(全部)整式的乘除练习题(分课)
- 格式:doc
- 大小:361.00 KB
- 文档页数:18
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式的乘除练习题整式的乘除在代数中,我们经常需要进行整式的乘除运算。
下面分别介绍幂的运算、幂的乘方、积的乘方和同底数幂的除法。
幂的运算幂的运算包括同底数幂的乘法和幂的乘方。
同底数幂的乘法可以通过将底数相同的幂的指数相加来计算。
幂的乘方则是将幂的指数相乘的运算。
同底数幂的乘法填空题:1.计算:10×10=100.2.计算:(a-b)·(a-b)=a^2-2ab+b^2.3.计算:a·a·a=a^3.4.计算:a^2·a^5=a^7.选择题:1.x^2的计算结果是(B)x^2.2.下列各式正确的是(A)3a·5a=15a。
3.正确的式子的个数是(A)1个。
4.若2x+1=16,则x等于(B)4.解答题:1.计算:2x+3y)·(2x+3y)=4x^2+12xy+9y^2.a-b)·(b-a)=-(a-b)^2=-(a^2-2ab+b^2)。
m·m+m·m+m·m)=(m^2+m^2+m^2)=3m^2.2.已知am/an=8/32,求am+n的值。
am/an=(a^m)/(a^n)=8/32=1/4,所以m-n=-2,即m=2n-2.am+n=a^(m-n)=a^(-2)=1/(a^2)。
幂的乘方幂的乘方是将幂的指数相乘的运算。
例如,(a^2)^3=a^6.选择题:1.计算(x^2)^4的结果是(D)x^8.2.下列计算错误的是(D)-a+2a=a。
3.计算(xy)^2的结果是(A)x^2y^2.4.计算(-3a)^2的结果是(C)9a^2. 填空题:1.-(a)=-a。
2.若x^3m=2,则x^9m=8.3.若a^2=3,则(2a)^3=54a^3.积的乘方积的乘方是将多个同样的因数相乘的运算。
例如,(ab)^3=a^3b^3.计算题:1.计算:x·x+3=(x^2)·x=(x^3)。
整式的乘除练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(整式的乘除练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为整式的乘除练习题的全部内容。
整式的乘除§13。
1幂的运算§13。
1。
1同底数幂的乘法一、填空题1.计算:10×10=2.计算:(a -b )·(a -b )=3。
计算:a·a ·a = 4。
计算:a ·a =a (在括号内填数)二、选择题1。
的计算结果是( )A. B 。
C 。
D 。
2.下列各式正确的是( )A .3a ·5a =15aB 。
-3x ·(-2x )=-6xC .x ·x =xD 。
(-b)·(-b)=b3.下列各式中,①,②,③,④,⑤正确的式子的个数是( )A 。
1个 B.2个 C 。
3个 D.4个4.若,则x 等于( )A 。
7B 。
4 C.3 D 。
2.三、解答题1、计算:(1)、 (2)、(3)、2、已知,,求的值。
§13.1。
2幂的乘方一、选择题1.计算的结果是( )A .B .C .D .2.下列计算错误的是( )A .B .C .D .-a+2a=a3.计算的结果是( )A .B .C .D .4.计算的结果是( )A .B .C .D .二、填空题1.=_____. 353557(____)42032x x •5x 6x 8x 9x 2364263412358824x x x =•6332x x x =•734a a a =•1275a a a =+734)()(a a a =-•-1621=+x 25)32()32(y x y x +•+32)()(a b b a -•-62753m m m m m m •+•+•8=m a 32=n a n m a +23x )(5x 6x 8x 9x 32a a a =•222a b a b •=)(532a a =)(32)(y x y x 5y x 6 y x 3236y x 22a 3-)(43a 43a -49a 49a -43a -)(2.若=2,则=_____.3.若=3,则=____.三、计算题1.计算:+.§13。
数学整式的乘除练习题数学是一门充满智慧和逻辑的学科,整式作为数学的一个重要概念,在求解实际问题时起到了至关重要的作用。
在学习整式的过程中,掌握整式的乘法和除法是非常关键的。
本文将通过一些乘除练习题,帮助读者加深对整式乘除的理解。
1. 乘法:首先,我们来看一个简单的乘法练习题:(2x+3)(4x-5)=?要解这个乘法题,我们可以采用分配律的运算法则,将每一个项都乘以另一个整式的每一项:(2x+3)(4x-5)=2x*4x+2x*(-5)+3*4x+3*(-5)=8x^2-10x+12x-15最后,将相同项合并起来:8x^2+2x-15接下来,我们来看一个稍微复杂一些的乘法练习题:(3x^2-4)(2x^3-3x)=?这个题目中,我们需要将第一个整式的每一个项都乘以第二个整式的每一项,然后合并相同项:(3x^2-4)(2x^3-3x)=3x^2*2x^3-3x*3x^2-4*2x^3+4*3x=6x^5-9x^3-8x^3+12x=6x^5-17x^3+12x2. 除法:现在,我们来看一些整式的除法练习题,以加深对整式除法的理解:(a^2+5a+6)/(a+3)=?要解这道题,我们可以利用长除法的方法。
