(62)n次独立重复试验与二项分布
- 格式:doc
- 大小:47.00 KB
- 文档页数:2
第8讲n次独立重复试验与二项分布基础知识整合1.条件概率及其性质2.事件的相互独立(1)设A,B为两个事件,如果P(AB)=□05P(A)·P(B),那么称事件A与事件B相互独立.(2)如果事件A与B相互独立,那么□06A与□07B,□08A与□09B,□10 A与□11B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,即若用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n)=□12P(A1)P(A2)P(A3)…P(A n).(2)二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=□13C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.1.A ,B 中至少有一个发生的事件为A ∪B . 2.A ,B 都发生的事件为AB . 3.A ,B 都不发生的事件为A -B -.4.A ,B 恰有一个发生的事件为(A B -)∪(A -B ).5.A ,B 至多一个发生的事件为(A B )∪(A B )∪(A B ).1.甲射击命中目标的概率为0.75,乙射击命中目标的概率为23,当两人同时射击同一目标时,该目标被击中的概率为( )A.12 B .1 C.1112 D.56 答案 C解析 1-13×14=1112,选C.2.由0,1组成的三位编号中,若用A 表示“第二位数字为0的事件”,用B 表示“第一位数字为0的事件”,则P (A |B )=( )A.12B.14C.16D.18 答案 A解析 因为第一位数字可为0或1,所以第一位数字为0的概率P (B )=12,第一位数字为0且第二位数字也是0,即事件A ,B 同时发生的概率P (AB )=12×12=14,所以P (A |B )=P (AB )P (B )=1412=12.3.(2019·吉林通化模拟)若ξ~B ⎝ ⎛⎭⎪⎫10,12,则P (ξ≥2)等于( )A.10131024B.111024C.501512D.507512 答案 A 解析P (ξ≥2)=1-P (ξ=0)-P (ξ=1)=1-C 010⎝ ⎛⎭⎪⎫1210-C 110⎝ ⎛⎭⎪⎫1210=10131024.4.(2019·广东汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A.34B.23C.57D.512 答案 D解析 根据题意,恰有一人获得一等奖就是甲获奖乙没获奖或甲没获奖乙获奖,则所求概率是23×⎝ ⎛⎭⎪⎫1-34+34×⎝ ⎛⎭⎪⎫1-23=512.故选D.5.(2019·福建厦门模拟)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25B.35C.18125D.54125 答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P 1=35,∴3次中恰有2次抽到黄球的概率是P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35=54125.6.袋中有红、黄、蓝球各1个,从中有放回地每次任取1个,直到取到红球为止,则第4次首次取到红球的概率为( )A.980B.881C.382D.827 答案 B解析 前3次都取不到红球的概率为⎝ ⎛⎭⎪⎫233,第4次首次取到红球的概率为13,4个独立事件同时发生的概率为⎝ ⎛⎭⎪⎫233×13=881.核心考向突破考向一 条件概率例1 (1)(2019·大庆模拟)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12答案 B解析P(A)=C23+C22C25=25,P(B)=C22C25=110,又A⊇B,则P(AB)=P(B)=110,所以P(B|A)=P(AB)P(A)=P(B)P(A)=14.(2)(2019·江西南昌模拟)口袋中装有大小、形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为________.答案3 5解析口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A表示“第一次取得红球”,事件B表示“第二次取得白球”,则P(A)=26=13,P(AB)=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P(B|A)=P(AB)P(A)=1513=35.触类旁通条件概率的求法(1)定义法:先求P(A)和P(AB),再由P(B|A)=P(AB)P(A)求P(B|A).即时训练 1.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.110 B.15 C.25 D.12答案 C解析设“开关第一次闭合后出现红灯”为事件A,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C.2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.答案 0.72解析 设种子发芽为事件A ,种子成长为幼苗为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9, 由P (B |A )=P (AB )P (A ),得P (AB )=P (B |A )·P (A )=0.9×0.8=0.72. 故这粒种子成长为幼苗的概率为0.72. 考向二 相互独立事件的概率例2 (2017·天津高考)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解 (1)随机变量X 的所有可能取值为0,1,2,3. P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝ ⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为随机变量X的数学期望E(X)=0×14+1×1124+2×14+3×124=1312.(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为11 48.触类旁通求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积;(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.即时训练 3.某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列和数学期望E(ξ).解(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,则P(D)=1-P(A-B-C-)=1-13×14×25=2930.