抛物线定义及其应用学案
- 格式:doc
- 大小:75.50 KB
- 文档页数:2
2.3.1 抛物线及其标准方程学习目标1.理解抛物线的定义,掌握抛物线的标准方程及其推导过程,并能根据条件确定抛物线的标准方程.2.通过抛物线的定义的学习,加深对离心率的理解.学习过程一、预习提示问题1:抛物线是如何定义的?问题2:如何理解抛物线y2=2px(p>0)中p的几何意义?问题3:画出抛物线的四种形式的图象,并写出它的标准方程,焦点坐标及准线方程.问题4:如何来理解抛物线的定义?问题5:求解抛物线的标准方程时,如何建立坐标系?二、预习检测问题1:抛物线y=-2x2的准线方程是()(A)x=-.(B)x=. (C)y=.(D)y=-.问题2:若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()(A)-2.(B)2.(C)-4.(D)4.问题3:抛物线x2=-2y上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于.三、课堂探究【问题1】(1)已知抛物线的焦点在y轴上,并且经过点M(,-2),求抛物线的标准方程;(2)已知抛物线的焦点在坐标轴上,且抛物线过点(-3,2),求它的标准方程.【拓展问题1】求焦点在直线3x-4y-12=0上的抛物线的标准方程.【拓展问题2】抛物线y2=4x上一点P到焦点F的距离是10,求点P的坐标.【问题2】(1)点M与点F(0,-2)的距离比它到直线l:y-3=0的距离小1,求点M的轨迹方程;(2)已知圆C的方程为x2+y2-10x=0,求与y轴相切且与C外切的动圆圆心P的轨迹方程.【拓展问题1】已知点P(m,3)是抛物线y2=2x上的动点,点P在y上的射影为M,点A 的坐标是A(,4),则+的最小值是()(A).(B)4.(C).(D)5.【拓展问题2】已知直线l:x+1=0及圆C:(x-2)2+y2=1,若动圆M与l相切,且与圆C外切,试求动圆圆心M的轨迹方程.四、当堂达标1.抛物线y2=x上一点P到焦点的距离是2,则点P坐标为()(A)(,±).(B)(,±). (C)(,±).(D)(,±).2.焦点在x轴,且经过点(2,2)的抛物线的标准方程是.3.求与椭圆+=1有相同的焦点,且顶点在原点的抛物线的方程.答案一、问题1:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点;定直线l叫做抛物线的准线.问题2:抛物线y2=2px(p>0)的准线方程为x=-,焦点坐标为(,0),所以p表示焦点到准线的距离.如果抛物线y2=2px(p>0)的标准方程已给出,则焦点的横坐标为一次项系数的,焦点在其它位置时,也有相类似的规律.问题3:图形标准方程焦点坐标准线方程y2=2px(p>0)(,0)x=-y2=-2px(p>0)(-,0)x=x2=2py(p>0)(0,)y=-x2=-2py(p>0)(0,-)y=问题4:(1)抛物线的定义实质上可以归结为“一动三定”,即一个动点;一个定点F,即焦点;一条定直线l,即准线;一个定值,即动点到焦点和准线的距离之比为定值1.(2)定点F不在定直线l上,否则动点M的轨迹不是抛物线,而是过定点F且垂直于l的一条直线.问题5:根据抛物线的定义导出它的标准方程时,要考虑怎样选择坐标系才能得到标准方程.过抛物线的焦点F做准线的垂线,垂足为K,则一般将直线KF作为一条坐标轴,线段KF的中点作为原点,这样建出的坐标系得到的抛物线的方程最简单,不含常数项.二、预习检测问题1:C解析:抛物线的标准方程为x2=-y,故准线方程为y=.问题2:D解析:椭圆+=1的右焦点为(2,0),所以抛物线y2=2px的焦点为(2,0),则p=4.问题3:解析:点N到焦点F的距离等于其到准线y=的距离,则点N到直线y=1的距离等于.三、【问题1】解析:(1)∵抛物线的焦点在y轴上,并且经过点M(,-2),∴可设它的标准方程为x2=-2py(p>0).又∵点M在抛物线上,∴()2=-2p(-2),即p=,∴所求方程是x2=-y.(2)设所求的抛物线方程为y2=-2px或x2=2py(p>0),∵抛物线过点(-3,2),∴22=-2p(-3)或(-3)2=2p·2,得p=或p=,故所求抛物线方程为y2=-x或x2=y.【拓展问题1】解析:抛物线的焦点一定在坐标轴上,故焦点为(4,0)或(0,-3),当焦点为(4,0)时,抛物线的标准方程为y2=16x,当焦点为(0,-3)时,抛物线的标准方程为x2=-12y.【拓展问题2】解析:设点P的坐标为(x,y),∵|PF|=10,∴1+x=10,∴x=9,把x=9代入方程y2=4x中,解得y=±6,∴点P的坐标是(9,±6).【问题2】解析:(1)设点M坐标为(x,y),∵点M到点F的距离比它到直线l:y=3的距离小1,∴点M到点F的距离与它到直线l:y=2的距离相等,即点M的轨迹是以F(0,-2)为焦点,直线l:y=2为准线的抛物线.∵=2,且开口向下,∴点M的轨迹方程为x2=-8y.(2)设P点坐标为(x,y),半径为R,∵动圆P与y轴相切,∴R=|x|.∵动圆与定圆C:(x-5)2+y2=25外切,∴|PC|=R+5.∴|PC|=|x|+5.当点P在y轴上或y轴右侧时,即x≥0,则|PC|=x+5,即点P的轨迹是以(5,0)为焦点的抛物线,故方程为y2=20x(x≥0);当点P在y轴左侧时,即x<0,则|PC|=-x+5,此时点P的轨迹是x轴的负半轴,即方程y=0(x<0).故点P的轨迹方程为y2=20x(x≥0)或y=0(x<0).【拓展问题1】C解析:延长PM交抛物线的准线于N,如图,则+=,由抛物线定义知,+==,则只有当A,P,F三点共线时,++有最小值:=5,所以,+的最小值为.【拓展问题2】解析:设M(x,y),M到直线l的距离为d.∵动圆M与l相切且与圆C外切,∴|MC|=d+1.∴动点M到定点C的距离与到定直线x=-2的距离相等.∴动点M的轨迹是以C(2,0)为焦点,x=-2为准线的抛物线,其方程为y2=8x.由问题2及其拓展可以得出什么结论?求动点的轨迹的一个常用方法:几何定义法,所谓“几何”,是指挖掘条件的几何意义,所谓“定义”,是指所挖掘的几何意义是否符合某种曲线的定义.四、1.B解析:设P(x,y),则点P到焦点的距离为2,∴点P到准线x=-的距离也是2,即x+=2,∴x=,∴y=±,∴选B.2.y2=6x解析:设抛物线的标准方程为y2=2px,代入点(2,2)得p=3,所以方程为y2=6x.3.解析:根据抛物线的性质,所求抛物线的方程应为标准方程.椭圆的焦点为(1,0)和(-1,0),当抛物线的焦点为(-1,0)时,抛物线焦点在x轴负半轴,此时方程为y2=-4x,同理可求,焦点为(1,0)时,抛物线的标准方程为y2=4x,所以所求的方程为y2=4x或y2=-4x.。
抛物线的定义及其标准方程XXX 2023.12.25 课前一题:抛物线x2=my上一点M (x0,-3)到焦点的距离为5,则实数m的值为() A.-8 B.-4 C.8 D.4教学目标:1. 了解抛物线的定义,感受抛物线的几何特征;2. 掌握抛物线的标准方程,会求焦点坐标和准线方程;3. 能利用抛物线的定义解决问题.教学重点:抛物线的定义教学难点:抛物线定义的应用一、温故知新1.抛物线的概念定义:平面内与一个定点F和一条定直线l ( l不经过点F)的距离的点的轨迹.①叫做抛物线的焦点;②叫做抛物线的准线.思考:若直线l 经过点F , 那么点的轨迹如何?2.抛物线的标准方程和简单几何性质 标准 方程y 2=2px (p >0)y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) 图形焦点准线 方程焦半径 (其中P (x 0,y 0))快问快答1. 在抛物线的方程中p 表示 .2. 抛物线y =43x 2的焦点坐标为 .3. 过点(1,-2),且焦点在y 轴上的抛物线的标准方程是 .二、题组训练例1. 若动点M (x ,y )满足1243)2()1522+-=-+-y x y x (,则点M 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线变式. 若点P到直线y=-1的距离比它到点(0 , 3)的距离小2,则点P的轨迹方程是 .例2.设F为抛物线C:y2=4x的焦点,点A在C上,点B(3 , 0),若|AF|=|BF|,则|AB|=()A.2 B.22C.3 D.32变式:设F为抛物线C:y2=2px (p>0)的焦点,准线为l,O为坐标原点,点A 在C上,|AF|=|AO|,点A到准线l的距离为3,则∆AOF的面积为( )2 A.2 B.22C.3 D.3例3.已知点P是抛物线C:y2=4x上的动点,过点P向y轴作垂线,垂足记为点N,若点M (3 , 4),则|PM|+|PN|的最小值是()A.25-1 B.5-1 C. 5+1 D.25+1变式. 抛物线y2=4x上的焦点为F,点A (4 , 2),P为抛物线上一点且P不在直线AF上,则∆P AF周长的最小值为 .三、本堂小结1.本节课复习了那些知识点?2.利用这些知识点可以解决什么题型?3.题型的解题技巧是什么?有什么方法规律?四、课后作业1.完善导学案,补充课堂笔记2.熟记抛物线定义,背焦半径公式3.完成课时作业相应部分4.预习抛物线的性质。
2.3.1 抛物线及其标准方程学习目标:1.掌握抛物线的定义及其标准方程.2.了解抛物线的实际应用.3.能区分抛物线标准方程的四种形式.预习提示:1.我们知道,二次函数的图象是抛物线,那么抛物线上的点应满足什么条件呢?2. 抛物线的定义中,l能经过点F吗?为什么?3.比较椭圆、双曲线标准方程的建立过程,你认为应如何选择坐标系,建立的抛物线方程才能更简单?4.抛物线方程中p有何意义?标准方程有几种类型?抛物线的开口方向由什么决定?5.抛物线与二次函数有何关系?课堂探究:例1、(1)抛物线y2=2px(p>0)上一点A(6,y0),且点A到焦点的距离为10,则焦点到准线的距离是()A.4 B.8C.13 D.16(2)若点P到定点F(4,0)的距离比它到定直线x+5=0的距离小1,则点P的轨迹方程是()A.y2=-16xB.y2=-32xC.y2=16xD.y2=16x或y=0(x<0)变式训练:(1)抛物线x2=4y上一点A的纵坐标为4,则A点到抛物线焦点的距离为() A.2B.3 C.4 D.5(2)若动圆与圆(x-2)2+y2=1外切,又与直线x+1=0相切,则动圆圆心的轨迹方程是()A.y2=8x B.y2=-8x C.y2=4x D.y2=-4x例2、分别求适合下列条件的抛物线的标准方程.(1)过点M(-6,6).(2)焦点在直线l:3x-2y-6=0上.(3)已知抛物线的焦点在x轴上,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的标准方程.变式训练:若把本例题目改为:(1)过点(1,2).(2)焦点在直线x-2y-4=0上.试求抛物线的标准方程.例3、设P是抛物线y2=4x上的一个动点,F为抛物线的焦点.(1)求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值;(2)若点B的坐标为(3,2),求|PB|+|PF|的最小值.变式训练:定长为3的线段AB的端点A、B在抛物线y2=x上移动,求AB的中点M 到y轴的距离的最小值.例4、如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米.(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)?变式训练:某河上有座抛物线形拱桥,当水面距拱顶5 m时,水面宽8 m,一木船宽4m ,高2 m ,载货后木船露在水面上的部分高为34 m ,问水面上涨到与拱顶相距多少时,木船开始不能通航?当堂达标:1.抛物线y 2=-8x 的焦点坐标是( ) A .(2,0) B .(-2,0) C .(4,0)D .(-4,0)2.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=8x C .y 2=-4x D .y 2=4x 3.已知动点M (x ,y )的坐标满足x -22+y 2=|x +2|,则动点M 的轨迹是( )A .椭圆B .双曲线C .抛物线D .以上均不对4.抛物线y 2=-2px (p >0)上有一点M 的横坐标为-9,它到焦点的距离为10,求此抛物线方程和M 点的坐标. 答案:1.【提示】 抛物线上的点满足到定点的距离等于它到定直线的距离.2. 【提示】 不能,若l 经过点F ,满足条件的点的轨迹不是抛物线,而是过点F 且垂直于l 的一条直线.3.【提示】 根据抛物线的几何特征,可以取经过点F 且垂直于直线l 的直线为x 轴,以F 到l 的垂线段的中垂线为y 轴建系.4.【提示】 p 是抛物线的焦点到准线的距离 抛物线的标准方程有四种类型:①焦点在x 轴的正半轴上,其标准方程为y 2=2px (p >0); ②焦点在x 轴的负半轴上,其标准方程为y 2=-2px (p >0); ③焦点在y 轴的正半轴上,其标准方程为x 2=2py (p >0); ④焦点在y 轴的负半轴上,其标准方程为x 2=-2py (p >0). 抛物线的方程中一次项决定开口方向.5.