高考总复习 数学6-1
- 格式:ppt
- 大小:1.72 MB
- 文档页数:51
全国新课标区模拟精选题:依据高考命题大数据分析,重点关注基础题3,4,力量题12,14. 专项基础测试 模拟精选题 一、选择题1.(2022·陕西西安模拟)已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 若数列{a n }为递增数列,则a n +1-a n >0,即2n +1>2λ对任意n ∈N *都成立,于是有3>2λ,λ<32,由λ<1可得λ<32;反之由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A. 答案 A2.(2022·玉溪一中模拟)已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧2a n (n 为正奇数),a n +1 (n 为正偶数),则其前6项之和是( ) A.16 B.20 C.33D.120解析 a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴S 6=1+2+3+6+7+14=33. 答案 C3.(2021·天津南开中学月考)下列可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A.a n =1B.a n =(-1)n +12C.a n =2-|sin n π2|D.a n =(-1)n -1+32解析 A 项明显不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-|sin n π2|可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C. 答案 C4.(2022·济南外国语学校模拟)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 2 016等于( ) A.0 B.- 3 C. 3D.32解析 由已知得a 1=0,a 2=-3,a 3=3,a 4=0,a 5=-3=a 2,a 6=a 3,…,由此归纳得出a n +3=a n ,故a 2 016=a 3×672=a 3=3,选C. 答案 C5.(2022·北大附中模拟)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 013的值是( ) A.8 B.6 C.4D.2解析 a 1a 2=2×7=14,∴a 3=4,4×7=28,∴a 4=8,4×8=32,∴a 5=2,2×8=16,∴a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,∴从第三项起,a n 的值成周期排列,周期数为6,2 013=335×6+3,∴a 2 013=a 3=4. 答案 C 二、填空题6.(2022·山东聊城二模)如图所示是一个类似杨辉三角的数阵,则第n (n ≥2)行的第2个数为________.解析 每行的第2个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,所以 a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,由累加法得a n -a 2=[(2n -3)+3]×(n -2)2=n 2-2n ,所以a n =n 2-2n +a 2=n 2-2n +3(n ≥2). 答案 n 2-2n +3 创新导向题利用递推公式求数列通项公式问题7.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n ,若a 1=2,则数列{a n }的前n 项和为________. 解析 ∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0,∵a n >0,∴a n +1=3a n ,又a 1=2,∴{a n }是首项为2,公比为3的等比数列,∴S n =2(1-3n )1-3=3n -1.答案 3n -1利用S n 与a n 关系式求a n 问题8.已知数列{a n }的前n 项和S n =5n -3,则数列{a n }的通项公式为a n =________(n ∈N *). 解析 数列的前n 项和S n =5n -3, ∴当n =1时,a 1=S 1=5-3=2,当n ≥2时,a n =S n -S n -1=(5n -3)-(5n -1-3)=4×5n -1.此式中令n =1,得a 1=4, ∴a 1不适合a n =4×5n -1(n ≥2).故数 列的通项公式a n =⎩⎪⎨⎪⎧2 (n =1),4×5n -1 (n ≥2).答案 ⎩⎨⎧2 (n =1),4×5n -1 (n ≥2) 专项提升测试 模拟精选题 一、选择题9.(2022·广东佛山一模)数列{a n }满足a 1=1,a 2=1,a n +2=⎝ ⎛⎭⎪⎫1+sin 2n π2a n +4cos 2n π2,则a 9,a 10的大小关系为( )二、填空题10.(2021·温州质检)已知数列{a n }的通项公式为a n =(n +2)·⎝ ⎛⎭⎪⎫78n,则当a n 取得最大值时,n 等于________.解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎨⎧(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +1)⎝ ⎛⎭⎪⎫78n -1,(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +3)⎝ ⎛⎭⎪⎫78n +1.解得⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6.答案 5或611.(2021·天津新华中学模拟)已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为________.解析 由于S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1, 两式相减得a n =2a n -2a n -1, 整理得a n =2a n -1,所以{a n }是公比为2的等比数列. 又由于a 1=2a 1-1,所以a 1=1, 故a n =2n -1,而a nn ≤2,即2n -1≤2n , 所以有n ∈{1,2,3,4}. 答案 {1,2,3,4}12.(2022·河南洛阳模拟)已知数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 015项的乘积a 1·a 2·a 3·…·a 2 015=________. 解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1,所以{a n }是以4为周期的数列,而2021=4×503+3,a 1a 2a 3a 4=1,则前2 015项的乘积为1503·a 1·a 2·a 3=3. 答案 3 三、解答题13.(2021·青岛一中模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *). (1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值. 解 (1)当n ≥2时,由题可得a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n .① a 1+2a 2+3a 3+…+na n =n +12a n +1,② ②-①得na n =n +12a n +1-n2a n , 即(n +1)a n +1=3na n ,(n +1)a n +1nan=3,∴{na n }是以2a 2=2为首项,3为公比的等比数列(n ≥2), ∴na n =2·3n -2, ∴a n =2n ·3n -2(n ≥2),∵a 1=1,∴a n =⎩⎪⎨⎪⎧1,n =1,2n·3n -2,n ≥2. (2)a n ≤(n +1)λ⇔λ≥a n n +1,由(1)可知当n ≥2时,a nn +1=2·3n -2n (n +1),设f (n )=n (n +1)2·3n(n ≥2,n ∈N *), 则f (n +1)-f (n )=2(n +1)(1-n )2·3n +1<0,∴1f (n +1)>1f (n )(n ≥2),又1f (2)=13及a 12=12,可得λ≥1f (2), ∴所求实数λ的最小值为13. 创新导向题利用S n 求a n 及数列求和问题14.设数列{a n }的前n 项和为S n ,已知a 1=a ,S n +1=2S n +n +1,n ∈N *. (1)求数列{a n }的通项公式; (2)当a =1时,若b n =na n +1-a n,数列{b n }的前n 项和为T n ,n ∈N *,证明:T n <2.(1)解 由S n +1=2S n +n +1得S n =2S n -1+n (n ≥2),两式相减得S n +1-S n =2(S n -S n -1)+1,即a n +1=2a n +1(n ≥2), ∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2). 故数列{a n +1}从第2项起,是以a 2+1为首项,2为公比的等比数列. 又S 2=2S 1+1+1,a 1=a ,∴a 2=a +2, ∴a n =(a +3)·2n -2-1(n ≥2), 又a 1=a ,不满足a n =(a +3)·2n -2-1. ∴a n =⎩⎨⎧a (n =1),(a +3)·2n -2-1 (n ≥2). (2)证明 由a 1=a =1,得a n =2n -1(n ∈N *),则b n =n (2n +1-1)-(2n -1)=n 2n +1-2n =n2n , ∴T n =12+2·122+3·123+…+n ·12n ①,从而12T n =122+2·123+…+(n -1)·12n +n ·12n +1②, ①-②得:12T n =12+122+…+12n -n 2n +1,故12T n =12⎝ ⎛⎭⎪⎫1-12n 1-12-n2n +1,∴T n =2-12n -1-n2n =2-n +22n <2.。