(2)由题意可得,ξ的所有可能取值为0,1,2,3,则P(ξ=0)=P(A-B-C-)=13×14×25=130;P(ξ=1)=P(A B-C-)+P(A-B C-)+P(A-B-C)=23×14×25+13×34×25+13×14×35=13 60;P(ξ=2)=P(AB C-)+P(A B-C)+P(A-BC)=23×34×25+23×14×35+13×34×35=920;P(ξ=3)=P(ABC)=23×34×35=310.所以ξ的分布列为E(ξ)=0×130+1×1360+2×920+3×310=12160.考向三独立重复实验与二项分布例3(2019·重庆模拟)为了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A,B,C,D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为23,23,12.这三项测试能否通过相互之间没有影响.(1)求A能够入选的概率;(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).解(1)设A通过体能、射击、反应分别记为事件M,N,P,则A能够入选包含以下几个互斥事件:MN P-,M N-P,M-NP,MNP,∴P(A)=P(MN P-)+P(M N-P)+P(M-NP)+P(MNP)=23×23×12+23×13×12+13×23×12+23×23×12=1218=23.(2)记ξ表示该训练基地入选人数,则得到的训练经费为η=5000ξ,又ξ的可能取值为0,1,2,3,4,∴P (ξ=0)=C 04⎝ ⎛⎭⎪⎫230⎝ ⎛⎭⎪⎫134=181, P (ξ=1)=C 14⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫133=881, P (ξ=2)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=2481=827, P (ξ=3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫131=3281,P (ξ=4)=C 44⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫130=1681. ∴ξ的分布列为触类旁通求解独立重复试验概率时应注意的问题(1)概率模型是否满足公式P n (k )=C k n p k (1-p )n -k的三个条件:①在一次试验中某事件A 发生的概率是一个常数p ;②n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;③该公式表示n 次试验中事件A 恰好发生了k 次的概率.(2)独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的题用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”等字样的题用对立事件的概率公式计算更简单一样.即时训练 4.某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p =23,记该班级完成n 首背诵后的总得分为S n .(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.解 (1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首. 由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P =⎝ ⎛⎭⎪⎫232×C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132+23×13×23×C 23⎝ ⎛⎭⎪⎫232×13=1681. (2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p =23, ∴P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133=4081, P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫134=3081, P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235×⎝ ⎛⎭⎪⎫130+C 05⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫135=1181, ∴ξ的分布列为∴E (ξ)=10×4081+30×3081+50×1181=185081.。
独立重复试验与二项分布独立重复试验与二项分布独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验。
二项分布前提:在n次独立重复试验中,事件A发生的次数X。
符号含义:p:每次试验中事件A发生的概率。
k:在n次独立重复试验中事件A发生的次数。
公式:$C_k^n p^k(1-p)^{n-k}$结论:随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。
明确该公式中各量表示的意义:n为重复试验的次数;p 为在一次试验中某事件A发生的概率;k是在n次独立重复试验中事件A发生的次数。
判断正误1) n次独立重复试验的每次试验结果可以有多种。
×2) n次独立重复试验的每次试验的条件可以略有不同。
×3) 二项分布与超几何分布是同一种分布。
×4) 两点分布是二项分布的特殊情形。
√已知随机变量X服从二项分布,X~B(6,3),则P(X=2)等于$\frac{15}{64}$。
任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为$\frac{3}{8}$。
设随机变量X~B(2,p),若P(X≥1)=$\frac{3}{4}$,则$p=\frac{1}{3}$。
探究点1:独立重复试验的概率甲、乙两人各射击一次,击中目标的概率分别是$\frac{2}{3}$和$\frac{3}{4}$,假设每次射击是否击中目标,相互之间没有影响。
1) 求甲射击3次,至少1次未击中目标的概率。
记“甲射击3次至少有1次未击中目标”为事件A,由题意,射击3次,相当于3次独立重复试验,故$P(A_1)=1-P(A_0)=1-(\frac{2}{3})^3=\frac{19}{27}$。
2) 求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率。
记“甲射击2次,恰有2次击中目标”为事件A。
“乙射击2次,恰有1次击中目标”为事件B,则$P(A_2)=C_2^2(\frac{2}{3})^2(\frac{1}{3})^0=\frac{4}{9}$,$P(B_1)=C_2^1(\frac{3}{4})^1(\frac{1}{4})^1=\frac{3}{8}$。