【提示】 二次函数的解析式为y =ax 2+bx +c (a ≠0),当b ,c 为0时,y =ax 2表示焦点在y 轴上的抛物线,标准方程为x 2=1a y ,a >0时抛物线开口向上,a <0时,抛物线开口向下,当抛物线的开口方向向左或向右时,方程为y 2=2px ,这是一条曲线,不能称为函数.课堂探究:例1、 【自主解答】 (1)由题意6+p2=10,∴p =8.(2)因为点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,所以点P 到F (4,0)的距离与到直线x +4=0的距离相等.故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x .【答案】 (1)B (2)C变式训练:【解析】 (1)由抛物线的定义,点A 到焦点的距离等于它到准线的距离,而A 到准线的距离为4+p2=4+1=5.(2)由题意,动圆圆心到定圆圆心的距离比它到直线x +1=0的距离大1,故动圆圆心的轨迹是以(2,0)为焦点,x =-2为准线的抛物线,其方程为y 2=8x .【答案】 (1)D (2)A例2、 【自主解答】 (1)由于点M (-6,6)在第二象限, ∴过M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在x 轴上, 设其方程为y 2=-2px (p >0),将点M (-6,6)代入,可得36=-2p ×(-6), ∴p =3.∴抛物线的方程为y 2=-6x ;若抛物线开口向上,焦点在y 轴上,设其方程为x 2=2py (p >0), 将点M (-6,6)代入可得,36=2p ×6,∴p =3, ∴抛物线的方程为x 2=6y .综上所述,抛物线的标准方程为y 2=-6x 或x 2=6y . (2)①∵直线l 与x 轴的交点为(2,0), ∴抛物线的焦点是F (2,0), ∴p2=2,∴p =4, ∴抛物线的标准方程是y 2=8x . ②∵直线l 与y 轴的交点为(0,-3), 即抛物线的焦点是F (0,-3), ∴p2=3,∴p =6, ∴抛物线的标准方程是x 2=-12y .综上所述,所求抛物线的标准方程是y 2=8x 或x 2=-12y .(3)法一:设抛物线方程为y 2=-2px (p >0),则焦点为F ⎝⎛⎭⎫-p2,0, 由题设可得⎩⎨⎧m 2=6p ,m 2+⎝⎛⎭⎫3-p22=5, 解得{ p =4,m =26或{ p =4,m =-26,故所求的抛物线方程为y 2=-8x .法二:设抛物线方程为y 2=-2px (p >0),则焦点F ⎝⎛⎭⎫-p 2,0,准线方程为x =p 2, 根据抛物线的定义,点M 到焦点的距离等于5,也就是M 到准线的距离为5, 则3+p2=5,∴p =4,∴抛物线方程为y 2=-8x .变式训练:【解】 (1)点(1,2)在第一象限,分两种情形: 当抛物线焦点在x 轴上时,设其方程为y 2=2px (p >0), 则22=2p ·1,解得p =2, 抛物线标准方程为y 2=4x ;当抛物线焦点在y 轴上时,设其方程为x 2=2py (p >0), 则12=2p ·2,解得p =14,抛物线标准方程为x 2=12y .(2)令方程x -2y -4=0的x =0得y =-2,令y =0得x =4. ∴抛物线的焦点为(4,0)或(0,-2), 当焦点为(4,0)时,p2=4,∴p =8,这时抛物线标准方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,这时抛物线标准方程为x 2=-8y .例3、 【自主解答】 (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连接AF ,AF 与抛物线的交点即为点P ,故最小值为22+12=5,即点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为 5.①(2)如图,把点B 的横坐标代入y 2=4x 中,得y =±12.因为12>2,所以点B 在抛物线内部,过点B 作BQ 垂直于准线,垂足为点Q ,交抛物线于点P 1,连接P 1F .此时,由抛物线定义知:|P 1Q |=|P 1F |.②所以|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=3+1=4,即|PB |+|PF |的最小值为4.变式训练:【解】 如图,F 是抛物线y 2=x 的焦点,过A 、B 两点分别作准线的垂线AC 、BD ,过AB 的中点M 作准线的垂线MN ,C 、D 、N 为垂足,则|MN |=12(|AC |+|BD |).由抛物线的定义可知 |AF |=|AC |,|BD |=|BF |, ∴|MN |=12(|AF |+|BF |)≥12|AB |=32.设M 点的坐标为(x ,y ),则|MN |=x +14.又|MN |≥32,∴x ≥32-14=54,当且仅当AB 过抛物线的焦点时等号成立.此时点M 到y 轴的距离的最小值为54.例4、【自主解答】 如图所示(1)依题意,设该抛物线的方程为x 2=-2py (p >0), 因为点C (5,-5)在抛物线上, 所以该抛物线的方程为x 2=-5y .(2)设车辆高h ,则|DB |=h +0.5,故D (3.5,h -6.5), 代入方程x 2=-5y ,解得h =4.05, 所以车辆通过隧道的限制高度为4.0米.变式训练:【解】 以拱桥拱顶为坐标原点,拱高所在直线为y 轴,建立如下图所示的直角坐标系,设抛物线方程为x 2=-2py (p >0).由题意知,点A (4,-5)在抛物线x 2=-2py (p >0)上.所以16=-2p ×(-5),2p =165. 所以抛物线方程为x 2=-165y (-4≤x ≤4).设水面上涨船面两侧与抛物线拱桥接触于B 、B ′时,船开始不能通航. 设B (2,y ),由于22=-165×y ,所以y =-54.所以水面与抛物线拱顶相距|y |+34=2(m).答:水面上涨到与抛物线拱顶相距2 m 时,船开始不能通航.当堂达标:1.【解析】 由y 2=-8x ,得2p =8,∴p2=2.从而抛物线的焦点为(-2,0). 【答案】 B2.【解析】 由准线x =-2及顶点在原点, ∴焦点F (2,0),p =4. ∴抛物线的方程为y 2=8x . 【答案】 B3.【解析】 由条件知M 点轨迹满足抛物线定义.即M 到定点(2,0)与到定直线x =-2的距离相等,所以点M 的轨迹是抛物线. 【答案】 C4.【解】 设焦点为F ⎝⎛⎭⎫-p2,0,M 点到准线的距离为d . 则d =|MF |=10,即9+p2=10.∴p =2,∴抛物线方程为y 2=-4x , 将M (-9,y )代入抛物线的方程,得y =±6. ∴M 点坐标为(-9,6)或(-9,-6).。
2.4.1 抛物线及其标准方程预习导引区 核心必知1.预习教材,问题导入根据以下提纲,预习教材的内容,回答下列问题.(1)观察教材,点F 是定点,l 是不经过点F 的定直线,H 是l 上任意一点,过点H 作MH ⊥l ,线段FH 的垂直平分线m 交MH 于点M ,拖动点H ,观察点M 的轨迹. ①M 的轨迹是什么形状?②|MH |与|MF |之间有什么关系?③抛物线上任意一点M 到点F 和直线l 的距离都相等吗?(2)观察教材,直线l 的方程为x =-p2,定点F 的坐标为⎝⎛⎭⎫p 2,0,设M (x ,y ),根据抛物线的定义可知|MF |=|MH |,则M 点的轨迹方程是什么?2.归纳总结,核心必记 (1)抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的准线. (2)抛物线的标准方程图形标准方程 焦点坐标准线方程y 2=2px (p >0)⎝⎛⎭⎫p 2,0 x =-p2y 2=-2px (p >0)⎝⎛⎭⎫-p 2,0 x =p 2 续表图形标准方程 焦点坐标准线方程x 2=2py (p >0)⎝⎛⎭⎫0,p 2 y =-p 2x 2=-2py (p >0)⎝⎛⎭⎫0,-p 2y =p2问题思考(1)在抛物线定义中,若去掉条件“l 不经过点F ”,点的轨迹还是抛物线吗?(2)到定点A (3,0)和定直线l :x =-3距离相等的点的轨迹是什么?轨迹方程又是什么?(3)若抛物线的焦点坐标为(2,0),则它的标准方程是什么?课堂互动区知识点1 求抛物线的焦点坐标及标准方程 思考1 抛物线的标准方程有哪几种类型?思考2 抛物线方程中p 的几何意义是什么?思考3 如何根据抛物线标准方程求焦点坐标和准线方程? 讲一讲1.求下列抛物线的焦点坐标和准线方程: (1)y 2=-14x ;(2)5x 2-2y =0; (3)y 2=ax (a >0).类题·通法根据抛物线方程求其焦点坐标和准线方程时,首先要看抛物线方程是否为标准形式,如果不是,要先化为标准形式;然后判断抛物线的对称轴和开口方向,再利用p的几何意义,求出焦点坐标和准线方程.练一练1.求抛物线y=ax2(a≠0)的焦点坐标和准线方程.知识点2 求抛物线的标准方程思考1抛物线标准方程有什么特点?思考2如何求抛物线的标准方程?讲一讲2.求适合下列条件的抛物线的标准方程:(1)过点M(-6,6);(2)焦点F在直线l:3x-2y-6=0上.类题·通法求抛物线标准方程的两种方法(1)当焦点位置确定时,可利用待定系数法,设出抛物线的标准方程,由已知条件建立关于参数p的方程,求出p的值,进而写出抛物线的标准方程.(2)当焦点位置不确定时,可设抛物线的方程为y2=mx或x2=ny,利用已知条件求出m,n 的值.练一练2.根据下列条件写出抛物线的标准方程:(1)准线方程为y=-1;(2)焦点在x轴的正半轴上,焦点到准线的距离是3.知识点3 抛物线定义的应用讲一讲3.已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时的P点坐标.类题通法(1)抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故二者可相互转化,这也是利用抛物线定义解题的实质.(2)解决与抛物线焦点、准线距离有关的最值、定值问题时,首先要注意应用抛物线的定义进行转化,其次是注意平面几何知识的应用,例如两点之间线段最短;三角形中三边间的不等关系;点与直线上点的连线中,垂线段最短等.练一练3.已知点P是抛物线y2=2x上的一个动点,求点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值.知识点4 抛物线方程的实际应用讲一讲4.一辆卡车高3 m,宽1.6 m,欲通过截面为抛物线型的隧道,已知拱口宽AB恰好是拱高的4倍,若拱口宽为a m,求能使卡车通过的a的最小整数值.类题通法在建立抛物线的方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得方程不含常数项,形式更为简单,便于计算.练一练4.喷灌的喷头装在直立管柱OA的顶点A处,喷出水流的最高点B高5 m,且与OA所在的直线相距4 m,水流落在以O为圆心,半径为9 m的圆上,则管柱OA的长是多少?—————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是抛物线标准方程的求法和焦点坐标、准线的求法.难点是抛物线定义的应用和抛物线方程的实际应用.2.本节课要重点掌握的规律方法(1)由抛物线方程求焦点坐标和准线方程,如讲1;(2)求抛物线的标准方程,如讲2;(3)利用抛物线的定义解决最值问题,如讲3.3.由抛物线方程求焦点坐标和准线方程时,如果不是标准方程应先转化为标准方程,这是本节课的易错点.参考答案预习导引区核心必知1.(1)①提示:抛物线. ②提示:相等. ③提示:都相等. (2)提示:y 2=2px (p >0).2.(1)距离相等 焦点 准线 问题思考(1)提示:不一定是抛物线,当直线l 经过点F 时,点的轨迹是过点F 且垂直于定直线的一条直线,l 不过定点F 时,点的轨迹是抛物线. (2)提示:轨迹是抛物线,轨迹方程为:y 2=12x .(3)提示:由焦点在x 轴正半轴上,设抛物线的标准方程为y 2=2px (p >0),其焦点坐标为⎝⎛⎭⎫p 2,0,则p2=2,故p =4.所以抛物线的标准方程是y 2=8x . 课堂互动区知识点1 求抛物线的焦点坐标及标准方程思考1 名师指津:y 2=2px (p >0);y 2=-2px (p >0);x 2=2py (p >0);x 2=-2py (p >0). 思考2 名师指津:p 的几何意义是:焦点到准线的距离.思考3 名师指津:先确定抛物线的对称轴和开口方向,然后求p ,利用焦点坐标及准线的定义求解. 讲一讲1.解:(1)因为p =7,所以焦点坐标是⎝⎛⎭⎫-72,0,准线方程是x =72. (2)抛物线方程化为标准形式为x 2=25y ,因为p =15,所以焦点坐标是⎝⎛⎭⎫0,110, 准线方程是y =-110.(3)由a >0知p =a 2,所以焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a 4. 练一练1.解:把抛物线方程y =ax 2化成标准方程x 2=1a y .