高考数学复习考点知识与题型专题讲解函数的奇偶性、周期性与对称性考试要求1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )为奇函数,则f (0)=0.(×)(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.(×)(3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.(√)(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.(√)教材改编题1.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案B解析根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.2.若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2023)=______.答案1 2解析∵f(x)的周期为2,∴f(2023)=f(1)=2-1=1 2.3.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性命题点1判断函数的奇偶性例1判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎨⎧ x 2+x ,x <0,-x 2+x ,x >0; (3)f (x )=log 2(x +x 2+1).解(1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3, 即函数f (x )的定义域为{-3,3},从而f (x )=3-x 2+x 2-3=0.因此f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.(3)显然函数f(x)的定义域为R,f(-x)=log2[-x+(-x)2+1]=log2(x2+1-x)=log2(x2+1+x)-1=-log2(x2+1+x)=-f(x),故f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.命题点2函数奇偶性的应用例2(1)(2022·哈尔滨模拟)函数f(x)=x(e x+e-x)+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为()A.-2B.0C.2D.4答案C解析依题意,令g(x)=x(e x+e-x),显然函数g(x)的定义域为R,则g(-x)=-x(e-x+e x)=-g(x),即函数g(x)是奇函数,因此,函数g(x)在区间[-2,2]上的最大值与最小值的和为0,而f(x)=g(x)+1,则有M=g(x)max+1,N=g(x)min+1,于是得M+N=g(x)max+1+g(x)min+1=2,所以M+N的值为2.(2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=________.答案1解析方法一(定义法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.方法二(取特殊值检验法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )() A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数答案C解析由9-x 2≥0且|6-x |-6≠0,解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0},关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x, 又f (-x )=9-(-x )2x =-9-x 2-x =-f (x ), 所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎨⎧ g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 答案-1解析∵f (x )为奇函数且f (-1)=g (-1),∴f (-1)=-f (1)=-(-1)=1,∴g (-1)=1,∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1(1)(2021·全国乙卷)设函数f (x )=1-x 1+x ,则下列函数中为奇函数的是() A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案B解析f(x)=1-x1+x=2-(x+1)1+x=21+x-1,为保证函数变换之后为奇函数,需将函数y=f(x)的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f(x-1)+1.(2)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=2x-2x+a,则a=________;当x<0时,f(x)=________.答案-1-2-x-2x+1解析∵f(x)是定义在R上的奇函数,∴f(0)=0,即1+a=0,∴a=-1.∴当x≥0时,f(x)=2x-2x-1,设x<0,则-x>0,∴f(-x)=2-x-2(-x)-1=2-x+2x-1,又f(x)为奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+2x-1,∴f(x)=-2-x-2x+1.题型二函数的周期性例3(1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝ ⎛⎭⎪⎫132等于() A .-94B .-14C.14D.94答案A解析由f (x -2)=f (x +2),知y =f (x )的周期T =4,又f (x )是定义在R 上的奇函数,∴f ⎝ ⎛⎭⎪⎫132=f ⎝ ⎛⎭⎪⎫8-32 =f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫32=-94. (2)函数f (x )满足f (x )=-f (x +2),且f (1)=2,则f (2023)=________.答案-2解析f (x )=-f (x +2),∴f (x +4)=-f (x +2)=f (x ),∴f (x )的周期为4,∴f (2023)=f (3)=-f (1)=-2.教师备选若函数f (x )=⎩⎨⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2023)=________.答案-1解析当x>0时,f(x)=f(x-1)-f(x-2),①∴f(x+1)=f(x)-f(x-1),②①+②得,f(x+1)=-f(x-2),∴f(x)的周期为6,∴f(2023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2023)等于() A.336B.338C.337D.339答案B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2021)+f(2022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2021)+f(2022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2021)+f(2022)=0.题型三函数的对称性例4(1)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是________.(填序号)①f(x)的图象关于直线x=2对称;②f(x)的图象关于点(2,0)对称;③f(x)的周期为4;④y=f(x+4)为偶函数.答案①③④解析∵f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故①正确,②错误;∵函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),∴f(x+4)=f(x),∴T=4,故③正确;∵T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故④正确.(2)函数f(x)=lg|2x-1|图象的对称轴方程为________.答案x=1 2解析内层函数t=|2x-1|的对称轴是x=12,所以函数f(x)=lg|2x-1|图象的对称轴方程是x =12.教师备选已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案-1解析因为f (x )关于点(0,1)对称,所以f (x )+f (-x )=2,故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2,解得a =0,所以f (x )=x 3+bx +1,又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1,所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3(1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2025)=________.答案1解析∵f (x )的周期为6,则f (2025)=f (3),又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称,∴f (3)=f (1)=1,∴f (2025)=1.(2)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是________.(填序号)①f (x )的图象关于y 轴对称;②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称;④f (x )的图象关于点(π,0)对称.答案②③④解析∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,图象关于原点对称,故①错误,②正确.∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x , f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,∴f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故③正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故④正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上()A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5答案C解析因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5.2.若函数f (x )=12x -1+a 为奇函数,则a 的值为() A .-2B .-12C.12D .2答案C解析方法一(定义法)∵f (x )为奇函数,∴f (-x )=-f (x ),∴12-x -1+a =-⎝ ⎛⎭⎪⎫12x -1+a , ∴2a =-⎝ ⎛⎭⎪⎫12-x -1+12x -1=1, ∴a =12.方法二(特值法)f (x )为奇函数,且x ≠0,∴f (-1)=-f (1),∴a -2=-(a +1),∴a =12.3.(2022·南昌模拟)函数f (x )=9x +13x 的图象()A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案B解析f(x)=32x+13x=3x+3-x,f(-x)=3-x+3x,∴f(-x)=f(x),故f(x)为偶函数,其图象关于y轴对称.4.已知函数f(x)的图象关于原点对称,且周期为4,f(3)=-2,则f(2021)等于()A.2B.0C.-2D.-4答案A解析依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(3)=-2,则有f(2021)=f(-3+506×4)=f(-3)=-f(3)=2,所以f(2021)=2.5.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=|f(x)|C.y=xf(x) D.y=f(x)+x答案D解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,|f(-x)|=|-f(x)|=|f(x)|,为偶函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.6.(2022·南昌模拟)已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于()A.0B.