八上数学坐标平面内图形变换
- 格式:ppt
- 大小:2.73 MB
- 文档页数:11
平面图形的转换1. 简介平面图形的转换是指将一个平面图形变换为另一个平面图形的过程。
它在计算机图形学、数学和工程领域都有广泛的应用。
平面图形的转换可以通过几何变换或仿射变换来实现,其中包括平移、旋转、缩放和错切等操作。
本文将介绍平面图形的常见转换及其应用。
2. 平移变换平移变换是指将平面图形沿着指定的方向和距离进行移动。
它只改变图形的位置而不改变其形状和大小。
平移变换可通过以下公式来实现:x' = x + dxy' = y + dy其中,(x, y)是原始点的坐标,(x’, y’)是平移后点的坐标,dx和dy分别是水平和垂直方向上的平移距离。
平移变换在计算机图形学中常用于移动图形对象,例如在动画中实现物体的平移效果。
3. 旋转变换旋转变换是指将平面图形按照指定的角度绕某个中心点进行旋转。
旋转变换可通过以下公式来实现:x' = x * cos(theta) - y * sin(theta)y' = x * sin(theta) + y * cos(theta)其中,(x, y)是原始点的坐标,(x’, y’)是旋转后点的坐标,theta是旋转角度。
旋转变换广泛应用于计算机图形学中的物体旋转、图像处理和仿真等方面。
4. 缩放变换缩放变换是指将平面图形按照指定的比例进行放大或缩小。
缩放变换可通过以下公式来实现:x' = x * sxy' = y * sy其中,(x, y)是原始点的坐标,(x’, y’)是缩放后点的坐标,sx和sy分别是水平和垂直方向上的缩放比例。
缩放变换在计算机图形学中常用于图像的放大和缩小、模型的变形和动画的特效制作等方面。
5. 错切变换错切变换是指将平面图形按照指定的角度在水平或垂直方向上进行拉伸。
错切变换可通过以下公式来实现:x' = x + shx * yy' = y + shy * x其中,(x, y)是原始点的坐标,(x’, y’)是错切后点的坐标,shx和shy分别是水平和垂直方向上的错切系数。
初中数学中的图形变换图形变换是指将原来的图形按照一定规律进行变换,得到新的图形。
在初中数学中,图形变换包括平移、旋转、对称。
一、平移平移是指在平面上将一个图形沿着一个方向移动一段距离,并保持方向与大小不变。
平移可以理解为图形在平面上的“平移”或“搬家”。
1. 平移的定义平移变换可以用矢量来表示。
设平移矢量为$\\vec{v}$,平移作用于点 $P$,则平移后的点 $P'$ 的坐标为 $P' = P + \\vec{v}$。
2. 平移的性质(1)平移前后图形形状不变;(2)所有点沿着相同方向移动相同距离;(3)平移不改变图形的大小、面积、周长和角度;(4)平移不改变图形的方向。
二、旋转旋转是指将一个图形按照既定的中心点绕一个旋转角度旋转。
旋转可以理解为图形在平面上的“转动”。
1. 旋转的定义设点 $O$ 为旋转中心,旋转角为 $\\theta$,点$P$ 绕 $O$ 逆时针旋转后的点为 $P'$,则点 $P$ 关于$O$ 旋转 $\\theta$ 度所得的点 $P'$ 的坐标为$$\\begin{cases}x' = (x - x_0)\\cos\\theta - (y -y_0)\\sin\\theta + x_0 \\\\y' = (x - x_0)\\sin\\theta + (y -y_0)\\cos\\theta + y_0\\end{cases}$$其中,$(x_0,y_0)$ 是旋转中心的坐标。
2. 旋转的性质(1)旋转前后图形形状不变;(2)旋转不改变图形的大小、面积、周长和角度;(3)旋转改变图形的方向;(4)旋转后图形对称轴仍然存在,但位置发生变化。
三、对称对称是指按照某个点、直线或者平面,将一个图形折叠后得到的两部分完全重合的变换。
对称可以理解为对图形进行“翻转”。
1. 点对称点对称是指以某个点为对称中心,把一个点及其对称点规定到另一点上的变换。
l八年级上册数学第十一章知识点八年级上册数学第十一章知识点八年级上册数学第十一章主要讲述了平面直角坐标系、平面图形的性质以及对称性等内容,以下是本章的具体知识点。
一、平面直角坐标系平面直角坐标系是用两条数轴来确定平面上任一点的位置关系,称为点的坐标。
其中,横坐标表示在横轴上的距离,纵坐标表示在纵轴上的距离。
坐标轴上的交点被称为原点,坐标轴正方向由左往右、由下往上标出。
二、平面图形的性质1. 直线的性质:直线是由无数个点组成,图中的点有无数个,且在直线上。
