∠B=x,∠CAG=∠C=y,∵∠BAE+∠EAG+∠GAC=∠BAC,∴x+y+∠EAG=110°②,联立①②得,∠EAG=110°-70°=40°.故答案为:40°.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是(_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC 的外心,继而可求得答案.【答案与解析】分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,∴△ABC的外心坐标是(-2,-1).故答案为:(-2,-1).【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:如图,点P就是要找的点.线段的垂直平分线——巩固练习(提高)【巩固练习】一.选择题1.如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A、63B、43C、6D、42.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、33.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确4.如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B5.如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB6.(2019秋•陆丰市校级期中)如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上D.点P在边BC的垂直平分线上二.填空题7.(2019•长沙)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC 于点E,则△BCE的周长为.8.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________.9.(2019•西宁)如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为______________.10.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_____度.11.如图:已知,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.12.如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.三.解答题:13.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2-GE2=EA2.14.(2019秋•扬州校级月考)如图,∠ACB=90°,AC=BC,D为△ABC外一点,且AD=BD,DE⊥AC交CA的延长线于E点.求证:DE=AE+BC.15.(2019秋•农安县期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【答案与解析】一.选择题1.【答案】C;【解析】∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.2.【答案】B;【解析】∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.3.【答案】D;【解析】∵CP是线段AB的中垂线,∴△ABC是等腰三角形,即AC=BC,∠A=∠B,作AC、BC之中垂线分别交AB于D、E,∴∠A=∠ACD,∠B=∠BCE,∵∠A=∠B,∴∠A=∠ACD,∠B=∠BCE,∵AC=BC,∴△ACD≌△BCE,∴AD=EB,∵AD=DC,EB=CE,∴AD=DC=EB=CE.4【答案】B;【解析】A、根据线段垂直平分线的性质,得AE=BE.故该选项正确;B、因为AE>AC,AE=BE,所以AC<BE.故该选项错误;C、根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°.则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE.故该选项正确;D、根据C的证明过程.故该选项正确.5.【答案】A;【解析】∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.6.【答案】D;【解析】解:∵PB=PC,∴P在线段BC的垂直平分线上,故选D.二.填空题7.【答案】13;【解析】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.8.【答案】6;【解析】∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.9.【答案】;【解析】解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.10.【答案】60;【解析】由AB=AC,∠BAC=120°,可得∠B=30°,因为点D是AB的垂直平分线上的点,所以AD=BD,因而∠BAD=∠B=30°,从而∠ADC=60度.11.【答案】8;【解析】∵△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,∴AD=BD,AE=CE∴△ADE的周长=AD+AE+DE=BD+DE+CE=BC=8.△ADE的周长等于8.12.【答案】13;【解析】∵AC的垂直平分线DE交BC于D,E为垂足∴AD=DC,AC=2AE=6,∵△ABC 的周长为19,∴AB+BC=13(cm).∴△ABD 的周长=AB+BD+AD=AB+BD+CD=AB+BC=13(cm).三.解答题13.【解析】证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,∵∠ABC=45°,∴∠BCD=180°-90°-45°=45°=∠ABC∴DB=DC,∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD,∵在△DBH 和△DCA 中,BDH CDA BD CD HBD ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DBH≌△DCA(ASA),∴BH=AC.(2)连接CG,∵∠ABC=45°,CD⊥AB(∠CDB=90°),∴∠BCD=45°=∠ABC,∴DB=CD,∵F 为BC 的中点,∴DF 垂直平分BC,∴BG=CG,∵∠ABE=∠CBE,BE⊥AC,∴EC=EA,在Rt△CGE 中,由勾股定理得:CG 2-GE 2=CE 2,∵CE=AE,BG=CG,∴BG2-GE2=EA2.14.【解析】证明:连接CD,∵AC=BC,AD=BD,∴C在AB的垂直平分线上,D在AB的垂直平分线上,∴CD是AB的垂直平分线,∵∠ACB=90°,∴∠ACD=∠ACB=45°,∵DE⊥AC,∴∠CDE=∠ACD=45°,∴CE=DE,∴DE=AE+AC=AE+BC.15.【解析】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.。
垂直平分线与角平分线典型题Prepared on 24 November 2020线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习: 已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
初二数学垂直平分线练习题一、选择题1. 在平面上,有一条线段AB,下列说法中哪个是正确的?A. 垂直平分线CE可以将线段AB平分为两等分。
B. 垂直平分线CE可以将线段AB垂直平分。
C. 垂直平分线CE与线段AB相交于点C。
D. 垂直平分线CE的两侧长度相等。
2. 设三角形ABC的三个顶点分别为A(2, 3),B(6, 8),C(4, 2),垂直平分线DE经过点A和点C,则垂直平分线DE的方程是:A. x - y + 5 = 0B. 2x + 3y - 18 = 0C. 4x - y - 14 = 0D. 2x - y + 1 = 03. 垂直平分线的性质是:A. 将一个线段平分为两个等分的线段。
B. 与该线段垂直相交的线段。
C. 将一个线段垂直平分的直线。
D. 与该线段垂直的直线,将线段平分为两个等分。
二、计算题1. 已知线段AB的中点为M(-3, 4),斜率为2的直线L与线段AB相交于点C。
求点C的坐标。
2. 设三角形XYZ的顶点坐标分别为X(1, 3),Y(-2, -5),Z(4, 7),垂直平分线经过顶点Y和顶点Z。
求垂直平分线的方程,并写出方程的解析式。
3. 设平面上有一个正方形ABCD,其中A(2, 4),C(8, 4)。
求正方形的对角线的垂直平分线的方程,并写出方程的解析式。
三、应用题1. 若一个梯形ABCD的底边为AB,高为h,且垂直平分线距底边AB的距离为d。
求垂直平分线的方程,并写出方程的解析式。
2. 在平面直角坐标系中,点A(-3, 2)和点B(5, -4)为一个直角三角形的两个顶点。
求直角三角形的垂直平分线方程,并写出方程的解析式。
3. 设平面上三角形ABC的顶点坐标分别为A(-2, 1),B(4, 3),C(-1, 5),垂直平分线经过顶点A和顶点B。
求垂直平分线的方程,并写出方程的解析式。
四、解答题1. 在平面直角坐标系中,已知点A(1, 2)和点B(4, 6)。
求直线AB的斜率和与线段AB垂直平分线的方程。