首先,我们将(a+3)作为除数写在左边,将(a^2+5a+6)作为被除数写在右边:a+2-------------a+3 | a^2+5a+6然后,我们将a除以a得到1,将1乘以除数(a+3),得到a+3,并将其写在被除数上方:a+2-------------a+3 | a^2+5a+6- (a^2+3a)--------2a+6接下来,我们将(2a+6)除以(a+3),得到结果2,并将2乘以除数(a+3),再减去得到结果(2a+6),将结果写在上方:a+2+2-------------a+3 | a^2+5a+6- (a^2+3a)--------2a+6- (2a+6)--------经过计算,我们得到最终的结果是a+2+2,也就是a+4。
整式的乘除计算练习题及答案一.解答题1.计算:①③④?[﹣4]?÷32;②[]÷[]?y233522.计算:222①﹣8y;②﹣;③;④;⑤;⑥[+﹣2x]÷2x.⑦222⑧.3.计算:564233336abc÷÷.﹣.[]?3xy. +﹣2m.2234224.计算:?x÷x﹣2x?÷x.ab÷a+b?.﹣.+﹣2.5.因式分解:3322①6ab﹣24ab;②﹣2a+4a﹣2;③4n﹣6;④2xy﹣8xy+8y;⑤a+4b;⑥4mn﹣;⑦22222222222841053232222;⑧﹣4a;⑨3x222n+1﹣6x+3xnn﹣1⑩x﹣y+2y﹣1;4a﹣b﹣4a+1;4﹣4x+4y+1;3ax﹣6ax﹣9a;x﹣6x﹣27;﹣2﹣3.242222222226.因式分解:4x﹣4xy+xy. a﹣4.7.给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:+b﹣4ab÷b,其中a=﹣,b=2. 9.当x=﹣1,y=﹣2时,求代数式[2x﹣][+2y]的值. 10.解下列方程或不等式组:①﹣=0;②2﹣≤4.11.先化简,再求值:﹣,其中,.2222232222若x﹣y=1,xy=2,求xy﹣2xy+xy.12.解方程或不等式:222+2=3x+13.+>13.2223223整式的乘除因式分解习题精选参考答案与试题解析一.解答题1.计算:①②[]÷[]?y ③632523352;;④?[﹣4]?÷2.计算:22①﹣8y;2②﹣;③;④;⑤;2⑥[+﹣2x]÷2x.22⑦⑧.2一.计算题19、已知a?b?,a?b?11,求0、已知x?3,x?2,求x 3334221、m??22、 3、?22ab2a?b34、235、?432324、?x8x4x425、?2?226、xy2327、?28、2229、2006200530、231、32、22?4x33、??4xy?6xy??第1页、共6页36、?2xy7、解方程?2x2?2?2x?6x38、已知xm4,xn?3,求x2mx3n的值39、已知x2?xy?21 ,y2?xy?28,求20、已知x3a27,求x4a的值41、2??342、?3?243、?2244、6245、?46、11?222m4m47、?8?48、x?x122259、已知m?3,m?4,求m ab3a?2b的值.0、已知a?115,求a4?4的值. aa 23323261、25?2?62、23?349、4m651、253、55、257、第2页、共6页 50、2、29254、、2258、63、2?365、5667、??47369、199264、a6a2a2a366、255?33?2118、3?4?270、72、28273、74、23232375、??ab6、?77、8、?5x?79、先化简再求值x?,当x??的值80、已知:2?2?5,求2第3页、共6页ab3a?2b?33422322222221时,求此代数式4的值。
整式乘除专项训练(四)(北师版)一、单选题(共10道,每道10分)1.有一道计算题:,李老师发现全班有以下四种解法:①;②;③;④;其中你认为完全正确的是( )A.①②④B.①③④C.①②③④D.①④答案:D解题思路:试题难度:三颗星知识点:整式乘除中符号问题2.计算的结果是( )A.0B.C. D.答案:B解题思路:试题难度:三颗星知识点:整式乘除中符号问题3.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:整式乘除中符号问题4.计算(为正整数)的结果是( )A.1B.C. D.答案:D解题思路:试题难度:三颗星知识点:整式乘除中符号问题5.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:整式乘除中符号问题6.下列等式能够成立的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平方差公式7.当,时,的结果是( )A.10B.0C.-4D.4答案:A解题思路:试题难度:三颗星知识点:化简求值8.计算正确的是( )A. B.-6C.1D.10答案:D解题思路:试题难度:三颗星知识点:整式乘除混合运算9.计算正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:整式乘除中符号问题10.计算正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:整式乘除中符号问题。