除此之外,它是平面中最短的路径,两点都在这个路径上。
2. 角的性质:角是两个不同的线段之间的空间,其中两端点相交的点被称为角的顶点。
根据顶点不同,角可分为锐角、直角、钝角等。
3. 三角形的性质:三角形是由三个线段组成的图形,共有三个顶点和三个内角,角度之和为180度。
可分类为等边三角形、等腰三角形、直角三角形等。
4. 四边形的性质:四边形是由四个线段组成的图形,共有四个顶点和四个内角,角度之和为360度。
可分类为平行四边形、矩形、正方形等。
5. 圆的性质:圆是由所有围绕圆心等距离的点组成的图形。
圆心是圆上最中间的点,直径是连接圆上任意两点的线段的长度。
该图形特点是半径相等。
三、对称性对称性是指一个图形绕某一直线或点旋转、翻折或滑动后,它和原来的图形完全重合。
一般有以下两种类型:1. 线对称性:指线对称轴上的任意一个点与该图形对称轴另一侧的一个点相互对称,如镜子对称。
2. 点对称性:指点对称中心与图形上任意一点的交点与该图形对称中心的另一点相互对称,如旋转对称。
以上是本章的主要知识点,掌握这些知识点,将对接下来的学习有很大的帮助。
初二数学平面直角坐标系解题思路摘要:一、理解平面直角坐标系的概念二、掌握解题基本方法1.解析式的求解2.坐标与图形的关系3.几何图形的变换与计算三、实战演练1.解析题型分析2.解题步骤详解四、易错点与技巧1.坐标变换的注意事项2.解题过程中的常见错误3.提高解题效率的技巧正文:一、理解平面直角坐标系的概念平面直角坐标系是指由两条互相垂直的数轴组成的平面,通常用来表示点的位置、图形的移动和变换等。
在初中数学中,平面直角坐标系是基础内容,对于后续学习解析几何和数学应用题具有重要意义。
二、掌握解题基本方法1.解析式的求解解析式是描述平面直角坐标系中点或线移动规律的数学表达式。
求解解析式的方法主要有两种:一种是通过观察图形得出坐标之间的关系,另一种是利用代数方法建立坐标与变量之间的方程。
2.坐标与图形的关系掌握坐标与图形的关系是解决平面直角坐标系问题的关键。
坐标轴上的点坐标具有明显的几何意义,如横坐标表示点在横轴上的位置,纵坐标表示点在纵轴上的位置。
此外,还要熟悉坐标轴之间的角度和距离关系,如直角三角形中的30°角所对的直角边等于斜边的一半,勾股定理等。
3.几何图形的变换与计算在平面直角坐标系中,图形的变换主要包括平移、旋转和缩放等。
平移是指图形在平面内沿着某个方向和距离移动,旋转是指图形围绕某个点旋转一定的角度,缩放是指图形按照某个比例因子进行缩放。
求解这些变换后的图形位置和大小,需要运用坐标变换的方法。
三、实战演练1.解析题型分析在实际解题中,初二数学平面直角坐标系的题目主要分为以下几类:(1)求解析式:根据图形特点,建立坐标与变量之间的方程。
(2)求坐标:根据题意,利用坐标轴上的角度、距离关系求解点坐标。
(3)图形变换:分析图形的平移、旋转和缩放规律,求变换后的图形位置和大小。
2.解题步骤详解以求解析式为例,解题步骤如下:(1)观察图形,发现点A、B的坐标关系。
(2)设解析式为y = kx + b,代入点A、B的坐标求解k和b。
坐标平面内图形的轴对称和平移教学设计解:如图2.1.作AP⊥m,延长AP至A',使A'P=AP.2.按上述方法作出点B的对称点B',点C的对称点C'.3.依次连结A'B' ,B'C' ,C'A'.△A'B'C'就是所求作的三角形活动意图说明:复习导入有利于衔接新旧知识,提高学习效率。
通过旧知识引入新的教师活动2:教师提问:运用直角坐标系,可以方便地帮助我们表达和处理有关图形的轴对称的问题.先看下面的问题:如图(1)写出点A的坐标.(2)分别作点A关于x轴,y轴的对称点,并写出它们的坐标.(3)比较点A与它关于x轴的对称点的坐标,点A与它关于y轴的对称点的坐标,你发现什么规律?答:(1)(1.5,3)(2)关于x轴的对称点为(1.5,3),关于y轴的对称点为(1.5,3)(3)(1.5,3)与(1.5,3)的横坐标相等,纵坐标互为相反数(1.5,3)与(1.5,3)的纵坐标相等,横坐标互为相反数一般规律:在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,b),关于y轴的对称点的坐标为( a,b).在直角坐标系中,已知点A(1,2),B(1,√3),C(0,1.5),则点A关于x轴的对称点的坐标是____________,关于y轴的对称点的坐标是___________ ;点B关于y轴的对称点的坐标是______________ ;点C关于x轴的对称点的坐标是____________。