当a >0时,焦点坐标是⎝⎛⎭⎫0,14a ,准线方程是y =-14a ; 当a <0时,焦点坐标是⎝⎛⎭⎫0,14a ,准线方程是y =-14a. 综上知,所求抛物线的焦点坐标为⎝⎛⎭⎫0,14a ,准线方程为y =-14a . 知识点2 求抛物线的标准方程思考1 名师指津:等号一边是某个变量的完全平方,等号的另一边是另一个变量的一次项. 思考2 名师指津:(1)确定抛物线的对称轴和开口方向;(2)求p 的值. 讲一讲2.解:(1)∵点M (-6,6)在第二象限, ∴过M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在x 轴上, 设其方程为y 2=-2px (p >0),将点M (-6,6)代入,可得36=-2p ×(-6), ∴p =3.∴抛物线的方程为y 2=-6x .若抛物线开口向上,焦点在y 轴上,设其方程为x 2=2py (p >0), 将点M (-6,6)代入可得,36=2p ×6,∴p =3, ∴抛物线的方程为x 2=6y .综上所述,抛物线的标准方程为y 2=-6x 或x 2=6y . (2)①∵直线l 与x 轴的交点为(2,0), ∴抛物线的焦点是F (2,0), ∴p2=2, ∴p =4,∴抛物线的标准方程是y 2=8x . ②∵直线l 与y 轴的交点为(0,-3), 即抛物线的焦点是F (0,-3), ∴p2=3,∴p =6, ∴抛物线的标准方程是x 2=-12y .综上所述,所求抛物线的标准方程是y 2=8x 或x 2=-12y . 练一练2.解:(1)由准线方程为y =-1知抛物线焦点在y 轴正半轴上,且p2=1,则p =2.故抛物线的标准方程为x 2=4y .(2)设焦点在x 轴的正半轴上的抛物线的标准方程为y 2=2px (p >0), 则焦点坐标为⎝⎛⎭⎫p 2,0,准线为x =-p 2, 则焦点到准线的距离是⎪⎪⎪⎪-p 2-p2=p =3, 因此所求的抛物线的标准方程是y 2=6x .知识点3 抛物线定义的应用 讲一讲3.解:如图,作PN ⊥l 于N (l 为准线),作AB ⊥l 于B ,则|P A |+|PF |=|P A |+|PN |≥|AB |,当且仅当P 为AB 与抛物线的交点时,取等号. ∴()|P A |+|PF |min=|AB |=3+12=72.此时y P =2,代入抛物线得x P =2,∴P 点坐标为(2,2). 练一练3.解:由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可知, 当点P ,A (0,2),和抛物线的焦点F ⎝⎛⎭⎫12,0三点共线时距离之和最小.所以最小距离d =⎝⎛⎭⎫0-122+(2-0)2=172. 知识点4 抛物线方程的实际应用 讲一讲4.解:以拱顶为原点,拱高所在直线为y 轴,建立直角坐标系,如图所示,设抛物线方程为x 2=-2py (p >0),则点B 的坐标为⎝⎛⎭⎫a 2,-a4,由点B 在抛物线上, 得⎝⎛⎭⎫a 22=-2p ⎝⎛⎭⎫-a 4,所以p =a2,所以抛物线方程为x 2=-ay .将点(0.8,y )代入抛物线方程,得y =-0.64a .欲使卡车通过隧道,应有a 4-|y |=a 4-0.64a >3.解得a >12.21,或a <-0.21(舍去). ∵a 取整数, ∴a 的最小值为13. 练一练4.解:如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上, 所以25=-2p ·(-5),因此2p =5, 所以抛物线的方程为x 2=-5y , 点A (-4,y 0)在抛物线上, 所以16=-5y 0,即y 0=-165,所以OA 的长为5-165=1.8(m).所以管柱OA 的长为1.8 m.。
第7节 抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质. 知识梳理 1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的 .(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质图形标准方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)p 的几何意义:焦点F 到准线l 的距离性质顶点对称轴焦点离心率准线方程 y =p2 范围 开口方向向左3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). 自主检测1.顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.2. 抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.3.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( ) A.2 B.3 C.4 D.84.已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B.1C.54D.745.已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________. 典型例题考点一 抛物线的定义、标准方程及其性质【例1】 (1)已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( ) A.y 2=±22x B.y 2=±2x C.y 2=±4x D.y 2=±42x(2)设抛物线y 2=4x 的焦点为F ,准线为l ,P 为该抛物线上一点,P A ⊥l ,A 为垂足,若直线AF 的斜率为-3,则△P AF 的面积为( ) A.2 3 B.4 3 C.8 D.8 3(3)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.【训练1】 (1)设抛物线y 2=2px 的焦点在直线2x +3y -8=0上,则该抛物线的准线方程为( ) A.x =-4 B.x =-3 C.x =-2 D.x =-1(2)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.考点二 与抛物线有关的最值问题 角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则: (1)|P A |+|PF |的最小值为________;(2)(多填题)|P A |-|PF |的最小值为________,最大值为________. 角度2 到点与准线的距离之和最值问题【例2-2】 设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34 B.32 C.1 D.2角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.角度5 到定直线的距离最小问题【例2-5】 抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝⎛⎭⎫-14,1 B.⎝⎛⎭⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 考点三 直线与抛物线的综合问题【例3】 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP →=3PB →,求|AB |.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.当堂检测1.已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x2.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|F A |=3,则直线F A 的倾斜角为( ) A.π3 B.π4 C.π3或2π3 D.π4或3π43.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|F A →|+|FB →|+|FC →|的值为________.4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.5.已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、 y 轴交于M ,N 两点,点A (2,-4)且AP →=λAM →+μAN →,则λ+μ的最小值为________.6.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.7.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.。
高三数学《抛物线》教案一、教学内容本节课选自高三数学教材下册第五章《圆锥曲线与方程》中的第二节《抛物线》。
详细内容包括:1. 抛物线的定义与标准方程;2. 抛物线的简单几何性质;3. 抛物线的焦点、准线及其应用;4. 实践活动中抛物线的绘制。
二、教学目标1. 让学生掌握抛物线的定义、标准方程及简单几何性质;2. 培养学生运用抛物线的焦点、准线解决实际问题的能力;3. 激发学生学习兴趣,培养空间想象力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程、简单几何性质及焦点、准线。
难点:抛物线焦点、准线的求解与应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。
五、教学过程1. 引入:通过展示生活中抛物线的实例(如抛物线运动、拱桥等),引出本节课的主题——抛物线。
2. 新课导入:讲解抛物线的定义,引导学生观察抛物线的特点,推导抛物线的标准方程。
3. 知识讲解:(1)抛物线的定义与标准方程;(2)抛物线的简单几何性质;(3)抛物线的焦点、准线及其应用。
4. 例题讲解:(1)求抛物线的标准方程;(2)求抛物线的焦点、准线;(3)抛物线在实际问题中的应用。
5. 随堂练习:针对例题进行变式训练,巩固所学知识。
6. 实践活动:分组讨论,利用学具绘制抛物线,观察抛物线的性质,加深对知识的理解。
六、板书设计1. 定义:抛物线是平面内到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹;2. 标准方程:y^2=2px(p>0);3. 简单几何性质:对称性、开口方向、顶点、渐近线;4. 焦点、准线:F(p,0),x=p;5. 例题与解答。
七、作业设计1. 作业题目:(1)求抛物线y^2=8x的焦点、准线;(2)求抛物线x^2=4y的顶点、对称轴;(3)抛物线y^2=4x与直线y=2x+1相交,求交点坐标。
2. 答案:(1)焦点F(2,0),准线x=2;(2)顶点(0,0),对称轴y轴;(3)交点(2,5)。
抛物线教学设计抛物线优质教案一、教学内容本节课选自高中数学教材第二册第四章第四节《抛物线》,详细内容包括:1. 抛物线的定义及标准方程;2. 抛物线的性质,如顶点、对称轴、焦点、准线等;3. 抛物线在实际问题中的应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程;2. 能够分析抛物线的性质,如顶点、对称轴、焦点、准线等;3. 学会运用抛物线知识解决实际问题。
三、教学难点与重点1. 教学难点:抛物线的性质及其在实际问题中的应用;2. 教学重点:抛物线的定义、标准方程及性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。
五、教学过程1. 实践情景引入:利用多媒体展示抛物线在实际生活中的应用,如篮球投篮、抛物线运动等,引导学生观察并思考抛物线的特点。
2. 例题讲解:(1)抛物线的定义及标准方程;(2)抛物线的性质,如顶点、对称轴、焦点、准线等;(3)抛物线在实际问题中的应用。
3. 随堂练习:(1)判断下列图形是否为抛物线,并给出理由;(2)求抛物线 y = 2x^2 + 4x + 3 的顶点、对称轴、焦点和准线;(3)已知抛物线的顶点为(1, 3),过顶点的直线与抛物线相交于点A、B,求线段AB的中点C的坐标。
4. 小组讨论:学生分组讨论,共同解决随堂练习中的问题,教师巡回指导。
六、板书设计1. 抛物线的定义及标准方程;2. 抛物线的性质;3. 例题解答步骤;4. 随堂练习解答。
七、作业设计1. 作业题目:(1)求抛物线 y = x^2 + 4x + 5 的顶点、对称轴、焦点和准线;(2)已知抛物线的焦点为(2, 0),求抛物线的标准方程;(3)抛物线 y = 2x^2 + 4x 3 与直线 y = x + 1 相交于点A、B,求线段AB的中点C的坐标。
2. 答案:(1)顶点:(2, 9),对称轴:x = 2,焦点:(2, 3),准线:y = 3;(2)抛物线的标准方程:y = 4(x 2)^2;(3)中点C的坐标:(1/2, 7/4)。
抛物线教学设计抛物线教案一、教学内容本节课选自高中数学必修二第三章第四节“抛物线及其性质”。
具体内容包括:抛物线的定义、标准方程、图形及其性质;抛物线焦点、准线的概念及计算;抛物线在实际问题中的应用。