-1C.-2D.2答案C解析因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x),又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案1 3解析因为f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则有(a-1)+2a=3a-1=0,则a=13,同时f(-x)=f(x),即ax2+bx+1=a(-x)2+b(-x)+1,则有bx =0,必有b =0.则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝ ⎛⎭⎪⎫352=12,则m =______. 答案12解析由f (1-x )=f (1+x ),f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫352=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12=12, ∴14+12m =12,∴m =12.9.已知函数f (x )=⎩⎨⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于()A .-7B .-3C .3D .7答案B解析设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ),即f (x )-2=-f (-x )+2,故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=2x +a ,则g (1)等于()A .a +54B.54C.34D .a +34答案C解析依题意⎩⎨⎧ f (1)+g (1)=2+a ①f (-1)+g (-1)=12+a ,②又f (x )为偶函数,g (x )为奇函数,∴②式可化为f (1)-g (1)=12+a ,③由①③可得g (1)=34. 13.已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则下列结论正确的是________.(填序号)①f (x )的图象关于点(2,0)对称;②f (x )的图象关于直线x =2对称;③f (x )的周期为4;④f (x )的周期为8.答案①④解析∵f (x )为偶函数,∴f (x )的图象关于y 轴对称,f (-x )=f (x ),又∵f (x +2)是奇函数,∴f (-x +2)=-f (x +2),∴f (x )的图象关于(2,0)对称,又∵f (x +8)=-f (x +4)=f (x ),∴f (x )为周期函数且周期为8.14.已知函数f (x )对任意实数x 满足f (-x )+f (x )=2,若函数y =f (x )的图象与y =x +1有三个交点(x 1,y 1),(x 2,y 2),(x 3,y 3),则y 1+y 2+y 3=________.答案3解析因为f (-x )+f (x )=2,则f (x )的图象关于点(0,1)对称,又直线y =x +1也关于点(0,1)对称,因为y =f (x )与y =x +1有三个交点,则(0,1)是一个交点,另两个交点关于(0,1)对称,则y 1+y 2+y 3=2+1=3.15.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=________. 答案11011解析因为f (x )=4x4x +2, 所以f (x )+f (1-x )=4x 4x +2+41-x41-x +2=4x 4x +2+44x 44x +2=4x 4x +2+44x 4+2·4x 4x=4x 4x +2+44+2·4x=2·4x +44+2·4x =1,设f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=m ,① 则f ⎝ ⎛⎭⎪⎫20222023+…+f ⎝ ⎛⎭⎪⎫32023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫12023=m ,② ①+②得2022=2m ,即m =1011,故f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=1011. 16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P .(1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值.解(1)因为函数y =x 是增函数,所以函数y =x 不具有性质P ,当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立,所以y =cos x 具有性质P .(2)设x ∈(-π,0],则x +π∈(0,π], 由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝ ⎛⎭⎪⎫-π2=12.。
第六节对数与对数函数学习要求:1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道对数函数y=log a x与指数函数y=a x(a>0,且a≠1)互为反函数.1.对数的概念(1)对数的定义一般地,如果①a x=N(a>0,且a≠1) ,那么数x叫做以a为底N的对数,记作②x=log a N ,其中③a叫做对数的底数,④N叫做对数的真数.(2)几种常见的对数对数形式特点记法一般对数底数为a(a>0且a≠1) ⑤ log a N常用对数底数为10 ⑥ lg N自然对数底数为e ⑦ ln N2.对数的性质与运算法则(1)对数的性质(i)负数和0无对数.(ii)1的对数等于0,即log a1=0(a>0且a≠1).(iii)log a a=1(a>0且a≠1).▶提醒a log a N=⑧N ;log a a N=⑨N (a>0且a≠1). (2)换底公式及其推论换底公式:⑩ log b N =log a Nlog a b(a,b均大于0且不等于1).推论:log a b=1log b a ,lo g a m bn=nmlog a b(a>0且a≠1,b>0且b≠1,m,n∈R,且m≠0),log a b·log b c·log c d= log a d (a,b,c均大于0且不等于1,d大于0).(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么log a(MN)= log a M+log a N ,log a MN= log a M-log a N ,log a M n=n log a M (n∈R).3.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R图象恒过点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数是(0,+∞)上的减函数▶提醒 当对数函数的底数a 的大小不确定时,需分a >1和0<a <1两种情况进行讨论. 4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =loga x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称.知识拓展1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.1.判断正误(正确的打“√”,错误的打“✕”).(1)log a(MN)=log a M+log a N.()(2)函数y=log a x2与函数y=2log a x相等.()(3)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.()(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()答案(1)✕(2)✕(3)✕(4)√2.(新教材人教A版必修第一册P127T3改编)log29×log34+2log510+log50.25=()A.0B.2C.4D.6答案 D3.(新教材人教A版必修第一册P133例3改编)已知a=ln 3,b=log3e,c=logπe,则下列关系正确的是()A.c<b<aB.a<b<cC.b<a<cD.b<c<a答案 A4.(新教材人教A版必修第一册P159T1改编)图中曲线是对数函数y=log a x的图象,已知a取√3,43,35,110四个值,则对应于C1,C2,C3,C4的a值依次为()A.√3,43,35,110B.√3,43,110,35C.43,√3,35,110D.43,√3,110,35答案 A5.已知函数f(x)=log a(2x-a)在区间[23,34]上恒有f(x)>0,则实数a的取值范围是.答案(12,1)对数式的化简与求值1.(多选题)设a,b,c都是正数,且4a=6b=9c,则()A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a答案AD∵a,b,c都是正数, 故可设4a=6b=9c=M,∴a=log4M,b=log6M,c=log9M,则1a =log M4,1b=log M6,1c=log M9.∵log M4+log M9=2log M6,∴1a +1c=2b,即1c=2b−1a,去分母整理得,ab+bc=2ac.故选AD.2.计算:2log 23+2log 31-3log 77+3ln 1= . 答案 0解析 原式=3+2×0-3×1+3×0=0. 3.计算:(lg 14-lg25)×10012= . 答案 -20解析 原式=(lg 2-2-lg 52)×10012=lg (122×52)×10=lg 10-2×10=-2×10=-20.4.计算:(1-log 63)2+log 62·log 618log 64= .答案 1 解析 原式 =1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.名师点评1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数,然后逆用对数的运算法则,化为同底对数真数的积、商、幂再运算.3.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.对数函数的图象及应用典例1(1)(2020安徽亳州二模)在同一个平面直角坐标系中,函数f(x)=1a x 与g(x)=lg ax的图象可能是()(2)(2020宁夏银川模拟)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2√2,+∞)B.[2√2,+∞)C.(3,+∞)D.[3,+∞)答案(1)A(2)B解析(1)由题意a>0且a≠1,所以函数g(x)=lg ax单调递减,故排除B、D;对于A、C,由函数f(x)=1a x 的图象可知0<a<1,对于函数g(x)=lg ax,g(1)=lg a<0,故A正确,C错误.(2)f(x)=|ln x|的图象如下:因为0<a<b且f(a)=f(b),所以|ln a|=|ln b|且0<a<1,b>1,所以-ln a=ln b,即ab=1,易得2a+b≥2√2ab=2√2,当且仅当2a=b,即a=√22,b=√2时等号成立.故选B.名师点评1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.