整式的乘除练习题一、选择1.下列计算正确的是().A.2x2·3x3=6x3 B.2x2+3x3=5x5C.(-3x2)·(-3x2)=9x5 D.54x n·25x m=12x mn2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为(). A.5y3+3y2+2y-1 B.5y3-3y2-2y-6C.5y3+3y2-2y-1 D.5y3-3y2-2y-13.下列运算正确的是().A.a2·a3=a5 B.(a2)3=a5 C.a6÷a2=a3 D.a6-a2=a44.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5 C.3x2y+4yx2=7 D.-mn+mn=05.下列说法中正确的是().A.-13xy2是单项式 B.xy2没有系数 C.x-1是单项式 D.0不是单项式二、填空6.-xy2的系数是______,次数是_______.7.•一件夹克标价为a•元,•现按标价的7•折出售,则实际售价用代数式表示为______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2 a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算13.(2x2y-3xy2)-(6x2y-3xy2) 14.(-32ax4y3)÷(-65ax2y2)·8a2y15.(45a3-16a2b+3a)÷(-13a) 16.(23x2y-6xy)·(12xy)17.(x-2)(x+2)-(x+1)(x-3) 18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算20.(998)2 21.197×203五、先化简,再求值22.(x+4)(x-2)(x-4),其中x=-1. 23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题24.已知2x+5y=3,求4x·32y的值. 25.已知a2+2a+b2-4b+5=0,求a,b的值.。
第一章 整式的乘除§1.1幂的运算§1.1.1同底数幂的乘法 一、填空题1.计算:103×105= .2.计算:(a -b )3·(a -b )5= .3.计算:a·a 5·a 7= .4. 计算:a (____)·a 4=a 20.(在括号内填数) 二、选择题1.32x x ∙的计算结果是( )A.5x ;B.6x ;C.8x ;D.9x . 2.下列各式正确的是( )A .3a 2·5a 3=15a 6; B.-3x 4·(-2x 2)=-6x 6; C .x 3·x 4=x 12; D.(-b )3·(-b )5=b 8. 3.下列各式中,①824x x x =∙,②6332x x x =∙,③734a a a =∙,④1275a a a =+,⑤734)()(a a a =-∙-.正确的式子的个数是( ) A.1个; B.2个; C.3个; D.4个. 4.计算(a 3)2+a 2·a 4的结果为( )A.2a 9;B.2a 6;C.a 6+a 8;D.a 12. 5.若1621=+x ,则x 等于( )A.7;B.4;C.3;D.2. 三、解答题 1、计算:(1)、25)32()32(y x y x +∙+; (2)、32)()(a b b a -∙-;(3)、22)()()(b a b a b a n n +∙+∙+(n 是正整数).(4)、62753m m m m m m ∙+∙+∙;(5)、)2(2101100-+.2、.一台电子计算机每秒可作1010次运算,它工作4103⨯秒可作运算多少次? .3、已知8=m a ,32=n a ,求n m a +的值.4、已知484212=++n n ,求n 的值.5、已知32=a ,62=b ,122=c ,求a 、b 、c 之间有什么样的关系?§1.1.2幂的乘方 一、选择题1.计算(x 3)2的结果是( )A .x 5B .x 6C .x 8D .x 9 2.下列计算错误的是( )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5 D .-a+2a=a3.计算(x 2y )3的结果是( )A .x 5yB .x 6yC .x 2y 3D .x 6y 3 4.计算(-3a 2)2的结果是( )A .3a 4B .-3a 4C .9a 4D .-9a 4 5.计算(-0.25)2010×42010的结果是( )A .-1B .1C .0.25D .44020 二、填空题1.