答案:(1,2),(1,2),(1,√3),(0,1.5)活动意图说明:通过数形结合,清晰且直观的得出关于坐标轴对称的两个点的坐标关及它们关于y轴的对称A',O' ,B',C' ,D',E' ,F'的坐标.(2)在同一个直角坐标系中描点A',O' ,B',C',D' ,E ,F",并用线段依次将它们连结起来.解:(1)图形轮廓线上各转折点的坐标依次是A(0,2),O(0,0),B(3,2),C(2,2),D(2,3),E(1,3),F(0,5).它们关于y轴的对称点的坐标相应是A'(O, 2),O'(0,0),B'(3,2),C'(2,2),D'(2,3),E'(1,3),F'(0,5).教师提问:如果要把一个轴对称图形画在直角坐标系中,怎样画才简便?教师讲授:首先使对称轴与坐标轴重合,然后画出在对称轴一侧的关键点,并求出它们的坐标.根据对称点的坐标关系,求出对称轴另一半图形的关键点的坐标,画出另一半图形的关键点,再把它们依次连结起来.一个零件的横截面如图.请完成以下任务:(1)按你自己认为合适的比例,建立直角坐标系.(2)写出轮廓线各个转折点的坐标.在求这些点的坐标时,你运用了怎样的坐标变化规律?(3)与你的同伴比较,你们写出的各转折点的坐标相同吗?为什么?答:(1) 可取y轴为零件的横截面图的对称轴,使横截面图的底边在x轴上,如右图.可以取1:10的比例尺,坐标轴的单位长度取10mm.(2) (2.5,0),(2.5,4),(0.5,4),(1,1),(2.5,0),(2.5,4),(0.5,4),(1,1).先求出右半图中各转折点的坐标,然后根据关于y轴对称的点的坐标变化规律(x,y)→(x,y),写出左半图各转折点的坐标.(3)由于所建的坐标系以及所取的比例不一定相同,所以所得各转折点的坐标不一定相同.活动意图说明:让学生通过具体例题的教学理解和巩固数学基础知识,把数学理论与(2)如图,正方形ABCD的边长为4,AB//x轴,BC//y轴,其中心恰好为坐标原点,则四个顶点的坐标分别是.选做题:1.把△ABC各顶点的横坐标都乘1,纵坐标不变,所得图形是下列选项中的()2.下图是战机在空中展示的轴对称队形.以战机B,C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若战机E的坐标为(40,a),则战机D的坐标为()A.(40,a)B.(40,a)C.(40,a)D.(a,40)如图,已知△ABC的三个顶点均在格点上.(1)作出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的三个顶点的坐标;(3)求△ABC的面积.必做题:1.若点A(m,3)和点B(4,n)关于x轴对称,那么(m+n)2022的值为()202220222.(1)在平面直角坐标系中,点(1,2)关于y轴对称的点的坐标是. (2)已知点M(12m,m1)关于y轴的对称点在第一象限,则m的取值范围是.如图.(1)写出△ABO各顶点的坐标,以及它们关于y轴的对称点的坐标,并描点(2)以y轴为对称轴,作△ABO的轴对称图形,然后将所得的图形连同原图形,以x轴为对称轴再作轴对称图形本设计基于教材,又对教材进行再创造,通过复习导入激发学生学习的。
平面直角坐标系中的形变换在我们学习数学的旅程中,平面直角坐标系就像是一个神奇的舞台,而形变换则是这个舞台上的精彩表演。
那么,什么是平面直角坐标系中的形变换呢?让我们一起来揭开它神秘的面纱。
想象一下,在一个平面上,我们画出两条互相垂直的数轴,一条水平的称为 x 轴,一条垂直的称为 y 轴。
它们的交点就是原点,用 O 表示。
这个由 x 轴和 y 轴构成的平面就是平面直角坐标系。
而形变换,简单来说,就是图形在这个坐标系中的位置、形状或者大小发生了改变。
常见的形变换包括平移、旋转和缩放。
先来说说平移。
平移就像是把一个图形在这个平面上整体地移动一段距离。
比如说,一个三角形原来在坐标系中的位置是某个地方,我们可以让它沿着 x 轴方向向右移动 5 个单位,或者沿着 y 轴方向向上移动 3 个单位。
在这个过程中,三角形的形状和大小都没有改变,只是位置发生了变化。
我们怎么用数学的方式来描述平移呢?假设三角形的三个顶点坐标分别是 A(x₁, y₁),B(x₂, y₂),C(x₃, y₃)。
