2020版高考数学北师大版一轮复习单元质检卷:十 算法初步、统计与统计案例 Word版含解析
- 格式:docx
- 大小:531.56 KB
- 文档页数:8
1、如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数;(不要求写过程)(3)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.【答案】(1)4 (2)68.5、75、70 (3).⨯=,设为,(3)记“取出的2人在同一分数段”为事件,因为之间的人数为400.14之间有人,设为,从这6人中选出2人,有,,,,共15个基本事件,其中事件A包括,,,,共7个基本事件,则.2、2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:年龄段[)55,5945,55[)35,45[)22,35[)人数(单位:人)180 180 160 80约定:此单位45岁—59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.(1)抽出的青年观众与中年观众分别为多少人?(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列2×2列联表,并回答能否有90%的把握认为年龄层与热衷关心民生大事有关?热衷关心民生大事不热衷关心民生大事总计青年12中年 5总计30(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?【答案】(1)18,12 (2)否(3)2 5【解析】(1)根据分层抽样可知抽出的青年观众为18人,中年观众12人;(2)2×2列联表如下:热衷关心民生大事不热衷关心民生大事总计青年 6 12 18 中年7 5 12总计13 17 30,∴没有90%的把握认为年龄层与热衷关心民生大事有关;3、随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大。
10.2随机抽样必备知识预案自诊知识梳理1.总体、个体、样本、样本容量的概念统计中所考察对象的全体构成的集合看做总体,构成总体的每个元素作为个体,从总体中抽取的所组成的集合叫作样本,样本中个体的叫作样本容量.2.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中逐个地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的,就把这种抽样方法叫作简单随机抽样.(2)常用方法:和.(3)应用范围:总体中的个体之间差异程度较小和数目较少.(4)注意事项:利用随机数表抽样时,①选定的初始数和读数的方向是任意的;②对各个个体编号要视总体中的个体数情况而定,且必须保证所编号码的位数一致.3.系统抽样(1)定义:当总体中的个体比较多时,首先把总体分成均衡的若干部分,然后按照预先定出的规则,从每一部分中抽取一个个体,得到所需要的样本,这种抽样方法叫作系统抽样.(2)系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.①先将总体的N个个体;②确定,对编号进行.当Nn (n是样本容量)是整数时,取k=Nn;③在第1段用确定第一个个体编号l(l≤k);④按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号,再加k 得到第3个个体编号,依次进行下去,直到获取整个样本.(3)应用范围:总体中的个体数较多.4.分层抽样(1)定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样.(2)应用范围:适用于总体由差异比较明显的几个部分组成.(3)注意事项:利用分层抽样要注意按比例抽取,若各层应抽取的个体数不都是整数,则应当调整各层容量,即先剔除各层中“多余”的个体.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)简单随机抽样是一种不放回抽样.( )(2)在抽签法中,先抽的人抽中的可能性大.( )(3)系统抽样在起始部分抽样时采用简单随机抽样.( )(4)用系统抽样从102名学生中选取20名,需剔除2名,这样对被剔除者不公平.( )(5)在分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )2.(2020全国百校高三联考)为了调查某地区不同年龄的教师的工资情况,研究人员在A 学校进行抽样调查,则比较合适的抽样方法为( )A.简单随机抽样B.系统抽样C.分层抽样D.不能确定3.为客观了解上海市民家庭存书量,上海市统计局社情民意调查中心通过电话调查系统开展专项调查,成功访问了2 007位市民,在这项调查中,总体、样本及样本容量分别是( )A.总体是上海市民家庭总数量,样本是2 007位市民家庭的存书量,样本容量是2 007B.总体是上海市民家庭的存书量,样本是2 007位市民家庭的存书量,样本容量是2 007C.总体是上海市民家庭的存书量,样本是2 007位市民,样本容量是2 007D.总体是上海市民家庭总数量,样本是2 007位市民,样本容量是2 0074.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机编号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176,196的5个人中有1个没有抽到,则这个编号是( )A.006B.041C.176D.1965.