n 次独立重复试验及二项分布一 基础知识1.条件概率及其性质(1)条件概率的定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0).(2)条件概率的性质 ①非负性:0≤P (B |A )≤1;②可加性:如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件.(2)若P (AB )=P (A )P (B ),则A 与B 相互独立.(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(5)一般地,如果事件A 1,A 2,…,A n (n >2,n ∈N *)相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)·…·P (A n ).互斥事件与相互独立事件的相同点与不同点(1)相同点:二者都是描述两个事件间的关系;(2)不同点:互斥事件强调两事件不可能同时发生,即P (AB )=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.3.独立重复试验与二项分布(1)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.(2)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,则事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n ,则称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n 次独立重复试验;,(2)随机变量是否为某事件在这n 次独立重复试验中发生的次数.考点一 条件概率[典例精析](1)(2019·合肥模拟)将三颗骰子各掷一次,记事件A 为“三个点数都不同”,B 为“至少出现一个6点”,则条件概率P (A |B )=__________,P (B |A )=________. (2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________.[解析] (1)P (A |B )的含义是在事件B 发生的条件下,事件A 发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6-5×5×5=91种情况,“至少出现一个6点,且三个点数都不相同”共有C 13×5×4=60种情况,所以P (A |B )=6091.P (B |A )的含义是在事件A 发生的条件下,事件B 发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P (B |A )=12.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P (AB )P (A )=11025=14. [答案] (1)6091 12 (2)14[题组训练]1.(2019·石家庄摸底)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.解析:设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25.答案:252.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为________.解析:法一:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则P (B |A )=P (AB )P (A )=3×2A 2535=12.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为12.答案:12考点二 相互独立事件的概率[典例精析](1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.[解析] (1)设甲、乙、丙、丁需使用设备分别为事件A ,B ,C ,D ,则P (A )=0.6,P (B )=P (C )=0.5,P (D )=0.4,恰好3人使用设备的概率P 1=P (A BCD +A B CD +AB C D +ABC D )=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人使用设备的概率P 2=0.6×0.5×0.5×0.4=0.06,故所求概率P =0.25+0.06=0.31.(2)依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P =1×0.2×0.82=0.128.[答案] (1)0.31 (2)0.128 [变式发散]1.(变设问)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________.解析:依题意,该选手第3个问题的回答是错误的,第4,5个问题均回答正确,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23×0.82+2×0.2×0.8×0.2×0.82=0.005 12+0.040 96=0.046 08.答案:0.046 082.(变设问)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.解析:依题意,设答对的事件为A ,可分第3个回答正确与错误两类,若第3个回答正确,则有A A A A 或A A A A 两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032.若该选手第3个问题的回答是错误的,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以所求概率为0.032+0.072=0.104.答案:0.104[题组训练]1.在高三的某次模拟考试中,对于数学选修4系列的考查中,甲同学选做《不等式选讲》的概率为13,乙同学选做《不等式选讲》的概率为14,假定二人的选择相互之间没有影响,那么这次模拟考试中甲、乙两个同学至少有1人选做《不等式选讲》的概率为________.解析:记高三的某次模拟考试中“甲同学不选做《不等式选讲》”为事件A ,“乙同学不选做《不等式选讲》”为事件B ,且A ,B 相互独立.依题意,P (A )=1-13=23,P (B )=1-14=34,所以P (AB )=P (A )·P (B )=23×34=12.又因为甲、乙二人至少有一人选做《不等式选讲》的对立事件为甲、乙二人都不选做《不等式选讲》,所以所求概率为1-P (AB )=1-12=12.答案:122.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以随机变量X 的分布列为(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14 =1148. 所以这2辆车共遇到1个红灯的概率为1148.考点三 独立重复试验与二项分布[典例精析]九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.