如果要将这个三角形沿着x 轴向右平移 a 个单位,沿着 y 轴向上平移 b 个单位,那么平移后三个顶点的新坐标就分别变成了 A'(x₁+ a, y₁+ b),B'(x₂+ a, y₂+b),C'(x₃+ a, y₃+ b)。
再看看旋转。
旋转就像是让图形围绕着一个点转动一定的角度。
比如说,一个矩形围绕着原点旋转 90 度。
在旋转的过程中,图形上每个点到旋转中心的距离是不变的,只是位置发生了改变。
那旋转又怎么用数学来表达呢?以原点为旋转中心,将点 P(x, y) 绕原点逆时针旋转θ 角度,旋转后的点坐标为 P'(x', y'),则 x' = x cosθ y sinθ ,y' = x si nθ +y cosθ 。
最后是缩放。
缩放就是让图形变大或者变小。
比如把一个圆形按照一定的比例放大或者缩小。
3.3轴对称与坐标变化知识精讲图形的平移1.在平面直角坐标系中,图形上各点的纵坐标不变,横坐标分别加上(或减去)一个正数a,则图形沿水平方向向右(或向左)平移a个单位长度,图形形状、大小不变.2.在平面直角坐标系中,图形上各点的横坐标不变,纵坐标分别加上(或减去)一个正数b,则图形向上(或向下)平移b个单位长度,图形形状、大小不变.横坐标(x)纵坐标(y)左右向左移动n个单位长度(n>0),横坐标变为x n-不变向右移动n个单位长度(n>0),横坐标变为x n+上下不变向上移动n个单位长度(n>0),纵坐标变为x n+向下移动n个单位长度(n>0),纵坐标变为x n-割分割,把图形分割成几部分容易求解的图形,分别求解,然后相加即可.补补齐,把图形补成一个容易求解的图形,然后再减去补上的那些部分.三点剖析一.考点:用坐标表示地理位置,坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.二.重难点:坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.三.易错点:1.平行移动最关键的是掌握平移的方向与坐标变化之间的关系,可以用口诀形式表示:横坐标,右移加,左移减;纵坐标,上移加,下移减;2.求面积时,优先考虑补的方法,通常补成一个长方形或者梯形,之后再相减求解即可;3.计算坐标系内图形的面积时,平行或垂直于坐标轴直线上的两个点之间的距离,用横坐标之差的绝对值或者纵坐标之差的绝对值表示.用坐标表示地理位置例题1、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(-1,-2),你能帮她建立平面直角坐标系并求出其他各景点的坐标?(图中每个小正方形的边长为1)【答案】两栖动物(6,2);狮子(-2,6);飞禽(5,5)【解析】如图所示:南门(2,1),两栖动物(6,2),狮子(-2,6),飞禽(5,5).随练1、如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【答案】D【解析】①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-5,-2)时,表示左安门的点的坐标为(11,-11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5),此结论正确.坐标系内图形的变换例题1、把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为________。
八年级数学上册知识点:平面直角坐标系一、平面直角坐标系1平面直角坐标系:在平面内两条有公共点而且相互垂直的数轴就组成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。
成立了直角坐标系的平面叫坐标平面x轴和轴把坐标平面分成四个部份,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如下图说明:两条坐标轴不属于任何一个象限。
2点的坐标:关于平面直角坐标系内任意一点P,过点P别离向x轴和轴作垂线,垂足在x轴,轴对应的数a,b别离叫做点P的横坐标,纵坐标,有序数对叫做P的坐标。
3点与有序实数对的关系:坐标平面内的点能够用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。
常见考法由点的位置确信点的坐标,由点的坐标确信点的位置;求某些特殊点的坐标。
误区提示求点的坐标时,容易将横、纵坐标弄反,还容易忽小坐标符号;试探问题不周,容易显现漏解。