某工厂生产A ,B ,C 三种不同型号的产品,其中某月生产的产品数量之比依次为m ∶3∶2,现用分层抽样的方法抽取一个容量为120的样本,已知A 种型号产品抽取了45件,则m=( )A.1B.2C.3D.4关键能力学案突破考点简单随机抽样【例1】(1)某校高一共有10个班,编号01至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A.a=310,b=29 B.a=110,b=19 C.a=310,b=310 D.a=110,b=110 (2)(2020山西太原高三质检)某口罩生产工厂为了了解口罩的质量,现将生产的50个口罩编号为01,02,…,50,利用如下随机数表从中抽取10个进行检测,若从下表中第1行第7列的数字开始向右依次读取2个数据作为1个编号,则被抽取的第8个个体的编号为( )72 84 71 14 3519 11 58 49 2650 11 17 17 7686 31 57 20 1895 60 78 46 7588 78 28 16 8413 52 53 94 5375 45 69 30 9673 89 65 70 3199 14 43 48 76A.18B.11C.50D.17解题心得应用简单随机抽样时应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,将超过总体号码或出现重复号码的数字舍去.对点训练1(1)用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽取”的可能性、“第二次被抽取”的可能性分别是()A.16,16B.13,16C.16,13D.13,13(2)某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,…,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32 21 18 34 2978 64 54 07 3252 42 06 44 3812 23 43 56 7735 78 90 56 4284 42 12 53 3134 57 86 07 3625 30 07 32 8623 45 78 89 0723 68 96 08 0432 56 78 08 4367 89 53 55 7734 89 94 83 7522 53 55 78 3245 77 89 23 45A.623B.328C.253D.007考点系统抽样【例2】(1)(2020河南顶尖计划高三联考)某公司有3 000名员工,将这些员工编号为0001,0002,0003,…,3000,从这些员工中使用系统抽样的方法抽取200人进行“学习强国”的问卷调查,若0084号被抽到,则下面被抽到的是()A.0044号B.0294号C.1196号D.2984号(2)将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9解题心得1.系统抽样适用的条件是总体容量较大,样本容量也较大.2.使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.3.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.4.系统抽样是等距抽样,利用系统抽样抽取的样本编号通常构成等差数列,但如果抽样规则另有说明(非等距抽样),得到样本编号则不一定成等差数列.对点训练2(1)某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A.32B.33C.41D.42(2)某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,若在第一组抽取的编号是5,则抽取的45人中,编号落在区间[479,719]的人数为( )A.10B.11C.12D.13考点 分层抽样【例3】(1)某电视台在因特网上就观众对其某一节目的喜爱程度进行了调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢4 800 7 200 6 400 1600电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,8(2)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.(3)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A.104人B.108人C.112人D.120人解题心得分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.对点训练3(1)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 .(2)某林场共有白猫与黑猫1 000只,其中白猫比黑猫多400只,为调查猫的生长情况,采用分层抽样的方法抽取一个容量为n 的样本,若样本中黑猫有6只,则n= .(3)我国南宋数学家秦九韶所著《数书九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约( )A.128石B.64石C.256石D.32石10.2 随机抽样必备知识·预案自诊知识梳理1.一部分个体 数目2.(1)不放回 机会都相等(2)抽签法 随机数法3.(2)编号 分段间隔k 分段 简单随机抽样 (l+k ) (l+2k )4.(1)一定的比例考点自诊1.