二、教学目标1. 理解并掌握抛物线的定义、标准方程、图形及其性质。
2. 掌握抛物线的焦点、准线概念及其计算方法。
3. 能够运用抛物线知识解决实际问题,提高数学应用能力。
三、教学难点与重点教学难点:抛物线的焦点、准线概念及其计算方法。
教学重点:抛物线的定义、标准方程、图形及其性质。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:直尺、圆规、量角器。
五、教学过程1. 导入新课通过展示生活中的抛物线实例(如拱桥、篮球抛物线等),引导学生观察并思考抛物线的特点,激发学习兴趣。
2. 基本概念(1)抛物线的定义:平面内到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹。
(2)抛物线的标准方程:y^2=2px(p>0)。
3. 图形及其性质(1)图形:以焦点为顶点,准线为对称轴的开口图形。
(2)性质:① 对称性:抛物线关于准线对称。
② 顶点:抛物线的最低点(或最高点),即焦点所在点。
③ 焦半径:从焦点到任意一点的线段长度。
④ 准线方程:x=p/2。
4. 焦点、准线计算(1)已知抛物线方程,求焦点、准线。
例如:y^2=8x,求焦点和准线。
解:由y^2=2px,得p=4。
故焦点为(2,0),准线为x=2。
(2)已知焦点、准线,求抛物线方程。
例如:已知焦点为(2,0),准线为x=2,求抛物线方程。
解:由焦点到准线的距离为p/2=2,得p=4。
故抛物线方程为y^2=8x。
5. 实际应用(1)篮球运动员投篮时,篮球的轨迹为抛物线,已知篮球筐距离地面3米,求运动员投篮时篮球的最大高度。
(2)已知抛物线y^2=4x,求该抛物线与直线y=x+2的交点坐标。
6. 随堂练习(1)求抛物线y^2=12x的焦点和准线。
高三数学《抛物线》教案教学文档一、教学内容本节课选自高中数学教材选修21第三章《圆锥曲线与方程》中的第四节《抛物线》。
详细内容包括抛物线的定义、标准方程、几何性质以及应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程和简单性质。
2. 能够运用抛物线知识解决实际问题和相关数学问题。
3. 培养学生的空间想象能力和逻辑推理能力。
三、教学难点与重点教学难点:抛物线标准方程的推导和应用。
教学重点:抛物线的定义、标准方程及几何性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、计算器。
五、教学过程1. 实践情景引入利用多媒体展示生活中的抛物线实例,如抛物线运动、拱桥等,引导学生思考抛物线的特点。
2. 知识讲解(1)抛物线的定义(2)抛物线的标准方程(3)抛物线的几何性质3. 例题讲解(1)求抛物线y^2=4x的焦点坐标和准线方程。
(2)已知抛物线y^2=2px(p>0)的焦点为F(p/2,0),求抛物线上一点M到焦点F的距离与到准线的距离之和。
4. 随堂练习(1)求抛物线x^2=4y的焦点坐标和准线方程。
(2)已知抛物线x^2=8y的焦点为F(0,2),求抛物线上一点M 到焦点F的距离与到准线的距离之和。
5. 小结六、板书设计1. 黑板左侧:抛物线的定义、标准方程、几何性质。
2. 黑板右侧:例题及解答、随堂练习。
七、作业设计1. 作业题目(1)求抛物线y^2=8x的焦点坐标和准线方程。
(2)已知抛物线y^2=12x的焦点为F(3,0),求抛物线上一点M到焦点F的距离与到准线的距离之和。
2. 答案八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义、标准方程和几何性质掌握程度,以及对例题和随堂练习的完成情况。
2. 拓展延伸:引导学生思考抛物线在实际生活中的应用,如建筑设计、体育竞技等,激发学生的学习兴趣。
重点和难点解析1. 抛物线标准方程的推导过程。
2. 例题的选取和讲解,尤其是涉及抛物线性质的应用。
§2.4.1 抛物线及其标准方程
学习目的:
1.理解抛物线的定义明确焦点、准线的概念;
2.熟练掌握抛物线的标准方程,会根据所给的条件画出抛物线的草图并确定抛物线的标准方程;
3.能由抛物线定义推导抛物线的方程;
4.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力。
学习过程:
一、复习引入
1、到两点距离相等的点的轨迹是这两点连成的线段的中垂线,那到一个点和一条直线距离相等的点的轨迹呢?
2、观看几何画板
二、研究新知
3、抛物线的定义:______________________________________________
点F称为抛物线的______,直线l叫做抛物线的________
思考:
1.此问题中是否存在定长?
2.类比椭圆和双曲线标准方程的建立过程,你认为应如何建立坐标系,使抛物线的方程更简单?
填写下列表格:
思考:你能说明二次函数)0
(
≠
=a
ax
y的图像为什么是抛物线么?指出它的焦点坐标、准线方程
例:(1)已知抛物线的标准方程是x
y6
2=,求它的焦点坐标和准线方程;
(2)已知抛物线的焦点是F(0,-2),求它的标准方程。
抛物线教案教案抛物线教学设计与实施一、教学目标1.让学生理解抛物线的定义、标准方程和基本性质,能够画出简单的抛物线图形。
2.培养学生运用数学语言表达、分析和解决实际问题的能力。
3.培养学生的空间想象能力和抽象思维能力。
二、教学内容1.抛物线的定义和标准方程2.抛物线的焦点、准线和对称轴3.抛物线的图形和性质4.抛物线在实际问题中的应用三、教学重点与难点1.教学重点:抛物线的定义、标准方程和基本性质。
2.教学难点:抛物线的图形理解和应用。
四、教学过程1.导入新课:通过生活中的实例,如抛物线运动、抛物面天线等,引导学生了解抛物线在实际中的应用,激发学生的学习兴趣。
2.探究新知:(1)抛物线的定义:以一个点为焦点,到这个点的距离等于到一条直线的距离的点的轨迹。
(2)抛物线的标准方程:y^2=4ax(开口向右)、x^2=4ay(开口向上)。
(3)抛物线的焦点、准线和对称轴:焦点为(a,0),准线为x=-a,对称轴为y轴。
(4)抛物线的图形和性质:图形为U形或倒U形,性质包括对称性、顶点、焦点、准线等。
3.实践应用:(1)画出给定焦点的抛物线。
(2)已知抛物线上的点,求抛物线的标准方程。
(3)利用抛物线的性质解决实际问题,如求抛物线与直线的交点、抛物线上的切线等。
4.总结反馈:通过课堂小结,让学生回顾本节课所学内容,巩固知识点。
五、作业布置1.课后习题:完成教材中抛物线相关习题。
2.拓展练习:研究抛物线在实际问题中的应用,如抛物线运动、抛物面天线等。
六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
同时,关注学生的学习兴趣,注重培养学生的数学思维能力和实际应用能力。
在教学过程中,注重启发式教学,引导学生主动探究,培养学生的自主学习能力。
同时,注重师生互动,鼓励学生提问,激发学生的思维活力。
在教学评价方面,采用多元化评价方式,关注学生的全面发展。
需要重点关注的细节是“实践应用”部分。
《抛物线及其标准方程》教案《抛物线及其标准方程》教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编整理的《抛物线及其标准方程》教案,欢迎大家分享。
《抛物线及其标准方程》教案篇1一、目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。
并进一步感受坐标法及数形结合的思想二、重点抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知在初中,我们学习过了二次函数,知道二次函数的图象是一条抛物线。
例如:(1),(2)的图象(展示两个函数图象):(二)讲授新课1.课题引入在实际生活中,我们也有许多的抛物线模型,例如1965年竣工的密西西比河河畔的萨尔南拱门,它就是用不锈钢铸成的抛物线形的建筑物。
到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?这就是我们今天要研究的内容.(板书:课题2.4.1抛物线及其标准方程)2.抛物线的定义信息技术应用(课堂中展示画图过程)先看一个实验:如图:点F是定点,是不经过点F的定直线,H是上任意一点,过点H作,线段FH的垂直平分线交MH于点M。
拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)可以发现,点M随着H运动的过程中,始终有MH=MF,即点M 与定点F和定直线的距离相等。
(也可以用几何画板度量MH,MF的值)(定义引入):我们把平面内与一个定点F和一条定直线(不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线叫做抛物线的准线。
学案53 抛物线导学目标: 1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.自主梳理1.抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )距离______的点的轨迹叫做抛物线.点F 叫做抛物线的__________,直线l 叫做抛物线的________.2自我检测 1.(2010·四川)抛物线y 2=8x 的焦点到准线的距离是( ) A .1 B .2 C .4 D .82.若抛物线y 2=2px 的焦点与椭圆x 26+y22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4 3.(2011·陕西)设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .y 2=-8x B .y 2=8x C .y 2=-4x D .y 2=4x4.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .2|FP 2|=|FP 1|+|FP 3|D .|FP 2|2=|FP 1|·|FP 3| 5.(2011·佛山模拟)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能探究点一 抛物线的定义及应用例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.变式迁移1 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝⎛⎭⎫14,-1B.⎝⎛⎭⎫14,1 C .(1,2) D .(1,-2) 探究点二 求抛物线的标准方程 例2 (2011·芜湖调研)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.变式迁移2 根据下列条件求抛物线的标准方程:(1)抛物线的焦点F 是双曲线16x 2-9y 2=144的左顶点; (2)过点P (2,-4).探究点三 抛物线的几何性质例3 过抛物线y 2=2px 的焦点F 的直线和抛物线相交于A ,B 两点,如图所示.(1)若A ,B 的纵坐标分别为y 1,y 2,求证:y 1y 2=-p 2;(2)若直线AO 与抛物线的准线相交于点C ,求证:BC ∥x 轴.变式迁移3 已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2).求证:(1)x 1x 2=p 24;(2)1|AF |+1|BF |为定值.分类讨论思想的应用例 (12分)过抛物线y 2=2px (p >0)焦点F 的直线交抛物线于A 、B 两点,过B 点作其准线的垂线,垂足为D ,设O 为坐标原点,问:是否存在实数λ,使AO →=λOD →?多角度审题 这是一道探索存在性问题,应先假设存在,设出A 、B 两点坐标,从而得到D 点坐标,再设出直线AB 的方程,利用方程组和向量条件求出λ.【答题模板】解 假设存在实数λ,使AO →=λOD →. 抛物线方程为y 2=2px (p >0),则F ⎝⎛⎭⎫p 2,0,准线l :x =-p 2, (1)当直线AB 的斜率不存在,即AB ⊥x 轴时,交点A 、B 坐标不妨设为:A ⎝⎛⎭⎫p 2,p ,B ⎝⎛⎭⎫p2,-p . ∵BD ⊥l ,∴D ⎝⎛⎭⎫-p2,-p , ∴AO →=⎝⎛⎭⎫-p 2,-p ,OD →=⎝⎛⎭⎫-p 2,-p ,∴存在λ=1使AO →=λOD →.[4分] (2)当直线AB 的斜率存在时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0),设A (x 1,y 1),B (x 2,y 2),则D ⎝⎛⎭⎫-p 2,y 2,x 1=y 212p ,x 2=y 222p, 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px得ky 2-2py -kp 2=0,∴y 1y 2=-p 2,∴y 2=-p 2y 1,[8分]AO →=(-x 1,-y 1)=⎝⎛⎭⎫-y 212p ,-y 1,OD →=⎝⎛⎭⎫-p 2,y 2=⎝⎛⎭⎫-p 2,-p 2y 1,假设存在实数λ,使AO →=λOD →,则⎩⎨⎧-y 212p =-p 2λ-y 1=-p 2y1λ,解得λ=y 21p 2,∴存在实数λ=y 21p2,使AO →=λOD →.