【典型例题】(XX江苏常州)点p关于x轴的对称点p1的坐标是,点p关于原点的对称点P2的坐标是。
【解析】关于x轴的对称点的坐标是横坐标不变,纵坐标相反,关于原点对称的点的坐标,横、纵坐标都要乘以-1,故此题应当填,。
一、目标与要求1解有序数对的应用意义,了解平面上确信点的经常使用方式。
2培育学生用数学的意识,激发学生的学习爱好。
3把握坐标转变与图形平移的关系;能利用点的平移规律将平面图形进行平移;会依照图形上点的坐标的转变,来判定图形的移动进程。
4进展学生的形象思维能力,和数形结合的意识。
坐标表示平移表现了平面直角坐标系在数学中的应用。
二、重点把握坐标转变与图形平移的关系;有序数对及平面内确信点的方式。
三、难点利用坐标转变与图形平移的关系解决实际问题;利用有序数对表示平面内的点。
四、知识框架五、知识点、概念总结1有序数对:用含有两个数的词表示一个确信的位置,其中各个数表示不同的含义,咱们把这种有顺序的两个数a 与b组成的数对,叫做有序数对,记作其中a表示横轴,b 表示纵轴。
温州翔宇中学初中部八年级数学(上)教案() 课题:4.3 坐标平面内图形的轴对称和平移(1)一、学习目标:1、感受坐标平面内图形变换的坐标变换,了解关于坐标轴对称的两个点的坐标变换;2、会求与已知点关于坐标轴对称点的坐标;利用图形变换与坐标之间的关系来作图;3、进一步培养坐标意识与数形结合的数学思想。
教学重点:关于坐标轴对称的两个点之间的坐标关系。
教学难点:利用关于坐标轴对称的两个点之间的坐标关系,在平面直角坐标系内作轴对称图形。
三、自主导学——相信自己一定行的!1、如图,在方格纸上任画点A,写出它的坐标;(1) 写出A点坐标;(2) 分别作出点A关于x轴,y轴的对称点,并写出它们的坐标。
(3) 比较点A与它关于x轴的对称点的坐标,点A关于y轴的对称点的坐标,你发现什么规律?(4) 请你再任取几点,作出它们关于x轴,y轴的对称点,验证你的发现.四、合作探究——相信团队力量是巨大的!发现与归纳:(1)在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b);(2)用文字表达规律:__________________________________________________________小练习:1、在直角坐标系中,已知点A(-1, 2),B(1, - 4),C(0, 1.5),则A点关于x轴的对称点的坐标是______,关于y轴的对称点的坐标是____________;点B关于y轴的对称点的坐标是___________,点C关于x轴的对称点的坐标是__________。
2、若点M(a,3)与N(-2,b)关于 x轴对称,则a=_____,b=_______。
3、若点P关于x轴对称点为P1 ,P1关于y轴对称点为P2 ,则P2的坐标为(-2,3),则点P的坐标为_______________。
五、交流展示——相信你我互动是有效的!交流展示一:(1)求出图形轮廓线上各转折点A,O,B,C,D,E,F的坐标;(2)利用坐标关系,求出它们关于y轴对称点的坐标。
第21课坐标平面内的图形的轴对称和平移目标导航学习目标1.感受坐标平面内图形变化相应的坐标变化.2.了解关于坐标轴对称的两个点的坐标关系.3.会求与已知点关于坐标轴对称的点的坐标.4.利用关于坐标轴对称的两个对称点的坐标关系,求作轴对称图形.知识精讲知识点01 坐标平面内图形的轴对称在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,b),关于y轴的对称点的坐标为(a,b).1.关于x轴对称:横坐标不变,纵坐标互为相反数2.关于y轴对称:横坐标互为相反数,纵坐标不变知识点02 坐标平面内图形的平移平移:上加下减,右加左减能力拓展考点01 坐标平面内图形的轴对称【典例1】在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.【即学即练1】平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4)B(2,4)C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D、E、F的坐标.考点02 坐标平面内图形的平移【典例2】已知△A'B'C'是△ABC平移后得到的,已知△ABC三顶点的坐标为A(﹣2,3),B(﹣4,﹣1),C(2,0),△ABC中任一点P(x0,y0)经平移后得到△A'B'C'中对应点P'(x0+5,y0+3),试求A',B',C'的坐标.