(1)√ (2)× (3)√ (4)× (5)×2.C 因为调查教师的工资情况需要分年龄,所以使用分层抽样的方法能够正确反映不同年龄的教师的工资情况,按照年龄分层抽样.3.B 根据题目可知,总体是上海市民家庭的存书量,样本是2007位市民家庭的存书量,样本容量是2007,故选B .4.B 由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为20020=10,若在第1组中抽取的数字为006,则抽取的号码满足6+(n-1)×10=10n-4,其中n ∈N *,其中当n=4时,抽取的号码为36;当n=18时,抽取的号码为176;当n=20时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B .5.C ∵用分层抽样方法抽取一个容量为120的样本,A 种型号产品抽取了45件,又∵某工厂生产A ,B ,C 三种不同型号的产品,某月生产产品数量之比依次为m ∶3∶2,∴根据分层抽样的性质得m m+3+2=45120,解得m=3.故选C.关键能力·学案突破例1(1)D (2)D (1)由简单随机抽样的定义知,在每次抽取中每个个体都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是110,所以a=110,b=110.(2)随机数表中第1行第7列的数字为1,所以第一个抽取的为14,被抽取的10个个体的编号依次为14,35,19,11,49,26,50,17,31,20,所以被抽取的第8个个体编号为17.对点训练1(1)A (2)A (1)由于简单随机抽样中每个个体每次被抽到的机会均等,所以个体a “第一次被抽取”的可能性与“第二次被抽取”的可能性是相同的,都为16.故选A.(2)从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个是623,故选A .例2(1)B (2)B (1)由题意得,抽出的号码为以15为公差的等差数列,因为0084号被抽到,所以可知被抽得的号码与84的差为15的整数倍.294-84=210=15×14,其他选项均不满足.故选B .(2)由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.对点训练2(1)A (2)C (1)因为由题可知相邻的两个组的编号分别为14,23,所以样本间隔为23-14=9,所以第一组的编号为14-9=5,所以第四组的编号为5+3×9=32,故选A .(2)900人中抽取样本容量为45的样本,样本组距为900÷45=20,又第一组抽取的编号是5,则编号落在区间[479,719]的人数为(719-479)÷20=12,故选C .例3(1)D (2)18 (3)B (1)(方法1)根据分层抽样的性质得10020000=1200,所以每类人中应抽取的人数分别为4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.(方法2)最喜爱、喜爱、一般、不喜欢的比例为4800∶7200∶6400∶1600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8. (2)因为样本容量n=60,产品总数N=200+400+300+100=1000,所以n N =601000=350.因此应从丙种型号的产品中抽取300×350=18(件). (3)由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×81008100+7488+6912=300×810022500=108.对点训练3(1)6 (2)20 (3)B (1)本题主要考查对分层抽样的理解.根据分层抽样的性质得2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.(2)由题意,白猫、黑猫分别有700,300只,由分层抽样的特点,得n 1000=6300,解得n=20,故答案为20.(3)由题意,抽得样本中含谷27粒,占样本的比例为27216=18,则由此估计总体中谷的含量约为512×18=64(石).。
课时规范练53 算法初步基础巩固组1.如图,若依次输入的x 分别为5π6,π6,相应输出的y 分别为y 1,y 2,则y 1,y 2的大小关系是( )A.y 1=y 2B.y 1>y 2C.y 1<y 2D.无法确定 答案:C解析:由算法框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=√32,所以y 1<y 2.2.(河南六市一模)已知[x]表示不超过x的最大整数.执行如图所示的算法框图,若输入x的值为2.4,则输出z的值为( )A.1.2B.0.6C.0.4D.-0.4答案:D解析:执行该算法框图,输入x=2.4,y=2.4,x=[2.4]-1=1,满足x≥0,x=1.2,y=1.2,x=[1.2]-1=0,满足x≥0,x=0.6,y=0.6,x=[0.6]-1=-1,不满足x≥0,终止循环,z=-1+0.6=-0.4,输出z的值为-0.4.3.(河北石家庄四模)如图是计算1+13+15+…+131的值的算法框图,则图中①②处可以填写的语句分别是( )A.n=n+2,i>16B.n=n+2,i≥16C.n=n+1,i>16D.n=n+1,i≥16答案:A解析:式子1+13+15+…+131中所有项的分母构成公差为2的等差数列1,3,5,…,31,则①处填n=n+2.令31=1+(k-1)×2,k=16,共16项,而1到129共15项,需执行最后一次循环,此时i=16,所以②中应填“i>16”.故选A.4.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的算法框图如图所示,若输入的a0,a1,a2,…,a n分别为0,1,2,…,n.若n=5,根据该算法计算当x=2时多项式的值,则输出的结果为( )A.248B.258C.268D.278答案:B解析:该算法框图是计算多项式f(x)=5x5+4x4+3x3+2x2+x当x=2时的值,f(2)=258,故选B.5.