常把一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2020广东惠州模拟)当a >1时,在同一坐标系中,函数g (x )=a -x 与f (x )=-log a x 的图象大致是( )答案 D 因为a >1,所以g (x )=a -x=(1a )x为R 上的减函数,且过(0,1);f (x )=-log a x 为(0,+∞)上的减函数,且过(1,0), 故只有D 选项符合.2.(2020陕西榆林三模)设x 1、x 2、x 3均为实数,且e -x 1=ln x 1,e -x 2=ln(x 2+1),e -x 3=lg x 3,则( ) A.x 1<x 2<x 3 B.x 1<x 3<x 2 C.x 2<x 3<x 1 D.x 2<x 1<x 3 答案 D 因为e -x 1=ln x1⇒(1e )x 1=ln x 1,e-x 2=ln(x 2+1)⇒(1e )x 2=ln(x 2+1),e-x 3=lg x3⇒(1e )x 3=lg x 3,所以作出函数y =(1e )x,y 1=ln x ,y 2=ln(x +1),y 3=lg x 的函数图象,如图所示:由图象可知函数y 2,y 1,y 3与y 的交点A ,B ,C 的横坐标依次为x 2,x 1,x 3,即有x 2<x 1<x 3.故选D .对数函数的性质及应用角度一 比较对数值的大小典例2 (2020课标Ⅲ理,12,5分)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b 答案 A a =log 53∈(0,1),b =log 85∈(0,1),则ab =log 53log 85=log53·log58<(log 53+log 582)2=(log 5242)2<1,∴a <b.又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45, ∴c >45. 又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885, 即log 85<45,∴b <45.综上所述,c >b >a ,故选A . 角度二 解简单的对数不等式典例3 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.(0,12)C.(12,1)D.(0,1)∪(1,+∞)答案 C 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,且2a >1,∴a >12.故a 的取值范围是(12,1).角度三 与对数函数有关的复合函数问题典例4 已知函数f (x )=log a (ax 2-x ).(1)若a =12,求f (x )的单调区间; (2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解析 (1)当a =12时,f (x )=lo g 12(12x 2-x),由12x 2-x >0,得x 2-2x >0,解得x <0或x >2,所以函数f (x )的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数f (x )的增区间为(-∞,0),减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象开口向上,对称轴为x =12a 的抛物线,①当0<a<1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递减,且g(x)min=ax2-x>0,即{12a≥4,g(4)=116a-14>0,此不等式组无解.②当a>1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递增,且g(x)min=ax2-x>0,即{12a≤2,g(2)=4a-2>0,解得a>12,又a>1,∴a>1.综上实数a的取值范围为(1,+∞).名师点评(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,并且真数必须为正.1.(2020课标Ⅲ文,10,5分)设a=log32,b=log53,c=23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b答案 A 因为a =log 32=log 3√83<log3√93=23=c , b =log 53=log 5√273>log5√253=23=c ,所以a <c <b.故选A .2.若a >b >0,0<c <1,则 ( ) A.log a c <log b c B.log c a <log c bC.a c <b cD.c a >c b答案 B ∵0<c <1,∴当a >b >1时,log a c >log b c ,故A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,故B 项正确;∵0<c <1,∴y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,故C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,故D 项错误.故选B .3.若函数f (x )=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)上恒有f (x )>0,则f (x )的单调递增区间为 .答案 (0,+∞)解析 令M =x 2+32x ,当x ∈12,+∞时,M ∈(1,+∞),因为f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =(x +34)2−916,因此M 的单调递增区间为(-34,+∞).又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).A组基础达标1.(2020课标Ⅰ文,8,5分)设a log34=2,则4-a= ()A.116B.19C.18D.16答案 B2.(多选题)设a=log0.20.3,b=log20.3,则()A.1a <1bB.ab<0C.a+b<0D.ab<a+b 答案BCD3.已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b答案 D4.(多选题)已知函数f(x)=lg(x2+ax-a-1),则下列论述中正确的是()A.当a=0时, f(x)的定义域为(-∞,-1)∪(1,+∞)B.当a=0时,f(x)一定有最小值C.当a=0时, f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞)答案AC对于A,当a=0时,解x2-1>0,有x∈(-∞,-1)∪(1,+∞),故A正确;对于B,当a=0时,f(x)=lg(x2-1),x2-1∈(0,+∞),此时f(x)=lg(x2-1)的值域为R,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,此时y=x2+ax-a-1的图象的对称轴的方程为直线x=-a 2,则-a2≤2,解得a≥-4.但当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.故选AC.5.(2020陕西西安高三二模)函数y=log5(x2+2x-3)的单调递增区间是.答案(1,+∞)解析由题意可知x2+2x-3>0,解得x<-3或x>1,即函数y=log5(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞).令g(x)=x2+2x-3,则函数g(x)在(-∞,-3)上单调递减,在(1,+∞)上单调递增,根据复合函数的单调性,可得函数y=log5(x2+2x-3)的单调递增区间为(1,+∞).6.函数f(x)=e x-e-x+ln1+x1-x+1,若f(a)+f(1+a)>2,则a的取值范围是.答案(-12,0)解析由题意得, f(x)的定义域为(-1,1),关于原点对称设g(x)=f(x)-1=e x-e-x+ln1+x1-x,则g(-x)=e-x-e x+ln1-x1+x,则g(-x)+g(x)=0,所以g(x)是(-1,1)上的奇函数,因为f(a)+f(1+a)>2,所以f(1+a)-1>-f(a)+1,所以f(1+a)-1>-[f(a)-1],即g(1+a)>-g(a)=g(-a),因为y=e x-e-x单调递增,y=ln1+x1-x单调递增,所以g(x)单调递增,则{-1<a<1,-1<1+a<1,1+a>-a,即−12<a<0.故a的取值范围是(-12,0).7.已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[-3,1]上是减函数,求a的取值范围.解析(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(-x),所以ln(2x2+ax+3)=ln(2x2-ax+3),故a=0,所以f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t≥3,所以ln t≥ln 3,故f(x)的值域为[ln 3,+∞).(2)设u(x)=2x2+ax+3,f(u)=ln u.因为f(x)在[-3,1]上是减函数,所以u(x)=2x2+ax+3在[-3,1]上是减函数,且u(x)>0在[-3,1]上恒成立,故{-a4≥1,u(x)min=u(1)=5+a>0,解得-5<a≤-4,即a的取值范围是(-5,-4].B组能力拔高8.(2020山西大同三模)在同一平面直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案A由题意知,函数f(x)=2-ax(a>0,且a≠1)为减函数,当0<a<1时,函数f(x)=2-ax的零点为x=2a>2,且函数g(x)=log a(x+2)在(-2,+∞)上为减函数,故C,D均不正确;当a>1时,函数f(x)=2-ax的零点为x=2a <2,且x=2a>0,且g(x)=log a(x+2)在(-2,+∞)上是增函数,故B不正确,故选A.9.(多选题)(2020山东济南模拟)已知函数f(x)=lg(1|x-2|+1),则下列说法正确的是()A.f(x+2)是偶函数B.f(x+2)是奇函数C.f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f(x)没有最小值答案AD因为f(x)=lg(1|x-2|+1),所以f (x +2)=lg (1|x |+1),定义域为{x |x ≠0},关于原点对称,又f (-x +2)=lg (1|-x |+1)=lg (1|x |+1)=f (x +2),所以f (x +2)为偶函数,故A 说法正确,B 说法错误; f (x )=lg (1|x -2|+1)={lg (1x -2+1),x >2,lg (12-x +1),x <2.因为当x ∈(2,+∞)时,y =1x -2为减函数,所以y =1x -2+1为减函数,所以y =lg (1x -2+1)在区间(2,+∞)上为减函数,故C 说法错误;因为当x ∈(2,+∞)时,y =lg (1x -2+1)为减函数,且当x →+∞时,y →0,所以f (x )没有最小值,故D 说法正确.10.(2020辽宁高三三模)设f (x )为定义在R 上的奇函数,当x ≥0时, f (x )=log 3(x +1)+ax 2-a +1(a 为常数),则不等式f (3x +4)>-5的解集为 ( )A.(-∞,-1)B.(-1,+∞)C.(-∞,-2)D.(-2,+∞)答案 D 因为f (x )是定义在R 上的奇函数,所以f (0)=0,解得a =1,所以当x ≥0时,f (x )=log 3(x +1)+x 2.因为函数y =log 3(x +1)和y =x 2在x ∈[0,+∞)上都是增函数,所以f (x )在[0,+∞)上单调递增.