-(a 3)4=_____. 2.若x 3m =2,则x 9m =_____.3.-27a6b9=().4.若a2n=3,则(2a3n)2=____.三、计算题1.计算:x2·x3+(x3)2.2.计算:(23)100×(112)100×(14)2009×42010.§1.1.3积的乘方1.计算:[-(x3y2n)3] 2.2.(一题多变题)已知a m=5,a n=3,求a2m+3n的值.(1)一变:已知a m=5,a2m+n=75,求a n;(选做)(2)二变:已知a m=5,b m=2,求(a2b3)m.(选做) 3.已知273×94=3x,求x的值.4.某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)5.(结论探究题)试比较35555,44444,53333三个数的大小.§1.1.4同底数幂的除法 一、填空题1.计算:26a a ÷= ,25)()(a a -÷-= .2.在横线上填入适当的代数式:146_____x x =∙,26_____x x =÷.3.计算:559x x x ∙÷ = , )(355x x x ÷÷ = .4.计算:89)1()1(+÷+a a = .5.计算:23)()(m n n m -÷-=___________. 二、选择题1.下列计算正确的是( )A .(-y )7÷(-y )4=y 3 ;B .(x+y )5÷(x+y )=x 4+y 4;C .(a -1)6÷(a -1)2=(a -1)3 ;D .-x 5÷(-x 3)=x 2. 2.下列各式计算结果不正确的是( )A.ab(ab)2=a 3b 3;B.a 3b 2÷2ab=21a 2b ; C.(2ab 2)3=8a 3b 6; D.a 3÷a 3·a 3=a 2.3.计算:()()()4325a a a -÷⋅-的结果,正确的是( )A.7a ;B.6a -;C.7a - ;D.6a . 4. 对于非零实数m ,下列式子运算正确的是( )A .923)(m m = ;B .623m m m =⋅;C .532m m m =+ ;D .426m m m =÷. 5.若53=x ,43=y ,则y x -23等于( ) A.254; B.6 ; C.21; D.20. 6.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是( )A.2 ; B .4; C .8; D .6. 三、解答题 1.计算:⑴24)()(xy xy ÷; ⑵2252)()(ab ab -÷-;⑶24)32()32(y x y x +÷+; ⑷347)34()34()34(-÷-÷-. 2.计算:⑴3459)(a a a ÷∙; ⑵347)()()(a a a -⨯-÷-;⑶5323∙;48÷3.地球上的所有植物每年能提供人类大约166.6⨯大卡的能量,若每人10每年要消耗5108⨯大卡的植物能量,试问地球能养活多少人?4. 解方程:(1)15822=∙x;(2)5)7x.=(7-5. 已知3,9m na-的值.a a==,求32m n6.已知235,310m n==,求(1)9m n-;(2)29m n-.§1.2整式的乘法§1.2.1 单项式与单项式相乘 一、判断题:(1)7a 3·8a 2=56a 6 ( ) (2)8a 5·8a 5=16a 16( ) (3)3x 4·5x 3=8x 7 ( ) (4)-3y 3·5y 3=-15y 3( ) (5)3m 2·5m 3=15m 5( ) 二、选择题1、下列计算正确的是 ( ) A 、a 2·a 3=a 6 B 、x 2+x 2=2x 4 C 、(-2x )4=-16x 4 D 、(-2x 2)(-3x 3)=6x 5 2.下列说法完整且正确的是( )A .同底数幂相乘,指数相加;B .幂的乘方,等于指数相乘;C .积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;D .单项式乘以单项式,等于系数相乘,同底数幂相乘 3.试求8b 2(-a 2b )的值是( )A .8a 2b 3B .-8b 3C .64a 2b 3D .-8a 2b 3 4.下列等式成立的是( )A .(-21x 2)3·(-4x )2=(2x 2)8 B .(1.7a 2x )(71ax 4)=1.1a 3x 5 C .(0.5a )3·(-10a 3)3=(-5a 4)5 D .(2×108)×(5×107)=1016 5.下列关于单项式乘法的说法中不正确的是( ) A .单项式之积不可能是多项式; B .单项式必须是同类项才能相乘;C.几个单项式相乘,有一个因式为0,积一定为0;D.几个单项式的积仍是单项式6.计算:(x n)n·36x n=()A.36x n B.36xn3 C.36x n2+n D.36x2+n三、解答题1.计算:(1)(-2.5x3)2(-4x3)(2)(-104)(5×105)(3×102)(3)(-a2b3c4)(-xa2b)31.3.化简求值:-3a3bc2·2a2b3c,其中a=-1,b=1,c=2§1.2.2 单项式与多项式相乘一.