某算法框图如图所示,运行该程序后输出S=( )A.53B.74C.95D.116答案:D解析:根据算法框图可知其功能为计算:S=1+11×2+12×3+…+1n(n+1)=1+1-12+12−13+…+1n−1n+1=1+1-1n+1=2n+1n+1,初始值为n=1,当n=6时,输出S,可知最终赋值S时n=5,所以S=2×5+15+1=116,故选D.6.(湖北武汉模拟)元朝时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个算法框图,若输入的a,b 分别为5,2,则输出的n=( )A.2B.3C.4D.5 答案:C解析:执行算法框图得n=1,a=152,b=4,a≤b 不成立;n=2,a=454,b=8,a≤b 不成立;n=3,a=1358,b=16,a≤b 不成立;n=4,a=40516,b=32,a≤b 成立.故输出的n=4,故选C.综合提升组7.执行如图的算法框图,如果输入的x ∈-π4,π,则输出y 的取值范围是( )A.[-1,0]B.[-1,√2]C.[1,2]D.[-1,1]答案:B解析:流程图计算的输出值为分段函数: y={2cos 2x +sin2x -1,x <π2,cos 2x +2sinx -1,x ≥π2,原问题即求解函数在区间[-π4,π]上的值域.当-π4≤x<π2时,y=2cos 2x+sin2x-1=cos2x+1+sin2x-1=√2sin (2x +π4),-π4≤x<π2,则-14π≤2x+π4<54π,此时函数的值域为[-1,√2]. 当π2≤x≤π时,y=cos 2x+2sinx-1=-sin 2x+2sinx,π2≤x≤π,则0≤sinx≤1,此时函数的值域为[0,1].综上可得,函数的值域为[-1,√2]∪[0,1],即[-1,√2]. 即输出y 的取值范围是[-1,√2].故选B.8.(河南开封一模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的算法框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是( )A.i<7,s=s-1i ,i=2iB.i≤7,s=s -1i,i=2iC.i<7,s=s2,i=i+1D.i≤7,s=s2,i=i+1答案:D解析:由题意可知第一天后剩下12,第二天后剩下122……由此得出第7天后剩下127,结合选项分析得,①应为i≤7,②应为s=s2,③应为i=i+1,故选D.9.如图所示的程序,若最终输出的结果为6364,则在程序中“ ”处应填入的语句为( )A.i>=8B.i>=7C.i<7D.i<8答案:B解析:S=0,n=2,i=1,执行S=12,n=4,i=2;S=12+14=34,n=8,i=3;S=34+18=78,n=16,i=4;S=78+116=1516,n=32,i=5;S=1516+132=3132,n=64,i=6;S=3132+164=6364,n=128,i=7.此时满足题目条件输出的S=6364,∴“ ”处应填上i>=7.故选B.10.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个算法框图(图2),用A i(i=1,2, (10)表示第i个同学的身高,计算这些同学身高的方差,则算法框图①中要补充的语句是( )图1图2A.B=B+A iB.B=B+A i2C.B=(B+A i-A)2D.B=B2+A i2答案:B解析:由s2=(x1-x)2+(x2-x)2+…+(xn-x)2n=x 12+x 22+…+x n 2-2(x 1+x 2+…+x n )x+nx 2n =x 12+x 22+…+x n 2-2nx 2+nx 2n =x 12+x 22+…+x n 2n −x 2,循环退出时i=11,知x 2=(Ai -1)2. 所以B=A 12+A 22+…+A 102,故算法框图①中要补充的语句是B=B+A i 2.故选B.11.执行如图所示的算法框图,若输入的m,n 分别为385,105(图中“m MOD n”表示m 除以n 的余数),则输出的m= .答案:35解析:执行算法框图,可得m=385,n=105,r=70,m=105,n=70,不满足条件r=0;r=35,m=70,n=35,不满足条件r=0;r=0,m=35,n=0,满足条件r=0,退出循环,输出的m 值为35.创新应用组12.(河南郑州二模)执行如图的算法框图,如果输入的ε为0.01,则输出s 的值为( )A.2-124B.2-125C.2-126D.2-127答案:C解析:执行算法框图,s=1,x=12,不满足条件x<0.01; s=1+12,x=122,不满足条件x<0.01; s=1+12+122,x=123,不满足条件x<0.01; ……由于126>0.01,而127<0.01,可得当s=1+12+122+…+126,x=127时,满足条件x<0.01,输出s=1+12+122+…+126=2-126.故选C. 13.(河南郑州模拟)我们可以用随机数法估计π的值,如图所示的算法框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A.3.119B.3.126C.3.132D.3.151答案:B解析:在空间直角坐标系O-xyz 中,不等式组{0<x <1,0<y <1,0<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组{0<x <1,0<y <1,0<z <1,x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211000,即π≈3.126,故选B.。