由奇函数的性质可知,y =f (x )在R 上单调递增,因为f (2)=5,f (-2)=-5,所以f (3x +4)>-5⇒f (3x +4)>f (-2),即3x+4>-2,解得x>-2.11.(2020课标Ⅰ理,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B2a+log2a=22b+log2b<22b+log2(2b),令f(x)=2x+log2x,则f(a)<f(2b),又易知f(x)在(0,+∞)上单调递增,所以a<2b,故选B.12.(2020河北邢台模拟)若当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,则实数a的取值范围为.答案(1,2]解析因为当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,所以{a>1,log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].13.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f(√x)>k·g(x)恒成立,求实数k的取值范围.解析(1)易知h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2.因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f (x 2)·f (√x )>k ·g (x )可得(3-4log 2x )(3-log 2x )>k ·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],即(3-4t )(3-t )>k ·t 对任意t ∈[0,2]恒成立.当t =0时,k ∈R;当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15恒成立.因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3,即k <-3.综上,k 的取值范围是(-∞,-3).C 组 思维拓展14.(2020吉林长春高三模拟)若函数f (x )={log 12(3-x )m ,x <1,x 2-6x +m ,x ≥1的值域为R,则m 的取值范围为( )A.(0,8]B.(0,92]C.[92,8] D.(-∞,-1]∪(0,92]答案B①若m>0,则当x<1时, f(x)=lo g12(3-x)m单调递增,当x≥1时, f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,若函数f(x)的值域为R,则需f(3)=m-9≤m lo g12(3-1)=-m,解得0<m≤92;②若m≤0,则当x<1时,f(x)=lo g12(3-x)m单调递减或为常数函数,当x≥1时,f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,不满足函数f(x)的值域为R,舍去.综上,m的取值范围为(0,92],故选B.15.(2020山西运城高三模拟)已知函数f(x)=ln2+x2-x,g(x)=m(x-√4-x)+2,若∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1),则实数m的取值范围是()A.[14ln3-12,1-12ln3]B.(14ln3-12,1-12ln3)C.(-12,1)D.[-12,1]答案C∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1)等价于f(x)min<g(x)min.函数f(x)=ln2+x2-x=ln(2+x)-ln(2-x),-2<x<2.因为y=ln(2+x)与y=-ln(2-x)在[0,1]上为增函数,所以函数f(x)在[0,1]上为增函数,所以f(x)min=f(0)=0.易知函数y=x-√4-x在[0,4]上为增函数,则-2≤x-√4-x≤4.故当m>0时,-2m+2≤g(x)≤4m+2,因为f(x)min<g(x)min,所以0<-2m+2,解得0<m<1;当m=0时,g(x)min=2>0,满足f(x)min<g(x)min;<m<0.当m<0时,4m+2≤g(x)≤-2m+2,因为f(x)min<g(x)min,所以0<4m+2,解得-12 <m<1.综上可知,-12。
新高考数学复习考点知识与题型专题讲解6 等式性质与不等式性质(一)基本事实两个实数a ,b ,其大小关系有三种可能,即a>b ,a =b ,a<b.依据如果a>b ⇔ . 如果a =b ⇔ . 如果a<b ⇔ .结论要比较两个实数的大小,可以转化为比较它们的与的大小(二)重要不等式∀a ,b ∈R ,有a2+b22ab ,当且仅当a =b 时,等号成立. (三)等式的基本性质 1.如果a =b ,那么. 2.如果a =b ,b =c ,那么. 3.如果a =b ,那么a±c =b±c. 4.如果a =b ,那么ac =bc. 5.如果a =b ,c≠0,那么=cbc a (四)不等式的性质序号 性质注意事项1 a>b ⇔ba ⇔ 2a>b ,b>c ⇒a>c不可逆3 a>b ⇔a +cb +c 可逆 4a>b ,c>0⇒ _______ a>b ,c<0⇒ _______c 的符号5 a>b ,c>d ⇒ ___________ 同向6 a>b>0,c>d>0⇒ ________ 同向 7a>b>0⇒anbn(n ∈N ,n≥2)同正答案:(一)a -b>0 a -b =0 a -b<0 (二)≥ (三)b =a a =c (四)< > ac>bc ac<bc a +c>b +d ac>bd >题型一由不等式性质比较数(式)大小1.若a b <,d c <,且()()0c a c b --<,()()0d a d b -->,则a ,b ,c ,d 的大小关系是() A .d a c b <<< B .a c b d <<< C .a d b c <<< D .a d c b <<<【答案】A【解析】因为()()0c a c b --<,a b <,所以a c b <<,因为()()0d a d b -->,a b <,所以d a <或d b >,而a c b <<,d c <,所以d a <. 所以d a c b <<<. 故选:A .题型二作差法比较代数式大小2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是() A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b<【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误. 对于B ,取3,2a b =-=,则a b <,但221812a b ab =>-=,故B 错误. 而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.3.已知1m n >>,则下列不等式中一定成立的是() A .11+>+m n n mB .->-m n m nC .3322+>m n mnD .3322+>m n m n【答案】ABC【解析】对于A 项,11111,,m n m n n m n m>>>∴+>+,故A 正确; 对于B 项,()()22222220m nm nmn n n n ---=->-=,结合0,0m n m n ->->可得->-m n m n ,故B 正确;对于C 项,()()323222222()()m mn n mn m m n n n m m n m mn n -+-=-+-=-+-,222220,0m mn n m n n m n +->+->->,即3322+>m n mn ,故C 正确;对于D 项,当3,2m n ==时,33227835236m n m n +=+=<=,故D 错误; 故选:ABC题型二作差法比较代数式大小4.已知a ,b 为非零实数,且a <b ,则下列命题成立的是() A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b< 【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误. 对于B ,取3,2a b =-=,则a b <,但221812a b ab =>-=,故B 错误. 而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.题型三作商法比较代数式大小5.比较下列各组中两个代数式的大小: (1)231x x -+与221x x +-; (2)当0a >,0b >且ab 时,a b a b 与b a a b .【答案】(1)223121x x x x -+>+-;(2)a b b a a b a b >. 【解析】(1)()()()2222312122110xx x x x x x -+-+-=-+=-+>,因此,223121x x x x -+>+-;(2)1a ba ba b a b b a a b b a a b a a b a a b b b -----⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭.①当0a b >>时,即0a b ->,1a b >时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>; ②当0b a >>时,即0a b -<,01a b <<时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>. 综上所述,当0a >,0b >且a b 时,a b b a a b a b >.题型四由不等式性质证明不等式6.若0a b >>,0c d <<,||||b c > (1)求证:0b c +>;(2)求证:22()()b c a da cb d ++<--;(3)在(2)中的不等式中,能否找到一个代数式,满足2()b c a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)能,222()()()b c b c a da cb d b d +++<<---.【解析】(1)因为||||b c >,且0,0b c ><,所以b c >-,所以0b c +>.(2)因为0c d <<,所以0c d ->->.又因为0a b >>,所以由同向不等式的相加性可将以上两式相加得0a c b d ->->.所以22()()0a c b d ->->. 所以22110()()a c b d <<--,因为,a b d c >>,所以由同向不等式的相加性可将以上两式相加得a d b c +>+. 所以0a d b c +>+>,所以由两边都是正数的同向不等式的相乘可得22()()b c a da cb d ++<--.(3)因为0b c +>,22110()()a c b d <<--, 所以22()()b c b ca cb d ++<--,因为0b c a d <+<+,210()b d >-,所以22()()b c a db d b d ++<--,所以222()()()b c b c a da cb d b d +++<<---. 所以在(2)中的不等式中,能找到一个代数式2()b cb d +-满足题意. 1.下列命题为真命题的是 A .若0a b >>,则22ac bc > B .若0a b >>,则22a b > C .若0a b <<,则22a ab b << D .