[解] (1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只), 所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X 的所有可能取值为0,1,2,3,4,则P (X =0)=⎝⎛⎭⎫354=81625,P (X =1)=C 14×25×⎝⎛⎭⎫353=216625, P (X =2)=C 24×⎝⎛⎭⎫252×⎝⎛⎭⎫352=216625,P (X =3)=C 34×⎝⎛⎭⎫253×35=96625, P (X =4)=⎝⎛⎭⎫254=16625. 所以X 的分布列为[题组训练]1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )A.0.32B.0.18C.0.50D.0.057 6解析:选D 甲命中一次的概率为C 12×0.8×(1-0.8)=0.32,乙命中一次的概率为C 12×0.9×(1-0.9)=0.18,他们投篮命中与否相互独立,所以甲、乙都恰好命中一次的概率为P =0.32×0.18=0.057 6.2.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率为多少? 解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38, P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=⎝⎛⎭⎫123=18, P (X =-200)=⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率为511512.[课时跟踪检测]A 级1.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为( )A.23 B.12 C.34D.14解析:选B 设女孩个数为X ,女孩多于男孩的概率为P (X ≥2)=P (X =2)+P (X =3)=C 23×⎝⎛⎭⎫122×12+C 33×⎝⎛⎭⎫123=3×18+18=12. 2.(2018·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:命在30天以上的概率为( )A.1316B.2764C.2532D.2732解析:选D 由表可知元件使用寿命在30天以上的频率为150200=34,则所求概率为C 23⎝⎛⎭⎫342×14+⎝⎛⎭⎫343=2732. 3.(2019·武汉调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.59解析:选A 小赵独自去一个景点共有4×3×3×3=108种情况,即n (B )=108,4个人去的景点不同的情况有A 44=4×3×2×1=24种,即n (AB )=24,∴P (A |B )=n (AB )n (B )=24108=29. 4.甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分). 甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的英语口语测试成绩不低于85分”记为事件B ,则P (AB ),P (A |B )的值分别是( )A.14,59 B.14,49 C.15,59D.15,49解析:选A 由题意知,P (AB )=1020×510=14,根据条件概率的计算公式得P (A |B )=P (AB )P (B )=14920=59. 5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14B.89C.116D.532解析:选D 两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,故两次数字乘积为偶数的概率为1-⎝⎛⎭⎫262=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532.6.设由0,1组成的三位编号中,若用A 表示“第二位数字为0的事件”,用B 表示“第一位数字为0的事件”,则P (A |B )=________.解析:因为第一位数字可为0或1,所以第一位数字为0的概率P (B )=12,第一位数字为0且第二位数字也是0,即事件A ,B 同时发生的概率P (AB )=12×12=14,所以P (A |B )=P (AB )P (B )=1412=12.答案:127.事件A ,B ,C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (B )=________,P (A B )=________.解析:由题意得⎩⎪⎨⎪⎧P (A )·P (B )=16, ①P (B )·P (C )=18, ②P (A )·P (B )·P (C )=18, ③由③÷①得P (C )=34,所以P (C )=1-P (C )=1-34=14.将P (C )=14代入②得P (B )=12,所以P (B )=1-P (B )=12,由①可得P (A )=13,所以P (A B )=P (A )·P (B )=23×12=13.答案:12 138.某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为14,用ξ表示5位乘客在第20层下电梯的人数,则P (ξ=4)=________.解析:考查一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~B ⎝⎛⎭⎫5,14,即有P (ξ=k )=C k 5⎝⎛⎭⎫14k ×⎝⎛⎭⎫345-k ,k =0,1,2,3,4,5.故P (ξ=4)=C 45⎝⎛⎭⎫144×⎝⎛⎭⎫341=151 024. 答案:151 0249.挑选空军飞行员可以说是“万里挑一”,要想通过需要过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k ·(1-0.3)3-k,k =0,1,2,3. 故P (X =0)=C 03×0.30×(1-0.3)3=0.343, P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189, P (X =3)=C 33×0.33=0.027,故X 的分布列为10.甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率为多少?解:(1)记“甲连续射击4次,至少有1次未击中目标”为事件A 1,则事件A 1的对立事件A 1为“甲连续射击4次,全部击中目标”.由题意知,射击4次相当于做4次独立重复试验.故P (A 1)=C 44⎝⎛⎭⎫234=1681. 所以P (A 1)=1-P (A 1)=1-1681=6581.所以甲连续射击4次,至少有一次未击中目标的概率为6581.(2)记“甲射击4次,恰好有2次击中目标”为事件A 2,“乙射击4次,恰好有3次击中目标”为事件B 2,则P (A 2)=C 24×⎝⎛⎭⎫232×⎝⎛⎭⎫1-232=827,P (B 2)=C 34⎝⎛⎭⎫343×⎝⎛⎭⎫1-341=2764. 由于甲、乙射击相互独立, 故P (A 2B 2)=P (A 2)P (B 2)=827×2764=18.