第十章 统计、统计案例第1讲 随机抽样 基础知识整合1.简单随机抽样(1)定义:设一个总体含有N 01逐个不放回地抽取n 个个体作为样本(n ≤N ),02都相等,就把这种抽样方法叫做简单随机抽样.(2)03抽签法和04随机数法. (3)抽签法与随机数法的区别与联系抽签法和随机数法都是简单随机抽样方法,但是抽签法适合在总体和样本都较少,容易搅拌均匀时使用,而随机数法除了适合总体和样本都较少的情况外,还适用于总体较多但是需要的样本较少的情况,这时利用随机数法能够快速地完成抽样.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 05编号.(2)06分段间隔k ,对编号进行07分段.当N n 是整数时,取k =N n. (3)在第108简单随机抽样确定第一个个体编号l (l ≤k ).(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第209(l +k ),再加k 得到第310(l +2k ),依次进行下去,直到获取整个样本.3.分层抽样(1)11互不交叉的层,然后按照一定的12比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)13差异明显的几个部分组成时,往往选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. 2.系统抽样是等距抽样,入样个体的编号相差N n的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘以抽样比.1.(2019·四川资阳模拟)某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为( )A .6B .4C .3D .2答案 C解析 抽取的女生人数为936+18×18=3,故选C. 2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3答案 D解析 随机抽样包括:简单随机抽样、系统抽样和分层抽样.随机抽样的特点就是每个个体被抽到的概率都相等.故选D.3.(2019·海口调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A .15B .18C .21D .22 答案 C解析 系统抽样的抽取间隔为244=6,若抽到的最小编号为3,则抽取到的最大编号为6×3+3=21.故选C.4.(2020·郑州摸底)某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示:此要进行分层抽样,那么在分层抽样时,每类人中应抽选的人数分别为( )A .25,25,25,25B .48,72,64,16C .20,40,30,10D .24,36,32,8答案 D解析 因为抽样比为10020000=1200,所以每类人中应抽选的人数分别为4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.故选D.5.(2019·广东省七校联考)假设要考察某公司生产的狂犬疫苗的剂量是否达标,现用随机数法从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001,…,499进行编号,若从随机数表第7行第8列的数开始向右读,则抽取的第3支疫苗的编号为________.(下面摘取了随机数表的第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 答案 068解析 由题意,得从随机数表第7行第8列的数开始向右读,符合条件的前三个编号依次是331,455,068,故抽取的第3支疫苗的编号是068.核心考向突破考向一 简单随机抽样例1 (1)“七乐彩”的中奖号码是从分别标有1,2,…,30的30个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是( )A .系统抽样法B .抽签法C .随机数法D .其他抽样方法答案 B解析 30个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.故选B. (2)(2019·江西名校模拟)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 0198 32049234493582003623486969387481A.08 B .07 C .02 D .01答案 D解析 选出来的5个个体的编号依次是08,02,14,07,01,故选D.(1)简单随机抽样需满足:①被抽取的样本总体的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.(2)抽签法与随机数法的适用情况①抽签法适用于总体中个数较少的情况,随机数法适用于总体中个数较多的情况. ②一个抽样试验能否用抽签法,关键看两点: 一是抽签是否方便;二是号签是否易搅匀.[即时训练] 1.某中学开学后从高一年级的学生中随机抽取90名学生进行家庭情况调查,经过一段时间后再次从这个年级随机抽取100名学生进行学情调查,发现有20名同学上次被抽到过,估计这个学校高一年级的学生人数为( )A .180B .400C .450D .2000答案 C解析 设这个学校高一年级的学生人数约为x ,则90x =20100,∴x =450.故选C.2.福利彩票“双色球”中红色球的号码可从编号为01,02,…,33的33个数中随机选取,某彩民利用下面的随机数表选取6个数作为6个红色球的号码,选取方法是从下列随机数表中第1行第6列的数字开始由左到右依次选取两个数字,则选出来的第6个红色球的号码为( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76A.23 B .09 C .02 D .17答案 C解析 从随机数表第1行第6列的数字开始由左到右依次选取两个数字,则选出的6个红色球的号码依次为21,32,09,16,17,02,故选出的第6个红色球的号码为02.故选C.