综上所述,存在实数λ,使AO →=λOD →.[12分] 【突破思维障碍】由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A 、D 两点坐标关系,求出AO →和OD →的坐标,判断λ是否存在.【易错点剖析】解答本题易漏掉讨论直线AB 的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足.sin α4(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·大纲全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB 等于( )A.45B.35C .-35D .-452.(2011·湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n =0B .n =1C .n =2D .n ≥33.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( ) A .相离 B .相交 C .相切 D .不确定 4.(2011·泉州月考)已知点A (-2,1),y 2=-4x 的焦点是F ,P 是y 2=-4x 上的点,为使|P A |+|PF |取得最小值,则P 点的坐标是( )A.⎝⎛⎭⎫-14,1 B .(-2,22) C.⎝⎛⎭⎫-14,-1 D .(-2,-22) 5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±2)B .(1,±2)C .(1,2)D .(2,2) 二、填空题(每小题4分,共12分) 6.(2011·重庆)设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.7.(2011·济宁期末)已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则|AB |=________.8.(2010·浙江)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.三、解答题(共38分)9.(12分)已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.10.(12分)(2011·韶关模拟)已知抛物线C :x 2=8y .AB 是抛物线C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .11.(14分)(2011·济南模拟)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹C 于两点P 、Q ,交直线l 1于点R ,求RP →·RQ →的最小值.学案53 抛物线自主梳理1.相等 焦点 准线 自我检测 1.C2.B [因为抛物线的准线方程为x =-2,所以p2=2,所以p =4,所以抛物线的方程是y 2=8x .所以选B.]3.B 4.C 5.B 课堂活动区例1 解题导引 重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.解将x =3代入抛物线方程 y 2=2x ,得y =±6.∵6>2,∴A 在抛物线内部. 设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,即|P A |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2, ∴点P 坐标为(2,2). 变式迁移1 A [点P 到抛物线焦点的距离等于点P 到抛物线准线的距离,如图,|PF |+|PQ |=|PS |+|PQ |,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,点P 的坐标为⎝⎛⎭⎫14,-1.] 例2 解题导引 (1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p 的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;(3)解决抛物线相关问题时,要善于用定义解题,即把|PF |转化为点P 到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.解 方法一 设抛物线方程为 x 2=-2py (p >0),则焦点为F ⎝⎛⎭⎫0,-p 2,准线方程为y =p 2. ∵M (m ,-3)在抛物线上,且|MF |=5,∴⎩⎪⎨⎪⎧m 2=6p , m 2+⎝⎛⎭⎫-3+p 22=5, 解得⎩⎨⎧p =4,m =±2 6. ∴抛物线方程为x 2=-8y ,m =±26, 准线方程为y =2. 方法二 如图所示,设抛物线方程为x 2=-2py (p >0),则焦点F ⎝⎛⎭⎫0,-p 2, 准线l :y =p2,作MN ⊥l ,垂足为N .则|MN |=|MF |=5,而|MN |=3+p2,∴3+p2=5,∴p =4.∴抛物线方程为x 2=-8y ,准线方程为y =2.由m 2=(-8)×(-3),得m =±2 6.变式迁移2 解 (1)双曲线方程化为x 29-y216=1,左顶点为(-3,0),由题意设抛物线方程为y 2=-2px (p >0)且-p2=-3,∴p =6.∴方程为y 2=-12x .(2)由于P (2,-4)在第四象限且对称轴为坐标轴,可设方程为y 2=mx (m >0)或x 2=ny (n <0),代入P 点坐标求得m =8,n =-1,∴所求抛物线方程为y 2=8x 或x 2=-y .例3 解题导引 解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB 为焦点弦,以y 2=2px (p >0)为例):①y 1y 2=-p 2,x 1x 2=p 24;②|AB |=x 1+x 2+p .证明 (1)方法一 由抛物线的方程可得焦点坐标为F ⎝⎛⎭⎫p 2,0.设过焦点F 的直线交抛物线于A ,B 两点的坐标分别为(x 1,y 1)、(x 2,y 2).①当斜率存在时,过焦点的直线方程可设为y =k ⎝⎛⎭⎫x -p 2,由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,消去x ,得ky 2-2py -kp 2=0.(*)当k =0时,方程(*)只有一解,∴k ≠0, 由韦达定理,得y 1y 2=-p 2;②当斜率不存在时,得两交点坐标为 ⎝⎛⎭⎫p 2,p ,⎝⎛⎭⎫p 2,-p ,∴y 1y 2=-p 2. 综合两种情况,总有y 1y 2=-p 2.方法二 由抛物线方程可得焦点F ⎝⎛⎭⎫p 2,0,设直线AB 的方程为x =ky +p 2,并设A (x 1,y 1),B (x 2,y 2),则A 、B 坐标满足⎩⎪⎨⎪⎧x =ky +p 2,y 2=2px ,消去x ,可得y 2=2p ⎝⎛⎭⎫ky +p 2, 整理,得y 2-2pky -p 2=0,∴y 1y 2=-p 2. (2)直线AC 的方程为y =y 1x 1x ,∴点C 坐标为⎝⎛⎭⎫-p 2,-py 12x 1,y C =-py 12x 1=-p 2y 12px 1.∵点A (x 1,y 1)在抛物线上,∴y 21=2px 1.又由(1)知,y 1y 2=-p 2,∴y C =y 1y 2·y 1y 21=y 2,∴BC ∥x 轴.变式迁移3 证明 (1)∵y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,设直线方程为y =k ⎝⎛⎭⎫x -p 2 (k ≠0),由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px,消去x ,得ky 2-2py -kp 2=0. ∴y 1y 2=-p 2,x 1x 2=(y 1y 2)24p 2=p 24,当k 不存在时,直线方程为x =p 2,这时x 1x 2=p 24.因此,x 1x 2=p24恒成立.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p2=x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24.又∵x 1x 2=p 24,代入上式得1|AF |+1|BF |=2p =常数,所以1|AF |+1|BF |为定值.课后练习区1.D [方法一 由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4. 令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5.∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二 由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=3×0+4×(-2)5×2=-45.]2.C [如图所示,A ,B 两点关于x 轴对称,F 点坐标为(p2,0),设A (m ,2pm )(m >0),则由抛物线定义,|AF |=|AA 1|,即m +p2=|AF |.又|AF |=|AB |=22pm ,∴m +p 2=22pm ,整理,得m 2-7pm +p 24=0,①∴Δ=(-7p )2-4×p24=48p 2>0,∴方程①有两相异实根,记为m 1,m 2,且m 1+m 2=7p >0,m 1·m 2=p 24>0,∴m 1>0,m 2>0,∴n =2.] 3.C4.A [过P 作PK ⊥l (l 为抛物线的准线)于K ,则|PF |=|PK |, ∴|P A |+|PF |=|P A |+|PK |.∴当P 点的纵坐标与A 点的纵坐标相同时,|P A |+|PK |最小,此时P 点的纵坐标为1,把y =1代入y 2=-4x ,得x =-14,即当P 点的坐标为⎝⎛⎭⎫-14,1时,|P A |+|PF |最小.] 5.B 6.6-1解析 如图所示,若圆C 的半径取到最大值,需圆与抛物线及直线x =3同时相切,设圆心的坐标为(a,0)(a <3),则圆的方程为(x -a )2+y 2=(3-a )2,与抛物线方程y 2=2x 联立得x 2+(2-2a )x +6a -9=0,由判别式Δ=(2-2a )2-4(6a -9)=0,得a =4-6,故此时半径为3-(4-6)=6-1.7.4 2解析 由题意可设AB 的方程为y =kx +m ,与抛物线方程联立得x 2-4kx -4m =0,线段AB 中点坐标为(2,2),x 1+x 2=4k =4,得k =1.又∵y 1+y 2=k (x 1+x 2)+2m =4,∴m =0.从而直线AB :y =x ,|AB |=2|OM |=4 2. 8.324解析 抛物线的焦点F 的坐标为⎝⎛⎭⎫p 2,0,线段F A 的中点B 的坐标为⎝⎛⎭⎫p4,1,代入抛物线方程得1=2p ×p 4,解得p =2,故点B 的坐标为⎝⎛⎭⎫24,1,故点B 到该抛物线准线的距离为24+22=324. 9.解 设直线和抛物线交于点A (x 1,y 1),B (x 2,y 2),(1)当抛物线开口向右时,设抛物线方程为y 2=2px (p >0),则⎩⎪⎨⎪⎧y 2=2px y =2x +1,消去y 得,4x 2-(2p -4)x +1=0,∴x 1+x 2=p -22,x 1x 2=14,(4分)∴|AB |=1+k 2|x 1-x 2| =5·(x 1+x 2)2-4x 1x 2=5·⎝⎛⎭⎫p -222-4×14=15,(7分)则 p 24-p =3,p 2-4p -12=0,解得p =6(p =-2舍去),抛物线方程为y 2=12x .(9分)(2)当抛物线开口向左时,设抛物线方程为y 2=-2px (p >0),仿(1)不难求出p =2, 此时抛物线方程为y 2=-4x .(11分) 综上可得,所求的抛物线方程为y 2=-4x 或y 2=12x .(12分) 10.证明 因为直线AB 与x 轴不垂直,设直线AB 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.(4分)抛物线方程为y =18x 2,求导得y ′=14x .(7分)所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2 =116x 1·x 2=-1.(10分) 所以AQ ⊥BQ .(12分)11.解 (1)由题设点C 到点F 的距离等于它到l 1的距离,所以点C 的轨迹是以F 为焦点,l 1为准线的抛物线,∴所求轨迹的方程为x 2=4y .(5分)(2)由题意直线l 2的方程为y =kx +1,与抛物线方程联立消去y 得x 2-4kx -4=0. 记P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.(8分)因为直线PQ 的斜率k ≠0,易得点R 的坐标为⎝⎛⎭⎫-2k ,-1.(9分) RP →·RQ →=⎝⎛⎭⎫x 1+2k ,y 1+1·⎝⎛⎭⎫x 2+2k ,y 2+1 =⎝⎛⎭⎫x 1+2k ⎝⎛⎭⎫x 2+2k +(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+⎝⎛⎭⎫2k +2k (x 1+x 2)+4k2+4 =-4(1+k 2)+4k ⎝⎛⎭⎫2k +2k +4k2+4 =4⎝⎛⎭⎫k 2+1k 2+8,(11分) ∵k 2+1k2≥2,当且仅当k 2=1时取到等号. RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16. (14分)。