所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为18.(3)记“乙恰好射击5次后,被终止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5),则A 3=D 5D 4D 3(D 2D 1∪D 2D 1∪D 2D 1),且P (D i )=14.由于各事件相互独立,故 P (A 3)=P (D 5)P (D 4)P (D 3)P (D2D 1+D 2D 1+D 2D 1)=14×14×34×⎝⎛⎭⎫1-14×14=451 024. 所以乙恰好射击5次后,被终止射击的概率为451 024.B 级1.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A.C 35C 14C 45B.⎝⎛⎭⎫593×49C.35×14D.C 14×⎝⎛⎭⎫593×49解析:选B 由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为⎝⎛⎭⎫593×49.2.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )A.310 B.29 C.78D.79解析:选D 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730.则所求概率为P (B |A )=P (AB )P (A )=730310=79.3.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则P (X ≥-80)=________.解析:由题意得该产品能销售的概率为⎝⎛⎭⎫1-16⎝⎛⎭⎫1-110=34.易知X 的所有可能取值为-320,-200,-80,40,160,设ξ表示一箱产品中可以销售的件数,则ξ~B ⎝⎛⎭⎫4,34,所以P (ξ=k )=C k 4⎝⎛⎭⎫34k ⎝⎛⎭⎫144-k , 所以P (X =-80)=P (ξ=2)=C 24⎝⎛⎭⎫342⎝⎛⎭⎫142=27128,P (X =40)=P (ξ=3)=C 34⎝⎛⎭⎫343⎝⎛⎭⎫141=2764, P (X =160)=P (ξ=4)=C 44⎝⎛⎭⎫344⎝⎛⎭⎫140=81256, 故P (X ≥-80)=P (X =-80)+P (X =40)+P (X =160)=243256.答案:2432564.从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示的频率分布直方图.(1)估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率; (2)假设该市高一学生的体重X 服从正态分布N (57,σ2).①利用(1)的结论估计该高一某个学生体重介于54~57 kg 之间的概率;②从该市高一学生中随机抽取3人,记体重介于54~57 kg 之间的人数为Y ,利用(1)的结论,求Y 的分布列.解:(1)这400名学生中,体重超过60 kg 的频率为(0.04+0.01)×5=14,由此估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率为14.(2)①∵X ~N (57,σ2), 由(1)知P (X >60)=14,∴P (X <54)=14,∴P (54<X <60)=1-2×14=12,∴P (54<X <57)=12×12=14,即高一某个学生体重介于54~57 kg 之间的概率为14.②∵该市高一学生总体很大,∴从该市高一学生中随机抽取3人,可以视为独立重复试验, 其中体重介于54~57 kg 之间的人数Y ~B ⎝⎛⎭⎫3,14, 其中P (Y =i )=C i 3⎝⎛⎭⎫14i ⎝⎛⎭⎫343-i,i =0,1,2,3. ∴Y 的分布列为5.为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列;(3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值.解:(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).(2)由题表可知,10户中位于第二阶梯电量的有4户,设取到第二阶梯电量的用户数为ξ,则ξ可取0,1,2,3,4.P (ξ=0)=C 04C 46C 410=114,P (ξ=1)=C 14C 36C 410=821,P (ξ=2)=C 24C 26C 410=37,P (ξ=3)=C 34C 16C 410=435,P (ξ=4)=C 44C 06C 410=1210,故ξ的分布列为(3)由题意可知从全市中抽取10户,用电量为第一阶梯的户数满足X ~B ⎝⎛⎭⎫10,25,可知P (X =k )=C k 10⎝⎛⎭⎫25k ·⎝⎛⎭⎫3510-k (k =0,1,2,3,…,10). 由⎩⎨⎧C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k +110⎝⎛⎭⎫25k +1⎝⎛⎭⎫359-k,Ck 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k -110⎝⎛⎭⎫25k -1⎝⎛⎭⎫3511-k,解得175≤k ≤225.又k ∈N *,所以当k =4时概率最大,故k =4.。
n 次独立重复试验及二项分布一 基础知识1.条件概率及其性质(1)条件概率的定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0). (2)条件概率的性质 ①非负性:0≤P (B |A )≤1;②可加性:如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件.(2)若P (AB )=P (A )P (B ),则A 与B 相互独立.(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(5)一般地,如果事件A 1,A 2,…,A n (n >2,n ∈N *)相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)·…·P (A n ).互斥事件与相互独立事件的相同点与不同点(1)相同点:二者都是描述两个事件间的关系;(2)不同点:互斥事件强调两事件不可能同时发生,即P (AB )=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.3.独立重复试验与二项分布(1)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.(2)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,则事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n,则称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n次独立重复试验;,(2)随机变量是否为某事件在这n次独立重复试验中发生的次数.