若0a b <<,则11a b< 【答案】B【解析】当0c 时,A 显然不成立;若0a b >>时,则22a ab b >>,即B 正确;当2,1a b =-=-时,224,2,1a ab b ===,显然C 不成立; 当2,1a b =-=-时,112a =-,1b =-,显然D 不成立; 故选:B.2.用不等号“>”或“<”填空:(1)如果a b >,c d <,那么a c -______b d -; (2)如果0a b >>,0c d <<,那么ac ____bd ; (3)如果0a b >>,那么21a ____21b ;(4)如果0a b c >>>,那么c a ____c b. 【答案】> < < <【解析】解析:(1)c d <,c d ∴->-.a b >,a c b d ∴->-. (2)0c d <<,0c d ∴->->.0a b >>,ac bc bd ∴->->-,ac bd ∴<.(3)0a b >>,0ab ∴>,10ab>,110a b ab ab ∴⋅>⋅>,110b a ∴>>,2211b a ⎛⎫⎛⎫∴> ⎪ ⎪⎝⎭⎝⎭,即2211a b <.(4)0a b >>,所以0ab >,10ab>.于是1a b ab ab 1⋅>⋅,即11b a >,即11a b <. 0c >,c ca b∴<.故答案为:(1)>;(2)<;(3)<;(4)<3.比较()()37x x ++和()()46x x ++的大小. 【答案】()()()()3746x x x x ++<++. 【解析】解:()()x 3x 7++-()()x 4x 6++=()22x 10x 21x 10x 24.++-++=-3<0所以()()()()x 3x 7x 4x 6++<++ 4.比较下列各组中两个代数式的大小: (1)256x x ++与2259x x ++; (2)2(3)x -与(2)(4)x x --; (3)当1x >时,2x 与21x x -+; (4)221x y ++与2(1)x y +-.【答案】(1)2256259x x x x ++<++.(2)2(3)(2)(4)x x x ->--.(3)221x x x >-+.(4)2212(1)x y x y ++>+-.【解析】解:(1)因为()()2225625930x x x x x ++-++=--<,所以2256259x x x x ++<++. (2)因为()()222(3)(2)(4)696810x x x x x x x ----=-+--+=>,所以2(3)(2)(4)x x x ->--.(3)因为()22110x x x x --+=->,所以当1x >时,221x x x >-+.(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++--+=-+-+>,所以2212(1)x y x y ++>+-.5.已知0a b >>,0c d <<,0e <,求证:e e a c b d>--. 【答案】>e e a c b d--【解析】0c d <<,0c d ∴->->,又0a b >>, 0a c b d ∴->->,∴110a c b d<<--, 又0e <, ∴e e a c b d>--.6.火车站有某公司待运的甲种货物1530t,乙种货物1150t,现计划用A,B两种型号的货厢共50节运送这批货物,已知35t甲种货物和15t 乙种货物可装满一节A型货厢,25t甲种货物和35t乙种货物可装满一节B型货厢,据此安排A,B两种货厢的节数,共有几种方案?若每节A型货厢的运费是0.5万元,每节B型货用的运费是0.8万元,哪种方案的运费较少?【答案】见解析【解析】解:设安排A 型货厢x节,B型货厢y节,总运费为z所以352515301535115050x yx yx y+⎧⎪+⎨⎪+=⎩,所以2830x又因为*x∈N ,所以2822xy=⎧⎨=⎩或2921xy=⎧⎨=⎩或3020xy=⎧⎨=⎩.所以共有三种方案,方案一安排A型货厢28节,B型货厢22节;方案二安排A型货厢29节,B型货厢21节;方案三安排A型货厢30节,B型货厢20节.当3020xy=⎧⎨=⎩时,总运费0.5300.82031z=⨯+⨯=(万元)此时运费较少.。
第6模块 第1节[知能演练]一、选择题1.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( )A .b -a >0B .a 3+b 3<0C .b +a >0D .a 2-b 2<0解析:a -|b |>0⇒a >|b |,⎩⎪⎨⎪⎧-a <b <aa >0⇒a +b >0.故选C.答案:C2.已知x >y >z ,且x +y +z =0,下列不等式中成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |解析:由已知3x >x +y +z =0,3z <x +y +z =0. ∴x >0,z <0.由⎩⎨⎧x >0y >z得:xy >xz . 答案:C3.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解法一:a ,b 为非零实数,∴a 2b 2>0, 于是a <b 两边同除以a 2b 2得1ab 2<1a 2b.解法二:排除法:若a =-2,b =1,排除A ; 若a <0,b <0,排除B ;若a =-2,b =1,则b a =-12,ab =-2,排除D. 答案:C4.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:设甲用时间T ,乙用时间2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s 2b =s 2a +s2b =s ×a +b 2ab, ta +tb =s ⇒2t =2sa +b ,∴T -2t =s (a +b )2ab -2sa +b=s ×(a +b )2-4ab2ab (a +b )=s (a -b )22ab (a +b )>0, 故T >2t . 答案:B 二、填空题5.若1<α<3,-4<β<2,则α-|β|的取值范围是________. 解析:∵-4<β<2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)6.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx 这五个式子中,恒成立的所有不等式的序号是______________.解析:令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx ,因此⑤不正确.由不等式的性质可推出②④成立. 答案:②④ 三、解答题7.已知m ∈R ,a >b >1,f (x )=mxx -1,试比较f (a )与f (b )的大小.解:f (x )=mx x -1=m (1+1x -1),所以f (a )=m (1+1a -1),f (b )=m (1+1b -1).由a >b >1,知a -1>b -1>0,所以1+1a -1<1+1b -1.①当m >0时,m (1+1a -1)<m (1+1b -1),即f (a )<f (b ); ②当m =0时,m (1+1a -1)=m (1+1b -1),即f (a )=f (b );③当m <0时,m (1+1a -1)>m (1+1b -1),即f (a )>f (b ). 8.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c . (1)求ca的取值范围;(2)设该函数图象交x 轴于A 、B 两点,求|AB |的取值范围. 解:(1)f (1)=0⇒a +b +c =0.∵a >b >c ,∴a >-(a +c )>c 且a >0,c <0,解得 -2<c a <-12.(2)设A (x 1,0),B (x 2,0),则|AB |=|x 1-x 2|=b 2-4ac a =(a +c )2-4ac a =(a -c )2a =a -c a =1-c a .由(1)知,-2<c a <-12,∴32<1-ca<3, 即|AB |的取值范围是(32,3).[高考·模拟·预测]1.(2009·吉林长春一模)使不等式a >b 成立的充要条件是( )A .a 2>b 2 B.1a <1b C .lg a >lg bD.12a <12b 解析:取a =1,b =-2,可验证A 、B 、C 均不正确,故选D. 答案:D2.(2009·广东潮州期末质检)已知0<x <y <a <1,m =log a x +log a y ,则有( )A .m <0B .0<m <1C .1<m <2D .m >2解析:由0<x <y <a ,得0<xy <a 2,又0<a <1,故m =log a x +log a y =log a (xy )>log a a 2=2,故选D.答案:D3.(2009·山东日照一模)给出下列四个命题: ①若a <b ,则a 2<b 2;②若a ≥b >-1,则a 1+a ≥b 1+b;③若正整数m 和n 满足:m <n ,则m (n -m )≤n2;④若x >0,且x ≠1,则ln x +1ln x≥2.其中真命题的序号是________.(请把真命题的序号都填上) 解析:对于①,a =-2<b =-1,a 2>b 2,故①错. 对于④,ln x 不一定为正数, 故0<x <1时,ln x +1ln x≤-2. x >1时,ln x +1ln x ≥2,故④错.答案:②③4.(2009·安徽巢湖一模)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <12,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ),当m =-1,n =2时,不等式F (x )>0, 即为a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .[备选精题]5.2008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预订15张下表中球类比赛的门票:门票,其中足球比赛门票数与乒乓球比赛门票数相同,且足球比赛门票的费用不超过男篮比赛门票的费用,求可以预订的男篮比赛门票数.解:设足球比赛门票数与乒乓球比赛门票数都预订n (n ∈N *)张,则男篮比赛门票预订(15-2n )张,得⎩⎪⎨⎪⎧800n +500n +1000(15-2n )≤12000800n ≤1000(15-2n ), 解得427≤n ≤5514.由n ∈N *,可得n =5,∴15-2n =5. ∴可以预订男篮比赛门票5张.高!考╝试`题≧库。