考向二 分层抽样例2 (1)(2019·江西新八校第二次联考)某学校高一年级1802人,高二年级1600人,高三年级1499人,现采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( )A .35,33,30B .36,32,30C .36,33,29D .35,32,31答案 B解析 先将每个年级的人数凑整,得高一1800人,高二1600人,高三1500人,则三个年级的人数所占比例分别为1849,1649,1549,因此,各年级抽取人数分别为98×1849=36,98×1649=32,98×1549=30,故选B.(2)(2020·河南百校联盟仿真)2020年夏季来临,某品牌饮料举行夏季促销活动,瓶盖内部分别印有标识A “谢谢惠顾”、标识B “再来一瓶”以及标识C “品牌纪念币一枚”,每箱中印有A ,B ,C 标识的饮料数量之比为3∶1∶2,若顾客购买了一箱(12瓶)该品牌饮料,则兑换“品牌纪念币”的数量为( )A .2B .4C .6D .8 答案 B解析 根据题意,得 “品牌纪念币一枚”的瓶数占总体的23+1+2=13,则一箱中兑换“品牌纪念币”的数量为13×12=4.分层抽样的步骤(1)将总体按一定标准分层.(2)计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量.(3)在每一层进行抽样(可用简单随机抽样或系统抽样).[即时训练] 3.(2019·广西南宁二中6月份考试)如下饼图,某学校共有教师120人,从中选出一个30人的样本,其中被选出的青年女教师的人数为( )A.12 B.6C.4 D.3答案 D解析青年教师的人数为120×30%=36,所以青年女教师为12人,故青年女教师被选出的人数为12×30120=3.故选D.4.(2019·河北五个一名校联盟第一次诊断)经调查,某市骑行共享单车的老年人、中年人、青年人的比例为1∶3∶6,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中中年人人数为12,则n=( )A.30 B.40C.60 D.80答案 B解析由题意,设老年人和青年人人数分别为x,y,由分层抽样,得x∶12∶y=1∶3∶6,解得x=4,y=24,则n=4+12+24=40,故选B.考向三系统抽样例3 (1)(2019·全国卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A .8号学生B .200号学生C .616号学生D .815号学生答案 C解析 根据题意,系统抽样是等距抽样,所以抽样间隔为1000100=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C.(2)(2020·河南部分省示范性高中1月份联考)某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400进行编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码为( )A .416B .432C .448D .464 答案 A解析 设第n 组抽到的号码是a n ,则{a n }构成以80为公差的等差数列, 所以a 3=a 1+80×2=160+a 1,a 4=a 1+80×3=240+a 1,所以a 3+a 4=2a 1+80×5=432, 解得a 1=16,所以a 6=16+80×5=416.故选A.(1)系统抽样适用于元素个数很多且均衡的总体,样本容量也较大. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样,一旦起始编号确定,其他编号也就确定了.(4)若总体容量不能被样本容量整除可以先从总体中随机地剔除几个个体,使总体容量能被样本容量整除.(5)样本容量是几就分几段,每段抽取一个个体.[即时训练] 5.将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为 ( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9答案 B解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.故选B.6.(2019·湖北名校4月模拟)某学校从编号依次为01,02,…,90的90个学生中采用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中来自相邻的两个组的学生的编号分别为14,23,则该样本中来自第四组的学生的编号为________.答案 32解析 样本间隔为23-14=9,则来自第一组的学生的编号为5,来自第四组的学生的编号为23+9=32.。
309教育网 309教育资源库 单元质检卷十 算法初步、统计与统计案例(时间:45分钟 满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.(2018河北唐山三模,4)总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )66 67 40 67 14 64 05 71 95 86 11 05 65 09 6876 83 20 37 90 57 16 00 11 66 14 90 84 45 1175 73 88 05 90 52 83 20 37 90A.05B.09C.11D.202.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A.2B.4C.5D.63.(2018河南安阳押题卷,6)我们可以用随机模拟的方法估计π的值,如下程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为527,则由此可估计π的近似值是 ()A.126B.3.132C.3.151D.3.1624.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()。