判断:1(3x+y)=x+y ()(1)3(2)-3x(x-y)=-3x2-3xy ()(3)3(m+2n+1)=3m+6n+1 ( )(4)(-3x )(2x 2-3x+1)=6x 3-9x 2+3x ( ) (5)若n 是正整数,则(-31)2n (32n+1+32n -1)=310( ) 二、选择题1.下列说法正确的是( )A .多项式乘以单项式,积可以是多项式也可以是单项式;B .多项式乘以单项式,积的次数是多项式的次数与单项式次数的积;C .多项式乘以单项式,积的系数是多项式系数与单项式系数的和;D .多项式乘以单项式,积的项数与多项式的项数相等2.若x (3x -4)+2x (x+7)=5x (x -7)+90,则x 等于( )A .-2B .2C .-12D .123.下列计算结果正确的是( ) A .(6xy 2-4x 2y )3xy=18xy 2-12x 2y B .(-x )(2x+x 2-1)=-x 3-2x 2+1C .(-3x 2y )(-2xy+3yz -1)=6x 3y 2-9x 2y 2z+3x 2yD .(43a n+1-21b )2ab=23a n+2-ab 24.x (y -z )-y (z -x )+z (x -y )的计算结果是( ) A .2xy+2yz+2xz B .2xy -2yz C .2xy D .-2yz 三、计算:(1)(a -3b )(-6a ) (2)x n (x n+1-x -1)(3)-5a(a+3)-a(3a -13) (4)-2a 2(21ab+b 2)-5ab(a 2-1)§1.2.3多项式与多项式相乘一.判断:(1)(a+3)(a -2)=a 2-6 ( )(2)(4x -3)(5x+6)=20x 2-18 ( )(3)(1+2a )(1-2a )=4a 2-1 ( )(4)(2a -b )(3a -b )=6a 2-5ab+b 2 ( )(5)(a m -n )m+n =a m2-n2(m ≠n ,m>0,n>0,且m>n ) ( )二、选择题1.下列计算正确的是( )A .(2x -5)(3x -7)=6x 2-29x+35B .(3x+7)(10x -8)=30x 2+36x+56C .(-3x+21)(-31x )=3x 2+21x+61D .(1-x )(x+1)+(x+2)(x -2)=2x 2-32.计算结果是2x 2-x -3的是( )A .(2x -3)(x+1)B .(2x -1)(x -3)C .(2x+3)(x -1)D .(2x -1)(x+3)3.当a=31时,代数式(a -4)(a -3)-(a -1)(a -3)的值为()A.343 B.-10 C.10 D.8三.计算:(1)(x-2y)(x+3y)(2)(x-1)(x2-x+1)(3)(-2x+9y2)(31x2-5y)(4)(2a2-1)(a-4)-(a2+3)(2a-5)四、实际应用1.求图中阴影部分的面积(图中长度单位:米).2.长方形的长是(a+2b)cm,宽是(a+b)cm,求它的周长和面积.五、生活中的数学1.李老师刚买了一套2室2厅的新房,其结构如下图所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,•其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地砖板每平方米m元,那么李老师至少要花多少钱?§1.3 乘法公式§1.3.1 两数和乘以这两数的差一、选择题1、20022-2001×2003的计算结果是()A、1B、-1C、2D、-22、下列运算正确的是()A.(a+b) 2=a2+b2B. (a-b) 2=a2-b2C. (a+m)(b+n)=ab+mnD. (m+n)(-m+n)=-m2+n2二、填空题1、若x2-y2=12,x+y=6则x=_____; y=______.2、( + )( -)=a2 - 93、一个正方形的边长增加3cm ,它的面积就增加39cm2,这个正方形的边长为_____________.三、利用平方差公式计算:(1)502×498;(2) 704×696(3) (22+1)(24+1)(26+1)(28+1)§1.3.2 两数和的平方一、判断题;(1)(a-b)2=a2-b 2 ()(2) (a+2b) 2=a2+2ab+2b2 ()(3)(-a-b)2= -a2-2ab+b 2 ()(4)(a-b)2=(b-a)2 ()二、填空题1、(x+y)2+(x-y)2= ;2、x2++9=(_____+______)2;3、4a2+kab+9b2是完全平方式,则k=;4、()2-8xy+y2=( - y)2三、运用平方差或完全平方公式计算:(1)(2a+5b)(2a-5b);(2)(-2a-1)(-2a+1);1b)2(3)(2a-4b)2;(4)(2a+3(5) 10022(6)(-4m-n)2四、解答题1、要给一边长为a米的正方形桌子铺上桌布,四周均留出0.1米宽,问桌布面积需要多大?2、已知:(a +b )2=7 ,(a -b )2=9,求a 2+b 2及ab 的值。