2.7.2抛物线的几何性质学习目标核心素养1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.(重点)2.会利用抛物线的性质解决一些简单的抛物线问题.(重点、难点)3.掌握直线与抛物线相交时与弦长相关的知识.通过抛物线的几何性质的学习,培养直观想象、数学运算素养.【情境导学】情境引入如果让抛物线绕其对称轴旋转,就得到一个旋转形成的抛物面曲面,旋转抛物面的轴上,有一个焦点,任何一条平行于抛物面轴的光(射)线由抛物面上反射出来之后,其反射光(射)线都通过该点,应用抛物面的这个几何性质,人们设计了很多非常有用的东西,如太阳灶、卫星电视天线、雷达等.当然这条性质本身也是抛物线的一条性质,今天我们就来具体研究一下构成抛物面的线——抛物线的几何性质.新知初探1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点离心率e=思考1:抛物线x2=2py(p>0)有几条对称轴?思考2:抛物线的范围是x∈R,这种说法正确吗?思考3:参数p对抛物线开口大小有何影响?2.焦点弦设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则初试身手1.思考辨析(正确的打“√”,错误的打“×”)(1)抛物线是中心对称图形.()(2)抛物线的范围为x∈R.()(3)抛物线关于顶点对称.()(4)抛物线的标准方程虽然各不相同,但离心率都相同.()2.设抛物线y2=8x上一点P到y轴的距离是6,则点P到该抛物线焦点F的距离是() A.8B.6C.4D.23.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=6,则|AB|=.4.顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6的抛物线方程是.【合作探究】【例1】(1)平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的标准方程是.(2)抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.[规律方法]用待定系数法求抛物线方程的步骤提醒:求抛物线的方程时要注意抛物线的焦点位置.不同的焦点设出不同的方程.[跟进训练]1.已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴距离分别为10和6,求抛物线方程.【例2】(1)抛物线y2=4x的焦点为F,准线为l,点A是抛物线上一点,且∠AFO=120°(O 为坐标原点),AK⊥l,垂足为K,则△AKF的面积是.(2)已知正三角形AOB的一个顶点O位于坐标原点,另外两个顶点A,B在抛物线y2=2px(p >0)上,求这个三角形的边长.[规律方法]利用抛物线的性质可以解决的问题(1)对称性:解决抛物线的内接三角形问题.(2)焦点、准线:解决与抛物线的定义有关的问题.(3)范围:解决与抛物线有关的最值问题.(4)焦点:解决焦点弦问题.提醒:解答本题时易忽略A,B关于x轴对称而出错.[跟进训练]2.已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点,若双曲线的离心率为2,△AOB的面积为3,求抛物线的标准方程.[探究问题]以抛物线y2=2px(p>0)为例,回答下列问题:(1)过焦点F的弦长|AB|如何表示?还能得到哪些结论?(2)以AB为直径的圆与直线l具有怎样的位置关系?(3)解决焦点弦问题需注意什么?【例3】已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,且|AB|=52p,求AB所在直线的方程.[思路探究]根据弦长求出直线斜率,进而求得直线方程.[母题探究]1.(改变问法)本例条件不变,求弦AB的中点M到y轴的距离.2.(变换条件)本例中,若A 、B 在其准线上的射影分别为A 1,B 1,求∠A 1FB 1.[规律方法]解决过焦点的直线与抛物线相交有关的问题时,一是注意直线方程和抛物线方程联立得方程组,再结合根与系数的关系解题,二是注意焦点弦长、焦半径公式的应用.解题时注意整体代入思想的运用,简化运算.【课堂小结】1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.解决抛物线的轨迹问题,可以利用抛物线的标准方程,结合抛物线的定义.3.抛物线y 2=±2px (p >0)的过焦点的弦长|AB |=x 1+x 2+p ,其中x 1,x 2分别是点A ,B 横坐标的绝对值;抛物线x 2=±2py (p >0)的过焦点的弦长|AB |=y 1+y 2+p ,其中y 1,y 2分别是点A ,B 纵坐标的绝对值.4.求抛物线的方程常用待定系数法和定义法;直线和抛物线的弦长问题、中点弦问题及垂直、对称等可利用判别式、根与系数的关系解决;抛物线的综合问题要深刻分析条件和结论,灵活选择解题策略,对题目进行转化.【学以致用】1.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .182.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是( ) A .(2,±22)B .(1,±2)C.(1,2) D.(2,22)4.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是.5.已知点P(1,m)是抛物线C:y2=2px上的点,F为抛物线的焦点,且|PF|=2,直线l:y =k(x-1)与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若|AB|=8,求k的值.【参考答案】【情境导学】新知初探2.抛物线的几何性质(0,0)1思考1:[提示]有一条对称轴.思考2:[提示]抛物线的方程不同,其范围就不一样,如y2=2px(p>0)的范围是x≥0,y∈R,故此说法错误.思考3:[提示]参数p(p>0)对抛物线开口大小有影响,因为过抛物线的焦点F且垂直于对称轴的弦的长度是2p,所以p越大,开口越大.初试身手1.[答案](1)×(2)×(3)×(4)√[提示](1)×在抛物线中,以-x代x,-y代y,方程发生了变化.(2)×抛物线的方程不同,其范围不同,y2=2px(p>0)中x≥0,y∈R.(3)×(4)√离心率都为1,正确.2.A[∵抛物线的方程为y2=8x,∴其准线l的方程为x=-2,设点P(x0,y0)到其准线的距离为d,则d=|PF|,即|PF|=d=x0-(-2)=x0+2,∵点P到y轴的距离是6,∴x0=6,∴|PF|=6+2=8.]3.8[∵y2=4x,∴2p=4,p=2.∵由抛物线定义知:|AF|=x1+1,|BF|=x2+1,∴|AB|=x1+x2+p=6+2=8.]4.y2=24x或y2=-24x[∵顶点与焦点距离为6,即p2=6,∴2p=24,又对称轴为x轴,∴抛物线方程为y2=24x或y2=-24x.]【合作探究】【例1】(1)y 2=5x [线段OA 的垂直平分线为4x +2y -5=0,与x 轴的交点为⎝⎛⎭⎫54,0, ∴抛物线的焦点为⎝⎛⎭⎫54,0,∴其标准方程是y 2=5x .] (2)解:椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3,即p2=3,∴p =6,∴抛物线的标准方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3和x =3. [跟进训练]1.[解] 设抛物线方程为y 2=2ax (a ≠0),点P (x 0,y 0). 因为点P 到对称轴距离为6,所以y 0=±6,因为点P 到准线距离为10,所以⎪⎪⎪⎪x 0+a2=10. ① 因为点P 在抛物线上,所以36=2ax 0. ②由①②,得⎩⎪⎨⎪⎧ a =2,x 0=9或⎩⎪⎨⎪⎧a =18,x 0=1 或⎩⎪⎨⎪⎧ a =-18,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=-9. 所以所求抛物线方程为y 2=±4x 或y 2=±36x .类型二抛物线性质的应用【例2】(1)43 [如图,设A (x 0,y 0),过A 作AH ⊥x 轴于H ,在Rt △AFH 中,|FH |=x 0-1,由∠AFO =120°,得∠AFH =60°,故y 0=|AH |=3(x 0-1),所以A 点的坐标为()x 0,3(x 0-1), 将点A 坐标代入抛物线方程可得3x 20-10x 0+3=0, 解得x 0=3或x 0=13(舍),故S △AKF =12×(3+1)×23=43.](2)解:如图所示,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又|OA |=|OB |,所以x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,整理得(x 1-x 2)(x 1+x 2+2p )=0.∵x 1>0,x 2>0,2p >0,∴x 1=x 2,由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称. 由此得∠AOx =30°,所以y 1=33x 1,与y 21=2px 1联立, 解得y 1=23p .∴|AB |=2y 1=43p . [跟进训练]2.[解] 由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3.即渐近线方程为y =±3x ,而抛物线准线方程为x =-p2,于是A ⎝⎛⎭⎫-p 2,-32p ,B ⎝⎛⎭⎫-p 2,32p ,从而△AOB 的面积为12·3p ·p 2=3.可得p =2,因此抛物线开口向右,所以标准方程为y 2=4x .类型三焦点弦问题[探究问题](1) [提示] ①|AB |=2⎝⎛⎭⎫x 0+p2(焦点弦长与中点关系). ②|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).③A ,B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.④S △AOB =p 22sin θ.⑤1|AF |+1|BF |=2p(定值). (2) [提示] 如图,AB 是过抛物线y 2=2px (p >0)焦点F 的一条弦,设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),相应的准线为l .所以以AB 为直径的圆必与准线l 相切.(3) [提示] 要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.【例3】[解] ∵过焦点的弦长|AB |=52p , ∴弦所在的直线的斜率存在且不为零,设直线AB 的斜率为k ,且A (x 1,y 1),B (x 2,y 2).∵y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0.∴直线方程为y =k ⎝⎛⎭⎫x -p 2. 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,整理得k 2x 2-(k 2p +2p )x +14k 2p 2=0(k ≠0), ∴x 1+x 2=k 2p +2p k 2,∴|AB |=x 1+x 2+p =k 2p +2p k 2+p , 又|AB |=52p ,∴k 2p +2p k 2+p =52p ,∴k =±2. ∴所求直线方程为y =2⎝⎛⎭⎫x -p 2或y =-2⎝⎛⎭⎫x -p 2. [母题探究]1.[解] 设AB 中点为M (x 0,y 0),由例题解答可知2x 0=x 1+x 2=32p , 所以AB 的中点M 到y 轴的距离为34p . 2.[解] 由例题解析可知AB 的方程为y =k ⎝⎛⎭⎫x -p 2,即x =1k y +p 2,代入y 2=2px 消x 可得y 2=2p k y +p 2,即y 2-2p ky -p 2=0,∴y 1y 2=-p 2, 由A 1点的坐标为⎝⎛⎭⎫-p 2,y 1,B 1点的坐标为⎝⎛⎭⎫-p 2,y 2,得kA 1F =-y 1p ,kB 1F =-y 2p . ∴kA 1F ·kB 1F =y 1y 2p2=-1,∴∠A 1FB 1=90°. 【学以致用】1.A [线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝⎛⎭⎫12,0,则焦点到直线AB的距离为1-12=12.] 2.D [抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有 ⎩⎪⎨⎪⎧ y 2=16x ,x 2+y 2=(x -4)2+y 2⇒⎩⎪⎨⎪⎧ y 2=16x ,x =2⇒⎩⎨⎧x =2,y =±4 2. 所以符合题意的点为(2,±42).]3.B [由题意知F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0, 由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B .] 4.158 [设A (x 1,y 1),B (x 2,y 2),由抛物线2x 2=y ,可得p =14. ∵|AB |=y 1+y 2+p =4,∴y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158.] 5.[解] (1)抛物线C :y 2=2px 的准线为x =-p 2, 由|PF |=2得:1+p 2=2,得p =2. 所以抛物线的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,可得 k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0,∴x 1+x 2=2k 2+4k 2. ∵直线l 经过抛物线C 的焦点F ,∴|AB |=x 1+x 2+p =2k 2+4k 2+2=8,解得k =±1, 所以k 的值为1或-1.。