考点一条件概率[典例精析](1)(优质试题·合肥模拟)将三颗骰子各掷一次,记事件A为“三个点数都不同”,B为“至少出现一个6点”,则条件概率P(A|B)=__________,P(B|A)=________.(2)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.[解析](1)P(A|B)的含义是在事件B发生的条件下,事件A发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6-5×5×5=91种情况,“至少出现一个6点,且三个点数都不相同”共有C13×5×4=60种情况,所以P(A|B)=6091.P(B|A)的含义是在事件A发生的条件下,事件B发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P(B|A)=1 2.(2)P(A)=C23+C22C25=410=25,P(AB)=C22C25=110,由条件概率公式,得P(B|A)=P (AB )P (A )=11025=14. [答案] (1)6091 12 (2)14[题组训练]1.(优质试题·石家庄摸底)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.解析:设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25. 答案:252.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为________.解析:法一:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则P (B |A )=P (AB )P (A )=3×2A 2535=12.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为12.答案:12考点二 相互独立事件的概率[典例精析](1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.[解析](1)设甲、乙、丙、丁需使用设备分别为事件A,B,C,D,则P(A)=0.6,P(B)=P(C)=0.5,P(D)=0.4,恰好3人使用设备的概率P1=P(A BCD +A B CD+AB C D+ABC D)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人使用设备的概率P2=0.6×0.5×0.5×0.4=0.06,故所求概率P=0.25+0.06=0.31.(2)依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P=1×0.2×0.82=0.128.[答案](1)0.31(2)0.128[变式发散]1.(变设问)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________.解析:依题意,该选手第3个问题的回答是错误的,第4,5个问题均回答正确,第1,2个问题回答均错误或有且只有1个错误,则所求概率P=0.23×0.82+2×0.2×0.8×0.2×0.82=0.005 12+0.040 96=0.046 08.答案:0.046 082.(变设问)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.解析:依题意,设答对的事件为A,可分第3个回答正确与错误两类,若第3个回答正确,则有A A A A 或A A A A 两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032.若该选手第3个问题的回答是错误的,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以所求概率为0.032+0.072=0.104.答案:0.104[题组训练]1.在高三的某次模拟考试中,对于数学选修4系列的考查中,甲同学选做《不等式选讲》的概率为13,乙同学选做《不等式选讲》的概率为14,假定二人的选择相互之间没有影响,那么这次模拟考试中甲、乙两个同学至少有1人选做《不等式选讲》的概率为________.解析:记高三的某次模拟考试中“甲同学不选做《不等式选讲》”为事件A ,“乙同学不选做《不等式选讲》”为事件B ,且A ,B 相互独立.依题意,P (A )=1-13=23,P (B )=1-14=34, 所以P (AB )=P (A )·P (B )=23×34=12.又因为甲、乙二人至少有一人选做《不等式选讲》的对立事件为甲、乙二人都不选做《不等式选讲》,所以所求概率为1-P (AB )=1-12=12.答案:122.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝ ⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14, P (X =3)=12×13×14=124. 所以随机变量X 的分布列为(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14 =1148.所以这2辆车共遇到1个红灯的概率为1148. 考点三 独立重复试验与二项分布[典例精析]九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.[解] (1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只),所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X 的所有可能取值为0,1,2,3,4,则P (X =0)=⎝ ⎛⎭⎪⎫354=81625,P (X =1)=C 14×25×⎝ ⎛⎭⎪⎫353=216625,P (X =2)=C 24×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫352=216625, P (X =3)=C 34×⎝ ⎛⎭⎪⎫253×35=96625,P (X =4)=⎝ ⎛⎭⎪⎫254=16625.所以X 的分布列为[题组训练]1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )A.0.32B.0.18C.0.50D.0.057 6解析:选D 甲命中一次的概率为C 12×0.8×(1-0.8)=0.32,乙命中一次的概率为C 12×0.9×(1-0.9)=0.18,他们投篮命中与否相互独立,所以甲、乙都恰好命中一次的概率为P =0.32×0.18=0.057 6.2.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率为多少? 解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38,P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-121=38, P (X =100)=⎝ ⎛⎭⎪⎫123=18,P (X =-200)=⎝ ⎛⎭⎪⎫1-123=18.