数列中的综合问题考试要求 1.了解数列是一种特殊的函数,会解决等差、等比数列的综合问题.2.能在具体问题情境中,发现等差、等比关系,并解决相应的问题. 题型一 数学文化与数列的实际应用例1 (1)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块答案 C解析 设每一层有n 环,由题意可知,从内到外每环之间构成公差为d =9,首项为a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,解得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3402(块).(2)(2021·新高考全国Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm,20dm× 6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑k =1n S k =_______dm 2.答案 5 240⎝⎛⎭⎪⎫3-n +32n解析 依题意得,S 1=120×2=240;S 2=60×3=180;当n =3时,共可以得到5dm×6dm,52dm×12dm,10dm×3dm,20dm×32dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30,所以S 3=30×4=120;当n =4时,共可以得到5dm×3dm,52dm×6dm,54dm×12dm,10dm×32dm,20dm×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75; ……所以可归纳S k =2402k ×(k +1)=240k +12k. 所以∑k =1nS k =240⎝ ⎛⎭⎪⎫1+322+423+…+n 2n -1+n +12n ,①所以12×∑k =1nS k=240⎝ ⎛⎭⎪⎫222+323+424+…+n 2n +n +12n +1,②由①-②得,12×∑k =1nS k=240⎝ ⎛⎭⎪⎫1+122+123+124+…+12n -n +12n +1=240⎝ ⎛⎭⎪⎫1+122-12n×121-12-n +12n +1=240⎝ ⎛⎭⎪⎫32-n +32n +1, 所以∑k =1nS k =240⎝⎛⎭⎪⎫3-n +32ndm 2. 教师备选1.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,前三个节气日影长之和为28.5尺,最后三个节气日影长之和为1.5尺,今年3月20日为春分时节,其日影长为( ) A .4.5尺 B .3.5尺 C .2.5尺 D .1.5尺答案 A解析 冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长构成等差数列{a n },设公差为d ,由题意得,⎩⎪⎨⎪⎧a 1+a 2+a 3=28.5,a 10+a 11+a 12=1.5,解得⎩⎪⎨⎪⎧a 1=10.5,d =-1,所以a n =a 1+(n -1)d =11.5-n , 所以a 7=11.5-7=4.5, 即春分时节的日影长为4.5尺. 2.古希腊时期,人们把宽与长之比为5-12⎝ ⎛⎭⎪⎫5-12≈0.618的矩形称为黄金矩形,把这个比值5-12称为黄金分割比例.如图为希腊的一古建筑,其中图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,若M 与K 之间的距离超过1.5m ,C 与F 之间的距离小于11m ,则该古建筑中A 与B 之间的距离可能是(参考数据:0.6182≈0.382,0.6183≈0.236,0.6184≈0.146,0.6185≈0.090,0.6186≈0.056,0.6187≈0.034)( )A .30.3mB .30.1mC .27mD .29.2m答案 C解析 设|AB |=x ,a ≈0.618,因为矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形, 所以有|BC |=ax ,|CF |=a 2x ,|FG |=a 3x , |GJ |=a 4x ,|JK |=a 5x ,|KM |=a 6x .由题设得⎩⎪⎨⎪⎧a 6x >1.5,a 2x <11,解得26.786<x <28.796,故选项C 符合题意. 思维升华 数列应用问题常见模型(1)等差模型:后一个量比前一个量增加(或减少)的是同一个固定值. (2)等比模型:后一个量与前一个量的比是同一个固定的非零常数.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,那么应考虑a n 与a n +1(或者相邻三项)之间的递推关系,或者S n 与S n +1(或者相邻三项)之间的递推关系.跟踪训练1 (1)(2022·佛山模拟)随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月 B .2023年2月 C .2023年4月 D .2023年6月答案 B解析 每个月开通5G 基站的个数是以5为首项,1为公差的等差数列, 设预计我国累计开通500万个5G 基站需要n 个月,则70+5n +n n -12×1=500,化简整理得,n 2+9n -860=0, 解得n ≈25.17或n ≈-34.17(舍),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.(2)(多选)(2022·潍坊模拟)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{a n },则( )A .a 4=12B .a n +1=a n +n +1C .a 100=5050D .2a n +1=a n ·a n +2解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n ,故a n =n n +12,∴a 4=4×4+12=10,故A 错误; a n +1=a n +n +1,故B 正确; a 100=100×100+12=5050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n n +1n +2n +34,显然2a n +1≠a n ·a n +2,故D 错误.题型二 等差数列、等比数列的综合运算例2 (2022·滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解 (1)设等差数列{a n }的公差为d , 因为b 2=4,所以a 2=2log 2b 2=4, 所以d =a 2-a 1=2, 所以a n =2+(n -1)×2=2n . 又a n =2log 2b n ,即2n =2log 2b n , 所以n =log 2b n , 所以b n =2n.(2)由(1)得b n =2n=2·2n -1=a 2n -1, 即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n , 因为b 7=62a =a 64,b 8=72a =a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的, 所以S 100=P 107-Q 7=107×2+2142-2-281-2=11302.(2020·浙江)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b nb n +2c n ,n ∈N *. (1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式; (2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.(1)解 由b 1=1,b 1+b 2=6b 3,且{b n }为等比数列,得1+q =6q 2,解得q =12(负舍).∴b n =12n -1.∴c n +1=b nb n +2c n =4c n ,∴c n =4n -1. ∴a n +1-a n =4n -1,∴a n =a 1+1+4+…+4n -2=1-4n -11-4+1=4n -1+23. (2)证明 由c n +1=b n b n +2·c n (n ∈N *), 可得b n +2·c n +1=b n ·c n , 两边同乘b n +1,可得b n +1·b n +2·c n +1=b n ·b n +1·c n , ∵b 1b 2c 1=b 2=1+d ,∴数列{b n b n +1c n }是一个常数列, 且此常数为1+d ,即b n b n +1c n =1+d , ∴c n =1+db n b n +1=1+d d ·d b n b n +1=⎝⎛⎭⎪⎫1+1d ·b n +1-b n b n b n +1=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b n -1b n +1,又∵b 1=1,d >0,∴b n >0, ∴c 1+c 2+…+c n=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 1-1b 2+⎝⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 2-1b 3+…+⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b n -1b n +1 =⎝ ⎛⎭⎪⎫1+1d ⎝⎛⎭⎪⎫1b 1-1b 2+1b 2-1b 3+…+1b n-1b n +1=⎝⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 1-1b n +1=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1-1b n +1<1+1d,∴c 1+c 2+…+c n <1+1d.思维升华 对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.数列的求和主要是等差、等比数列的求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消法求数列的和,然后利用b 1=1,d >0证明不等式成立.另外本题在探求{a n }与{c n }的通项公式时,考查累加、累乘两种基本方法.跟踪训练2 已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.题型三 数列与其他知识的交汇问题 命题点1 数列与不等式的交汇例3 已知数列{a n }满足a 1=12,1a n +1=1a n +2(n ∈N *).(1)求数列{a n }的通项公式;(2)求证:a 21+a 22+a 23+…+a 2n <12.(1)解 因为1a n +1=1a n+2(n ∈N *),所以1a n +1-1a n=2(n ∈N *),因为a 1=12,所以1a 1=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以首项为2,公差为2的等差数列,所以1a n =2+2(n -1)=2n (n ∈N *),所以数列{a n }的通项公式是a n =12n (n ∈N *).(2)证明 依题意可知a 2n =⎝ ⎛⎭⎪⎫12n 2=14·1n 2<14·1n ·1n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n >1), 所以a 21+a 22+a 23+…+a 2n<14⎝ ⎛⎭⎪⎫1+1-12+12-13+…+1n -1-1n=14⎝⎛⎭⎪⎫2-1n <12.故a 21+a 22+a 23+…+a 2n <12.命题点2 数列与函数的交汇例4 (1)(2022·淄博模拟)已知在等比数列{a n }中,首项a 1=2,公比q >1,a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,则数列{a n }的前9项和是________. 答案 1022解析 由f (x )=13x 3-6x 2+32x ,得f ′(x )=x 2-12x +32,又因为a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,所以a 2,a 3是函数f ′(x )=x 2-12x +32的两个零点,故⎩⎪⎨⎪⎧a 2+a 3=12,a 2·a 3=32,因为q >1,所以a 2=4,a 3=8,故q =2, 则前9项和S 9=21-291-2=210-2=1022.教师备选1.已知函数f (x )=log 2x ,若数列{a n }的各项使得2,f (a 1),f (a 2),…,f (a n ),2n +4成等差数列,则数列{a n }的前n 项和S n =______________. 