圆锥曲线教案抛物线的定义及其标准方程教案教学目标1.使学生理解抛物线的定义、标准方程及其推导过程,并能初步利用它们解决有关问题.2.通过教学,培养学生观察、联想、类比、猜测、归纳等合情推理的方法,提高学生抽象、概括、分析、综合的能力,既教猜想,又教证明.3.培养学生运用数形结合的数学思想理解有关问题.教学重点与难点抛物线标准方程的推导及有关应用既是教学重点,又是难点.教学过程师:请同学们回忆椭圆和双曲线的第二定义.生:与一个定点的距离和一条定直线的距离的比是常数e的点的轨道,当e <1时,是椭圆,当e>1时,是双曲线.(计算机演示动画——图2-45)(1)不妨设定点F到定直线l的距离为p.(2)通过提问,让学生思考随着e的变化曲线的形状的变化规律.同时演示动画,让学生充分体会这种变化规律,为学生猜测e=1时曲线形状奠定基础.师:那么,当e=1时,轨迹的位置和形状是怎样的?大胆地猜一猜!(可请学生直接画出自己想象中曲线的形状,并利用投影展示.)师:同学的猜测对不对呢?请同学看屏幕.(图2-46)距离MF=£.44cm图2-46我们利用电脑精确地计算展示到定点F的距离和它到定直线距离的比为1 的点的轨迹.师:你见过这种曲线吗?(抛物线)这就是我们这节课主要的研究对象.(师板书课题——抛物线的定义及其标准方程)师:能否给抛物线下个定义?生:与一个定点的距离和一条定直线的距离的比是1的点的轨迹叫抛物线.师:换句话说,就是与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(投影)平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.师:它的方程是什么样子呢?我们可以预先做一个估计.如图2-47(1),椭圆的图形是关于x轴、y轴和原点对称的,其方程为:如图2-47(2),双曲线的图形是关于x轴、y轴和原点对称的,其方程为:在方程中都仅有x、y的二次项.当e=1时,图形变成了开口的一支,从而丧失了关于y轴和原点的对称性,那么方程将会发生怎样的变化?生:在方程中,一定会失去X2项,而且会出现x的一次项,(否则方程变成y2=b2,它表示直线.)所以方程应为Ay2+Bx+C=0的形式.师:同学的猜测对不对呢?可否从理论上给予说明?生:建立直角坐标系.师:如何建立?学生甲:取经过定点F且垂直于定直线l的直线为x轴,设x轴与l相交于点K,以线段KF的垂直平分线为y轴,设所求轨迹上一点坐标为M(x, y).师:点M满足什么条件?生:到定点F的距离和到定直线l的距离的比是1.师:这些条件能否转化成点M的坐标所满足的条件?生:由于|KF|=p,故点F的坐标为:吟⑼,直线1的方程为:x由条件可得:请同学化简上式,并通过投影展示演算过程,得:y年2px. (1)师:显然符合预想的形式.这个方程就叫作抛物线的标准方程.在你以往的学习过程中,是否见到过类似这种形式的方程?生:二次函数的表达式.师:若将x与y换个位置,它就是缺少一次项和常数项的二次函数,而曲线的形状也与抛物线完全一致.师:由于抛物线开口方向的不同,共有4种不同情况.(计算机演示——图2-48)师:请同学们写出其它3种情况下的标准方程、焦点坐标及准线方程,并说明理由.观察图形,分辨这些图有何相同点和不同点.生:共同点有:①原点在抛物线上.②对称轴为坐标轴.③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的四分之一.不同点:①抛物线的焦点在x轴上时,方程左端是y2,右端是2px;当抛物线的焦点在y轴上时,方程左端是X2,右端是2py.②开口方向与x轴(y轴)正半轴同向时,焦点在x轴(y轴)的正半轴上,方程右端取正号.开口方向与x轴(y轴)负半轴同向时,焦点在x轴(y轴)的负半轴上,方程右端取负号.师:作为应用,请同学们看下面的例题.(展示投影)例1 (1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0, -2),求它的标准方程.⑴解根据题意可得:2p = 6,故p = 3,所以焦点坐标为;,0), 准线方程为笈=-1(2)分析要求抛物线的标准方程,需①确定焦点在y轴的负半轴上,②求出p值.解因为焦点在y轴的负半轴上,并且£ = 2, p = 所以它的标准方程是:x2 = -8y.例2 经过抛物线的焦点F,作一条直线垂直于x轴,和抛物线相交,两个交点的纵坐标为y1, y2.求y1・y2的值.(计算机演示图形——图2-49)师:首先弄清题意——条件有哪些?求什么?如何求?生:已知力,巴是交点的纵坐标,要求yj%,可将笈=葭代入方程(师板书)解将乂 = ^代入抛物线方程得交点的纵坐标分别为“和p故 y 1 • y 2=-P 2.师:还有其他办法吗?可否根据抛物线的定义?生:如图2-50,根据抛物线的定义,|AF| = |BF| = |AM|=p,故y 1 • y 2师:由于缺少垂直的条件,上例中的方法均不适用了.怎样求交点坐标?生:只需求直线方程与抛物线方程的公共解.师:如何建立直线方程?生:利用点斜式.(请同学自行写出解题过程,并利用投影仪展示解题过程.)解设直线方程为:7 = 1<笈-乡.与抛物线方程联立,消去x 可得:y 2 -忆-R* =o ,故:Vi # 72 = -P 2- -p 2.引申1:上例中若缺少“垂直于x 轴”的条件,结果怎样?(计算机演示动画——图2-51)Ab图 2-50引申2:以AB为直径的圆和准线具有怎样的位置关系?(计算机演示动画——图2-52)图2-52学生乙:以AB为直径的圆和准线相切.师:能否给予证明?这作为思考题,请同学们课下完成.师:请同学小结这节课的内容.(抛物线的定义;p的几何意义;标准方程的4种形式.)作业:课本第98页习题八:1,2.设计说明1.关于教学过程(1)由于抛物线的定义是本章的主要内容之一,因而将它作为教学目标之一.(2)MM教学方式在课堂教学中十分重视的一个方面就是合情推理方法的运用,逻辑思维能力的提高以及良好个性品质的培养.这对于提高学生的一般科学素养,形成和发展他们的数学品质,必将起着十分重要的作用,因而制定了目标2.(3)按照大纲的要求,在教学中培养学生运用数学思想方法解决有关问题,据此制定了目标3.2.关于教学重点为实现教学目标,把充分展现抛物线的定义及标准方程的探索、发现、推理的思维过程和知识形成的过程作为本节课的重点.3.关于教学方法按照MM教学方式“学习、教学、研究同步协调原则”和“二主方针”,运用问题性,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力、增长才干,采用启发式.4.关于教学手段利用计算机辅助教学,演示图形的动态变化过程,弥补传统教学手段(如投影片、模型等)的不足之处.(1)在新课引入部分,通过动画演示,使学生充分理解并且掌握3种圆锥曲线的统一定义,以及曲线形状变化与常数e的大小之间的关系.(2)在抛物线定义的引入部分,利用电脑精确测算“两个距离”,以及动点 M 的任意选取,充分展示了满足条件的点的轨迹,避免了传统教学中此处的生硬与牵强.(3)在例2及引申中也采用动画演示,弥补了投影片无法实现的动态效果.5.关于教学过程(1)复习内容的确定,旨在通过联想,为运用类比方法探索抛物线的定义奠定基础.(2)通过引导学生观察椭圆、双曲线图形的变化规律,类比、联想、进而猜想出e=1时轨迹形状是抛物线,然后进行推理证明.即通过既教猜想、又教证明这一MM可控变量的操作,旨在揭示科学实验的规律,从而暴露知识的形成过程,体现科学发现的本质,培养学生合理推理能力、逻辑推理能力、科学的思维方式、实事求是的科学态度及勇于探索的精神等个性品质.(3)学以致用是教学的主要目标之一,在例题求解过程中,运用波利亚一般解题方法,培养学生合理的思考问题,清楚地表达思想和有条不紊的工作习惯.(4)让学生小结,充分发挥学生的主观能动性,提高学生分析、概括、综合、抽象能力.。
《抛物线的简单几何性质》教学案例(一)教学题目:《抛物线的简单几何性质》第一课时(二)授课类型:新授课(三)教学目标:知识与技能:1、从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力。
2、掌握抛物线的几何性质、范围、对称性、顶点、离心率,能根据给出条件求抛物线的标准方程,了解抛物线的通径及画法。
过程与方法:经历由抛物线的标准方程推导抛物线的性质,培养学生数形结合及方程的思想。
情感、态度与价值观:训练学生分析问题、解决问题的能力,了解抛物线在实际问题中的初步应用,培养学生的应用意识,进而培养学生乐于学习数学的兴趣。
(四)教学重点:掌握抛物线的几何性质,使学生能根据给出的条件求出抛物线的标准方程和一些实际应用。
(五)教学难点:抛物线各个知识点的灵活应用。
(六)教学方法:采用引导式、讲练结合法;多媒体课件辅助教学。
(七)课时分配:1课时(八)教学媒体:多媒体课件(九)学情分析:我授课的学生大部分数学基础不太好,尤其理解能力、运算能力、思维能力等方面参差不齐,所以在教学中注重双基的训练。
(十)教学步骤:试求抛物线方程。
所以设抛物线的方程为:点在抛物线上,代入抛物线方程,可得≤xx0≥≤y≥y0(十一)板书设计:题目:抛物线的简单几何性质1、复习引入:2、抛物线的简单几何性质:(表格)3、应用:例1 变式1 ;例2 变式2;例3、变式3 总结:数形结合4、练习:5、小结与复习:(十二)教学后记:《抛物线的简单几何性质》教学案例年级:高二学科:数学姓名:穆小东。
§2.4.1抛物线及其标准方程富顺二中陈治香学习目标1.理解抛物线的定义、几何图形和标准方程;2.使用抛物线的定义求抛物线的标准方程,焦点坐标,准线方程。
3.明确抛物线标准方程中P的几何意义,能解决简单的求抛物线标准方程的问题。
1.重点: 抛物线的定义及标准方程2.难点: 抛物线定义的形成过程及抛物线标准方程的推导,关键是坐标系方案的选择。
学习过程一、新课导学我们在学习椭圆、双曲线时,同学们举出了很多生活中的椭圆、双曲线。
那么请同学们思考一下,生活当中,有没有抛物线的的影子呢?请大家举例。
在初中我们就接触过抛物线,我们知道二次函数的图象就是抛物线。
为什么二次函数图象是抛物线?二、探究新知1、抛物线的定义:平面内与一个定点F和一条定直线l()距离的点的轨迹叫做抛物线;点F叫,直线l叫做2、抛物线的标准方程:平面内设F 是一定点,l 为一定直线,一动点M 到F 的距离和到l 的距离相等,且F 到l 的距离为)0(>p p ,求M 的轨迹方程①、)0(22>=p px y 叫做 ,它表示的焦点坐标是 ,准线方程是 p 的几何意义是:②、一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式。
3、四种抛物线及其它们的标准方程自己推导完成下表:4、抛物线的特征:抛物线的标准方程有何特点?如何判断抛物线的焦点位置,开口方向?思考:二次函数)0(2≠=a ax y 的图象为什么是抛物线?指出它的焦点坐标、准线方程三、典型例题:例1:(1)已知抛物线的标准方程是 x y 62=,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是F(0,-2),求它的标准方程例2:一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处。
已知接收天线的口径(直径)为4.8m,深度为0.5m.是建立适当的坐标系,求抛物线的标准方程和焦点坐标。