单元质检十统计与统计案例(时间:45分钟满分:100分)单元质检卷第20页一、选择题(本大题共6小题,每小题8分,共48分)1.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13答案:B解析:间隔数k==16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.2.(2015某某质量检测)某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是()A.300B.400C.500D.600答案:D解析:依题意得,题中的1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是1 000×(0.035+0.015+0.010)×10=600,故选D.3.某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数小于该班女生成绩的平均数答案:C解析:五名男生成绩的平均数为(86+94+88+92+90)=90,五名女生成绩的平均数为(88+93+93+88+93)=91,五名男生成绩的方差为==8,五名女生成绩的方差为=6,所以,故选C.4.(2015某某某某模拟)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②设有一个线性回归方程y=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程y=bx+a必过点();④一个2×2列联表中,由计算得K2=13.079,则有99%的把握认为这两个变量间有关系.其中错误的个数是()A.0B.1C.2D.3〚导学号32470645〛答案:B解析:一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;线性回归方程中x的系数具备直线斜率的功能,对于线性回归方程y=3-5x,当x 增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y=bx+a必过点(),③正确;因为χ2=13.079>6.635,故有99%的把握认为这两个变量有关系,④正确.故选B.5.(2015某某第一次质量预测)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据某地某日早7点到晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()A.甲B.乙C.甲、乙相等D.无法确定答案:A解析:从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地浓度的方差较小.6.(2015某某某某双基考试)对于下列表格所示五个散点,已知求得的线性回归方程为y=0.8x-155,则实数m的值为()A.8B.8.2C.8.4D.8.5〚导学号32470646〛答案:A解析:=200,.样本中心点为,将样本中心点代入y=0.8x-155,可得m=8.故A正确.二、填空题(本大题共3小题,每小题8分,共24分)7.(2015某某一模)若一组样本数据2,3,7,8,a的平均数为5,则该组数据的方差s2=.答案:解析:∵=5,∴a=5.∴s2=[(2-5)2+(3-5)2+(7-5)2+(8-5)2+(5-5)2]=.8.调查某高中1 000名学生的身高情况得下表,已知从这批学生随机抽取1名,抽到偏矮男生的概率为0.12,若用分层抽样的方法,从这批学生中随机抽取50名,偏高学生有名.〚导学号32470647〛答案:11解析:由题意可知x=1 000×0.12=120,所以y+z=220.所以偏高学生占学生总数的比例为,所以随机抽取50名学生中偏高学生有50×=11(名).9.给出下列5种说法:①在频率分布直方图中,众数左边和右边的直方图的面积相等;②标准差越小,样本数据的波动也越小;③回归分析就是研究两个相关事件的独立性;④在回归分析中,预报变量是由解释变量和随机误差共同确定的;⑤相关指数R2是用来刻画回归效果的,R2的值越大,说明残差平方和越小,回归模型的拟合效果越好.其中说法正确的是(请将正确说法的序号写在横线上).答案:②④⑤解析:①在频率分布直方图中,中位数左边和右边的直方图的面积相等,故①错误.②标准差是衡量样本数据中的波动程度,标准差越小,数据越稳定,样本数据的波动也越小,故②正确.③回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,故③错误.④在回归分析中,预报变量是由解释变量和随机误差共同确定的,故④正确.⑤根据相关性指数的定义和性质可知,相关指数R2是用来刻画回归效果的,R2的值越大,说明残差平方和越小,回归模型的拟合效果越好.故⑤正确.三、解答题(本大题共2小题,共28分)10.(14分)(2015某某月考)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.解:(1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此抽到积极参加班级工作的学生的概率是P 1=,又因为不太主动参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=.(2)由χ2统计量的计算公式得χ2=≈11.538,由于11.538>10.828,所以有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系.11.