【即学即练2】在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A′的坐标:A(,),A′(,).(2)请说明三角形A′B'C′是由三角形ABC经过怎样的平移得到的;(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2n﹣8,m﹣4),求m 和n的值.分层提分题组A 基础过关练1.在平面直角坐标系xOy中,点P(2,4)关于y轴的对称点的坐标是()A.(﹣2,4)B.(2,﹣4)C.(﹣2,﹣4)D.(4,2)2.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)3.点N(3,﹣2)先向右平移3个单位,又向下平移2个单位得到点M,则点M的坐标为()A.(6,﹣4)B.(0,﹣4)C.(6,0)D.(0,0)4.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A.向左平移了5个单位长度B.向下平移了5个单位长度C.向右平移了5个单位长度D.向上平移了5个单位长度5.已知点A(﹣2,3)经变换后到点B,下面的说法正确的是()A.点A与点B关于x轴对称,则点B的坐标为B(2,3)B.点A绕原点按顺时针方向旋转90°后到点B,则点B的坐标为B(2,3)C.点A与点B关于原点中心对称,则点B的坐标为B(3,﹣2)D.点A先向上平移3个单位,再向右平移4个单位到点B,则点B的坐标为B(2,6)6.已知点M(3,2)与点N(a,b)在同一条平行于x轴的直线上,且点N到y轴的距离为4,那么点N 的坐标是()A.(4,﹣2)或(﹣5,2)B.(4,﹣2)或(﹣4,﹣2)C.(4,2)或(﹣4,2)D.(4,2)或(﹣1,2)7.剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(2m,﹣n),其关于y轴对称的点F的坐标为(3﹣n,﹣m+1),则m﹣n的值为()A.﹣9 B.﹣1 C.0 D.18.在平面直角坐标系中,点P与点A关于x轴对称,点P与点B关于y轴对称.已知点B(1,2),则点A的坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)9.平面直角坐标系中,点A(1,3)关于x轴对称的点的坐标是.10. 已知△A'B'C'是由△ABC平移得到的(点A',B',C'分别是A、B、C的对应点),若点A的坐标为(﹣1,2),A'的坐标为(3,4),则点B(﹣3,﹣2)的对应点B'的坐标为.11.在平面直角坐标系中,作点A(4,﹣3)关于x轴的对称点A',再向右平移2个单位长度得到点A'',则点A''的坐标是.12.在直角坐标系中,若点A(m,2)与点B(3,n)关于y轴对称,则m+n=.13.△ABC与△A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A,A';(2)若点P(x,y)是△ABC内部一点,则△A'B'C'内部的对应点P'的坐标为;(3)△A'B'C'是由△ABC经过怎样的平移得到的?题组B 能力提升练14.在平面直角坐标系中,将点M(a﹣3,2a+1)向左平移3个单位长度后恰好落在y轴上,则点M的坐标是()A.(3,13)B.(3,7)C.(6,7)D.(6,13)15.已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2023值为()A.0 B.﹣1 C.1 D.(﹣3)202316.若线段AB平移得到线段A,B,且A(2,0)、B(0,1)两点的对应点分别是A(3,b),B(a,2),则a+b=()A.5 B.4 C.3 D.217.已知点A(3a﹣9,2﹣a)关于原点对称的点为A′,点A′关于x轴对称的点为A″,点A″在第四象限,那么a的取值范围是.18.在平面直角坐标系中,点A(4m+6,2m﹣1)关于y轴对称的点在x轴上,则点A的坐标为.19.在平面直角坐标系中,已知点P(2a+3,3),Q(﹣4,b﹣2),分别根据下列条件,求a,b的值.(1)P,Q两点关于x轴对称;(2)P,Q两点关于y轴对称;(3)直线PQ∥y轴.20.