2.4.1 抛物线的标准方程学习目标核心素养1.理解抛物线的定义、标准方程及其推导过程.(重点)2.掌握抛物线的定义及其标准方程的应用.(难点) 1.通过抛物线的定义,标准方程的学习,培养学生的数学抽象,直观想象素养. 2.借助于标准方程的推导过程,提升逻辑推理,数学运算素养.新知初探 1.抛物线的定义思考1:平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线吗?2.抛物线的标准方程图形标准方程焦点坐标准线方程y 2=2px (p >0)⎝⎛⎭⎫p 2,0 x =-p2y 2=-2px (p >0)⎝⎛⎭⎫-p 2,0 x =p 2x 2=2py (p >0)⎝⎛⎭⎫0,p 2 y =-p 2x 2=-2py (p >0)⎝⎛⎭⎫0,-p 2y =p2思考3:已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向? 初试身手1.抛物线y =ax 2的准线方程是y =2,则实数a 的值为( ) A .18 B .-18 C .8 D .-82.抛物线y 2=4x 的焦点坐标是( ) A .(0,2) B .(0,1) C .(2,0) D .(1,0)3.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________. 合作探究类型1 求抛物线的标准方程例1 分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0; (2)过点(3,-4);(3)焦点在直线x +3y +15=0上. 规律方法求抛物线方程的主要方法是待定系数法,若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,若抛物线的焦点位置不确定,则要分情况讨论,另外,焦点在x 轴上的抛物线方程可统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0). 跟踪训练1.根据下列条件分别求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,|AF |=5.类型2 抛物线定义的应用 探究问题1.抛物线定义的实质可归结为“一动三定”,这句话的含义是什么?2.如何通过抛物线定义实现距离转化?3.如何利用抛物线定义解决与抛物线有关的最值问题?例2 若位于y 轴右侧的动点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.求点M 的轨迹方程. 母题探究1.(变换条件、改变问法)若本例中点M 所在轨迹上一点N 到点F 的距离为2,求点N 的坐标.2.(变换条件、改变问法)若本例中增加一点A (3,2),其他条件不变,求|MA |+|MF |的最小值,并求出点M 的坐标.规律方法利用抛物线的定义可实现抛物线上的点到焦点和到准线距离的相互转化.解此类最值、定值问题时,首先要注意抛物线定义的转化应用,其次是注意平面几何知识的应用,例如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线中垂线段最短等. 类型3 与抛物线有关的应用问题例3河上有一抛物线形拱桥,当水面距拱桥顶5 m时,水面宽为8 m,一小船宽4 m,高2 m,载货后船露出水面上的部分高0.75 m,则水面上涨到与抛物线形拱桥顶相距多少米时,小船开始不能通航?规律方法涉及桥的高度、隧道的高低等抛物线型问题,通常用抛物线的标准方程解决,建立直角坐标系后,要结合点的位置分析坐标的符号,根据实际问题中的数据准确写出点的坐标,再结合实际问题求解.跟踪训练2.某大桥在涨水时有最大跨度的中央桥孔,已知上部呈抛物线形,跨度为20 m,拱顶距水面6 m,桥墩高出水面4 m.现有一货船欲过此孔,该货船水下宽度不超过18 m,目前吃水线上部分中央船体高5 m,宽16 m,且该货船在现在状况下还可多装1 000 t货物,但每多装150 t货物,船体吃水线就要上升0.04 m,若不考虑水下深度,问:该货船在现在状况下能否直接或设法通过该桥孔?为什么?当堂达标1.思考辨析(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.()(2)抛物线x2=-20y的焦点到准线的距离是10.()(3)抛物线y =-2x 2的准线方程是y =18. ( )2.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是 ( ) A .y 2=-16x B .y 2=-32xC .y 2=16xD .y 2=16x 或y =0(x <0)3.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a ⎝⎛⎭⎫a >p2,则点M 的横坐标是 ( ) A .a +p 2 B .a -p2C .a +pD .a -p4.抛物线y 2=2px (p >0)过点M (2,2),则点M 到抛物线准线的距离为________.参考答案新知初探思考1:提示:不一定.当直线l 经过点F 时,点的轨迹是过定点F 且垂直于定直线l 的一条直线;l 不经过点F 时,点的轨迹是抛物线.思考2:提示:焦点到准线的距离.思考3:提示:一次项变量为x (或y ),则焦点在x 轴(或y 轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定. 初试身手 1.【答案】B【解析】由y =ax 2,得x 2=1a y ,14a =-2,a =-18.2.【答案】D【解析】∵y 2=4x ,∴焦点F (1,0). 3.【答案】y 2=-8x 或x 2=-y【解析】设抛物线方程为y 2=2px (p ≠0),或x 2=2py (p ≠0).将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y . 合作探究类型1 求抛物线的标准方程例1 解:(1)准线方程为2y +4=0,即y =-2,故抛物线焦点在y 轴的正半轴上,设其方程为x 2=2py (p >0),又p2=2,所以2p =8,故抛物线方程为x 2=8y .(2)∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4), 即2p =163,2p 1=94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(3)令x =0得y =-5;令y =0得x =-15. ∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x . 跟踪训练1.解:(1)双曲线方程可化为x 29-y 216=1,左顶点为(-3,0),由题意设抛物线方程为y 2=-2px (p >0)且-p2=-3,∴p =6,∴抛物线的方程为y 2=-12x .(2)设所求焦点在x 轴上的抛物线的方程为y 2=2px (p ≠0),A (m ,-3), 由抛物线定义得5=|AF |=⎪⎪⎪⎪m +p 2. 又(-3)2=2pm ,∴p =±1或p =±9,故所求抛物线方程为y 2=±2x 或y 2=±18x . 类型2 抛物线定义的应用 探究问题1.提示:抛物线定义的实质可归结为“一动三定”,一个动点,设为M ;一个定点F ,即抛物线的焦点;一条定直线l ,即为抛物线的准线;一个定值,即点M 与点F 的距离和M 到l 的距离之比等于1.定点F 不能在直线上,否则,动点M 的轨迹就不是抛物线. 2.提示:根据抛物线的定义,抛物线上任意一点到焦点的距离等于它到准线的距离,因此,由抛物线定义可以实现点点距与点线距的相互转化,从而简化某些问题.3.提示:在抛物线中求解与焦点有关的两点间距离和的最小值时,往往用抛物线的定义进行转化,即化折线为直线解决最值问题.例2 解:由于位于y 轴右侧的动点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝⎛⎭⎫12,0的距离与它到直线l :x =-12的距离相等. 由抛物线的定义知动点M 的轨迹是以F 为焦点,l 为准线的抛物线,其方程应为y 2=2px (p >0)的形式,而p 2=12,所以p =1,2p =2,故点M 的轨迹方程为y 2=2x (x ≠0). 母题探究1.解:设点N 的坐标为(x 0,y 0),则|NF |=2,即⎝⎛⎭⎫x 0-122+y 20=4 ①,又由典例的解析知点M 的轨迹方程为y 2=2x (x ≠0),故y 20=2x 0 ②, 由①②可得⎩⎪⎨⎪⎧ x 0=32,y 0=3,或⎩⎪⎨⎪⎧x 0=32,y 0=-3,故点N 的坐标为⎝⎛⎭⎫32,3或⎝⎛⎭⎫32,-3. 2. 解:如图,由于点M 在抛物线上,所以|MF |等于点M 到其准线l 的距离|MN |,于是|MA |+|MF |=|MA |+|MN |,所以当A 、M 、N 三点共线时,|MA |+|MN |取最小值,亦即|MA |+|MF |取最小值,最小值为3+12=72.这时点M 的纵坐标为2,可设M (x 0,2), 代入抛物线方程得x 0=2,即M (2,2). 类型3 与抛物线有关的应用问题例3 解:如图所示,以拱桥的拱顶为原点,以过拱顶且平行于水面的直线为x 轴,建立平面直角坐标系.设抛物线方程为x 2=-2py (p >0),由题意可知点B (4,-5)在抛物线上, 故p =85,得x 2=-165y .当船面两侧和抛物线接触时,船不能通航, 设此时船面宽为AA ′,则A (2,y A ), 由22=-165y A ,得y A =-54.又知船面露出水面上的部分高为0.75 m , 所以h =|y A |+0.75=2(m).所以水面上涨到与抛物线形拱桥顶相距2 m 时,小船开始不能通航. 跟踪训练2.解:如图所示,以拱顶为原点,过拱顶的水平直线为x 轴,竖直直线为y 轴,建立直角坐标系.∵拱顶距水面6 m ,桥墩高出水面4 m , ∴A (10,-2).设桥孔上部抛物线方程是x 2=-2py (p >0), 则102=-2p (-2),∴p =25,∴抛物线方程为x 2=-50y ,即y =-150x 2.若货船沿正中央航行,船宽16 m ,而当x =8时,y =-150×82=-1.28 m ,即船体在x =±8之间通过,B (8,-1.28),此时B 点距水面6+(-1.28)=4.72(m),而船体高为5 m ,∴无法通行. 又∵5-4.72=0.28 m,0.28÷0.04=7, 150×7=1 050(t),即若船通过增加货物通过桥孔,则要增加1 050 t ,而船最多还能装1 000 t 货物,所以货船在现有状况下不能通过桥孔. 当堂达标1.【答案】(1)× (2)√ (3)√ 2.【答案】C【解析】∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与它到直线x +4=0的距离相等.故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x . 3.【答案】B【解析】设抛物线上点M (x 0,y 0),如图所示,过M 作MN ⊥l 于N ⎝⎛⎭⎫l 是抛物线的准线x =-p2,连MF .根据抛物线定义,|MN |=|MF |=a , ∴x 0+p2=a ,∴x 0=a -p2,∴选B.4.【答案】52【解析】y 2=2px 过点M (2,2),于是p =1,所以点M 到抛物线准线的距离为2+p 2=52.。
抛物线定义及其应用学案
一、复习引入
1、抛物线的定义(文字定义): 符号定义:
2、抛物线的标准方程:
○
1标准方程是如何建系的? ○2抛物线标准方程的四种形式 标准方程
图形 焦点坐标 准线方程 对称性 顶点 22y px =()0p >
22x py =-()0p >
3、抛物线的离心率:
4、幂函数y x =的图象是什么?
二、新课探究
1、用定义判断轨迹并求标准方程
例1. 若点P 到直线1x =-的距离比它到点(2,0) 的距离小1,则点P 的轨迹方程是( ) A .圆 B. 椭圆 C. 双曲线 D. 抛物线
变式1. 求与圆C :22
(2)1x y -+=外切,且与直线1x =-相切的动圆圆心M 的轨迹方程是?
x
y x=-1
H
P
F(2,0)
2、点的抛物线上的两种含义
例2. 过抛物线2
4y x =的焦点F 作直线交抛物线于11(,)A x y ,()22,B x y 两点,
且12x x +=6,则弦长||AB =
3、最值问题
例3. 已知点P 是抛物线2
4y x =上的一个动点,则点P 到点A(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为
例4. 已知定点A(3,2)在抛物线2
2y x =的内部,F 为抛物线的焦点, 点Q 在抛物线上移动,求|QA|+|QF|的最小值,并求出取最小值时Q 点的坐标.
变式2:已知定点A(1,1)在抛物线22(>0)y px p =的内部,F 为抛物线的焦点,点Q 在抛物线上移动,当|AQ|+|QF|取最小值4时,求p 的值.
三、能力提升
思考题: 以过抛物线2
2(>0)y px p =的焦点的弦为直径的圆与抛物线的准线的位置关系是( )
A.相切
B.相交
C.相离
D.不确定。