答案163(4n-1) 解析 设等差数列的公差为d ,则由题意,得2n +4=2+(n +1)d ,解得d =2, 于是log 2a 1=4,log 2a 2=6,log 2a 3=8,…, 从而a 1=24,a 2=26,a 3=28,…,易知数列{a n }是等比数列,其公比q =a 2a 1=4, 所以S n =244n-14-1=163(4n-1).2.求证:12+1+222+2+323+3+…+n 2n +n <2(n ∈N *).证明 因为n 2n+n <n2n , 所以不等式左边<12+222+323+…+n2n .令A =12+222+323+…+n2n ,则12A =122+223+324+…+n 2n +1, 两式相减得12A =12+122+123+…+12n -n 2n +1=1-12n -n2n +1,所以A =2-n +22n<2,即得证.思维升华 数列与函数、不等式的综合问题关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n 项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.跟踪训练3 (1)(2022·长春模拟)已知等比数列{a n }满足:a 1+a 2=20,a 2+a 3=80.数列{b n }满足b n =log 2a n ,其前n 项和为S n ,若b nS n +11≤λ恒成立,则λ的最小值为________.答案623解析 设等比数列{a n }的公比为q , 由题意可得⎩⎪⎨⎪⎧a 1+a 1q =20,a q +a q 2=80,解得a 1=4,q =4,故{a n }的通项公式为a n =4n,n ∈N *.b n =log 2a n =log 24n =2n , S n =2n +12n (n -1)·2=n 2+n ,b nS n +11=2n n 2+n +11=2n +11n+1,n ∈N *, 令f (x )=x +11x,则当x ∈(0,11)时,f (x )=x +11x单调递减,当x ∈(11,+∞)时,f (x )=x +11x单调递增,又∵f (3)=3+113=203,f (4)=4+114=274,且n ∈N *,∴n +11n ≥203,即b nS n +11≤2203+1=623, 故λ≥623,故λ的最小值为623.(2)若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式; ②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 ①设{a n }的公差为d (d ≠0), 则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d . 因为S 1,S 2,S 4成等比数列, 所以a 1·(4a 1+6d )=(2a 1+d )2. 所以2a 1d =d 2.因为d ≠0,所以d =2a 1.又因为S 2=4,所以a 1=1,d =2, 所以a n =2n -1. ②因为b n =3a n a n =32n -12n +1=32⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以T n =32⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =32⎝⎛⎭⎪⎫1-12n +1<32. 要使T n <m 20对所有n ∈N *都成立, 则有m 20≥32,即m ≥30. 因为m ∈N *,所以m 的最小值为30. 课时精练1.(2022·青岛模拟)从“①S n =n ⎝ ⎛⎭⎪⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.解 (1)选①: S n =n ⎝ ⎛⎭⎪⎫n +a 12=n 2+a 12n , 令n =1,得a 1=1+a 12,即a 1=2, 所以S n =n 2+n .当n ≥2时,S n -1=(n -1)2+n -1,当n ≥2时,a n =S n -S n -1=2n ,又a 1=2,满足上式,所以a n =2n .选②:由S 2=a 3,得a 1+a 2=a 3,得a 1=d ,又由a 4=a 1a 2,得a 1+3d =a 1(a 1+d ),因为d ≠0,则a 1=d =2,所以a n =2n .选③:由a 4是a 2,a 8的等比中项,得a 24=a 2a 8,则(a 1+3d )2=(a 1+d )(a 1+7d ),因为a 1=2,d ≠0,所以d =2,则a n =2n .(2)S n =n 2+n ,b n =(2n +1)2+2n +1-(2n )2-2n =3·22n +2n ,所以W n =3×22+2+3×24+22+…+3×22n +2n =12×1-4n 1-4+2×1-2n 1-2=4(4n-1)+2(2n -1)=4n +1+2n +1-6.2.(2022·沈阳模拟)已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2.(1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2,得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1,即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1.当n =1时,a 22=2a 1+2=4,∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n .(2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n ,2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·1-2n 1-2-n ·2n +1 =(1-n )2n +1-2,∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0,∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022,当n =8时,T 8=7×29+2=3 586>2 022,∴使T n >2 022的最小的正整数n 的值为8.3.(2022·大连模拟)已知等差数列{a n }的前n 项和为S n ,S 5=25,且a 3-1,a 4+1,a 7+3成等比数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n +1,T n 是数列{b n }的前n 项和,求T 2n .解 (1)由题意知,等差数列{a n }的前n 项和为S n ,由S 5=25,可得S 5=5a 3=25,所以a 3=5, 设数列{a n }的公差为d ,由a 3-1,a 4+1,a 7+3成等比数列,可得(6+d )2=4(8+4d ),整理得d 2-4d +4=0,解得d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)知 b n =(-1)n a n +1=(-1)n (2n -1)+1,所以T 2n =(-1+1)+(3+1)+(-5+1)+(7+1)+…+[-(4n -3)+1]+(4n -1+1)=4n .4.(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.解 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧ a 1+2d =5,a 1·a 1+d =2a 1+3d ,整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1, 因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×1-22n +11-2+3+2n +42n +22=4n +1+2n 2+9n +5.5.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列, ∴S n =na 1+n (n -1),(2a 1+2)2=a 1(4a 1+12),解得a 1=1,∴a n =2n -1.(2)由(1)可得b n =(-1)n -14na n a n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫15+17-…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1;当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫15+17-…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.∴T n =⎩⎪⎨⎪⎧ 2n2n +1,n 为偶数,2n +22n +1,n 为奇数.。
1.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________. 答案 2011解析 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n n +2, 则1a n =2n n +=2⎝⎛⎭⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2⎝⎛⎭⎫1-111=2011. 2.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________. 答案 a n =2·3n -1-1 解析 ∵a n +1=3a n +2,∴a n +1+1=3(a n +1). ∴a n +1+1a n +1=3,∴数列{a n +1}是等比数列,公比q =3. 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1. 3.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________.答案 a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2 解析 当n =1时,a 1=S 1=-1;当n ≥2时,a n =S n -S n -1=2n -1, ∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2. 4.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知b n =1a n a n +1=1n +n +=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=nn +.5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解 因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k 时,S n 取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n . 当n =1时,a 1=S 1=-12+4=72; 当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n -⎣⎡⎦⎤-12n -2+n -=92-n . 当n =1时,92-1=72=a 1, 所以a n =92-n .。