已知在平面直角坐标系中,△ABC的位置如图所示;(1)已知A(﹣1,4),B(﹣4,﹣1),C(1,0),将△ABC平移后,三角形内部一点P(x,y)的对应点为P'(x+3,y﹣2),做出平移后的△A'B'C';(2)过点C作CD∥AB,且点D在格点上,则点D的坐标是;(3)在(1)的平移过程中,线段BC扫过的面积为.21.如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别是A(4,2),B(1,0),C(5,﹣3),三角形ABC中任意一点P(x0,y0),经平移后对应点为P'(x0﹣6,y0+2),将三角形ABC作同样的平移得到三角形A'B'C',点A,B,C的对应点分别为A',B',C'.(1)点A'的坐标为,点B'的坐标为;(2)①画出三角形A'B'C';②写出三角形A'B'C'的面积;(3)过点A'作A'D∥y轴,交B'C'于点D,则点D的坐标为.题组C 培优拔尖练22.如图,A,B两点的坐标分别为(2,0)(0,1),若将线段AB平移至A1B1,则a+b的值为()A.5 B.4 C.3 D.223.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(3,4),C(4,﹣1).(1)试在平面直角坐标系中,画出△ABC;(2)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标;(3)在x轴上找到一点P,使点P到点A、B两点的距离和最小;(4)求△ABC的面积.24.已知:在平面直角坐标系中,点A(3a+2b,4a+b)在第四象限,且到x轴的距离为2,到y轴的距离为1.(1)求点B(2a+3b,2a+b)的坐标;(2)若点C与点A关于x轴对称,请直接写出点C的坐标;(3)在y轴上是否存在一点M,使△ACM的面积=△ABC的面积?若存在,请求出点M的坐标;若不存在,请说明理由.xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“1型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣1型平移”.已知点A(1,1)和点B(3,1).(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为.(2)①将线段AB进行“﹣1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,在线段A'B'上的点是.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.(3)已知点C(6,0),D(8,﹣2),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B',当t的取值范围是时,B'M的最小值保持不变.26.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m 和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.。
八年级数学上册位置与坐标重点知识整理1、确定位置在平面内,确定物体的位置一般需要两个数据。
2、平面直角坐标系及有关概念①平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
②坐标轴和象限为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
③点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
④不同位置的点的坐标的特征a、各象限内点的坐标的特征点P(x,y)在第一象限→x>0,y>0点P(x,y)在第二象限→x<0,y>0点P(x,y)在第三象限→x<0,y<0点P(x,y)在第四象限→x>0,y<0b、坐标轴上的点的特征点P(x,y)在x轴上→y=0,x为任意实数点P(x,y)在y轴上→x=0,y为任意实数点P(x,y)既在x轴上,又在y轴上→x,y同时为零,即点P坐标为(0,0)即原点c、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上→x与y相等点P(x,y)在第二、四象限夹角平分线上→x与y互为相反数d、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。