所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率为511512.[课时跟踪检测]A 级1.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为( )A.23 B.12 C.34D.14解析:选B 设女孩个数为X ,女孩多于男孩的概率为P (X ≥2)=P (X =2)+P (X =3)=C 23×⎝ ⎛⎭⎪⎫122×12+C 33×⎝ ⎛⎭⎪⎫123=3×18+18=12. 2.(优质试题·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:2个元件的使用寿命在30天以上的概率为( )A.1316 B.2764 C.2532D.2732解析:选D 由表可知元件使用寿命在30天以上的频率为150200=34,则所求概率为C 23⎝ ⎛⎭⎪⎫342×14+⎝ ⎛⎭⎪⎫343=2732.3.(优质试题·武汉调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则P(A|B)=()A.29 B.13C.49 D.59解析:选A小赵独自去一个景点共有4×3×3×3=108种情况,即n(B)=108,4个人去的景点不同的情况有A44=4×3×2×1=24种,即n(AB)=24,∴P(A|B)=n(AB)n(B)=24108=29.4.甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A;“抽出的学生的英语口语测试成绩不低于85分”记为事件B,则P(AB),P(A|B)的值分别是()A.14,59 B.14,49C.15,59 D.15,49解析:选A由题意知,P(AB)=1020×510=14,根据条件概率的计算公式得P(A|B)=P(AB)P(B)=14920=59.5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为()A.14 B.89C.116 D.532解析:选D两次数字乘积为偶数,可先考虑其反面——只需两次均出现1。
n 次独立重复试验与二项分布
1.下列说法正确的是( )
A .P (A |
B )=P (B |A ) B .0<P (B |A )<1
C .P (AB )=P (A )·P (B |A )
D .P (B |A )=1
2. 两个实习生每人加工一个零件.加工为一等品的概率分别为23和34
,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )
A.12
B.512
C.14
D.16
3. 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )
A.512
B.12
C.712
D.34
4.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )
A .0
B .1
C .2
D .3
5. 位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动
的方向向左或向右,并且向左移动的概率为23,向右移动的概率为13
,则质点P 移动五次后位于点(1,0)的概率是( )
A.4243
B.8243
C.40243
D.80243
6.在4次独立重复试验中,事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )
A .[0.4,1)
B .(0,0.4)
C .(0,0.6]
D .[0.6,1)
7.在5道题中有三道数学题和两道物理题,如果不放回的依次抽取2道题,则在第一次抽到数学题的条件下,第二次抽到数学题的概率是( )
A.35
B.25
C.12
D.13
8. 从1,2,3,4,5中任取2个不同的数,事件A 表示“取到的2个数之和为偶数”,事件B 表示“取到的2个数均为偶数”,则P (B |A )=( )
A.18
B.14
C.25
D.12
9. 一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( )
A .p 1=p 2
B .p 1<p 2
C .p 1>p 2
D .以上三种情况都有可能
10. 加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169
、1
68
,且各道工序互不影响,则加工出来的零件的次品率为____________. 11. 如图K62-1,EFGH 是以O 为圆心、半径为1的圆的内接正方
形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH
内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则
(1)P (A )=________;(2)P (B |A )=________.
12.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.
13. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,
则下列结论中正确的是__________(写出所有正确结论的序号).
①P ()B =25;②P ()B |A 1=511
; ③事件B 与事件A 1相互独立;
④A 1,A 2,A 3是两两互斥的事件;
⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.
14.(10分) 某果园要用三辆汽车将一批水果从所在城市E 运至销售城市F ,已知从城
市E 到城市F 有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为110,不堵车的概率为910
;走公路Ⅱ堵车的概率为35,不堵车的概率为25
,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.
(1)求甲、乙两辆汽车中恰有一辆堵车的概率;
(2)求三辆汽车中至少有两辆堵车的概率.
15.(13分) 甲、乙两人进行围棋比赛,规定每局胜者得1分,负者得0分,比赛进行
到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p ⎝⎛⎭
⎫p >12,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为59
. (1)求p 的值;
(2)设X 表示比赛停止时已比赛的局数,求随机变量X 的分布列和数学期望E (X ).
16.(12分)某人向一目标射击4次,每次击中目标的概率为13
.该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6.击中目标时,击中任何一部分的概率与其面积成正比.
(1)设X 表示目标被击中的次数,求X 的分布列;
(2)若目标被击中2次,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P (A ).。