(14分)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下表:甲27 38 30 37 35 31乙33 29 38 34 28 36(1)画出茎叶图;(2)分别求出甲、乙两名自行车赛手最大速度(单位:m/s)数据的平均数、方差,并判断选谁参加比赛更合适?解:(1)画茎叶图如图所示,中间数为数据的十位数.(2)由茎叶图把甲、乙两名选手的6次成绩按从小到大的顺序依次排列为甲:27,30,31,35,37,38;乙:28,29,33,34,36,38.所以×(27+30+31+35+37+38)=33,×(28+29+33+34+36+38)=33.×[(-6)2+(-3)2+(-2)2+22+42+52]=,×[(-5)2+(-4)2+0+12+32+52]=.因为,所以乙的成绩更稳定,故乙参加比赛更合适.。
单元检测十 算法、统计与统计案例(提升卷)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间100分钟,满分130分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·上海十四校联考)若x 1,x 2,x 3,…,x 10的平均数为3,则3(x 1-2),3(x 2-2),3(x 3-2),…,3(x 10-2)的平均数为( ) A .3B .9C .18D .27 答案 A解析 由题意得x 1+x 2+x 3+…+x 10=30,所以3(x 1-2)+3(x 2-2)+3(x 3-2)+…+3(x 10-2)=3(x 1+x 2+x 3+…+x 10)-60=30,所以所求平均数3(x -2)=3010=3,故选A.2.(2018·青岛模拟)一个公司有8名员工,其中6位员工的月工资分别为5 200,5 300,5 500,6 100,6 500,6 600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是( ) A .5800B .6000C .6200D .6400 答案 D解析 由题意知,当另外两位员工的工资都小于5200时,中位数为(5300+5500)÷2=5400;当另外两位员工的工资都大于6600时,中位数为(6100+6500)÷2=6300,所以8位员工月工资的中位数的取值区间为[5 400,6 300],所以这8位员工月工资的中位数不可能是6400,故选D.3.若x 1,x 2,…,x 2019的平均数为3,标准差为4,且y i =-3(x i -2),i =1,2,…,2019,则新数据y 1,y 2,…,y 2019的平均数和标准差分别为( ) A .-9,12 B .-9,36 C .-3,36 D .-3,12答案 D解析 由平均数和标准差的性质可知,若x 1,x 2,x 3,…,x n 的平均数为x ,标准差为s ,则kx 1+b ,kx 2+b ,kx 3+b ,…,kx n +b 的平均数为k x +b ,标准差为|k |s ,据此结合题意可得y1,y2,…,y2019的平均数为-3(3-2)=-3,标准差为3×4=12,故选D.4.执行如图所示的程序框图,若输出的结果为1,则输入x的值为( )A.-2或-1或3 B.2或-2C.3或-1 D.3或-2答案 D解析由-2x-3=1 ,解得x=-2 ,因为-2>2 不成立,所以-2是输入的x的值;由log3(x2-2x)=1 ,即x2-2x=3,解得x=3或x=-1(舍去).综上,x的值为-2或3,故选D.5.(2018·济南模拟)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图,若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱号者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )A .2B .4C .5D .6 答案 B解析 由茎叶图得班里40名学生中,获得“诗词达人”称号的有8人,获得“诗词能手”称号的有16人,获得“诗词爱好者”称号的有16人,则由分层抽样的概念得选取的10名学生中,获得“诗词能手”称号的人数为10×1640=4,故选B.6.某市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛,他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86.若正实数a ,b 满足a ,G ,b 成等差数列,且x ,G ,y 成等比数列,则1a +4b的最小值为( )A.49B .2C.94D .9答案 C解析甲班学生成绩的中位数是80+x=81,解得x=1.由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,又乙班学生成绩的平均数是86,所以86×7=598+y,解得y=4.若正实数a,b满足a,G,b成等差数列,且x,G,y成等比数列,则2G=a+b,xy=G2,即有a+b=4,则1a+4b=14(a+b)·⎝⎛⎭⎪⎫1a+4b=14⎝⎛⎭⎪⎫1+4+ba+4ab≥14⎝⎛⎭⎪⎫5+2ba·4ab=14×9=94,当且仅当a=43,b=83时,取等号.故选C.7.某校九年级有400名学生,随机抽取了40名学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,用样本估计总体,下列结论正确的是( )A.该校九年级学生1分钟仰卧起坐的次数的中位数为25B.该校九年级学生1分钟仰卧起坐的次数的众数为24C.该校九年级学生1分钟仰卧起坐的次数超过30的人数约为80D.该校九年级学生1分钟仰卧起坐的次数少于20的人数约为8答案 C解析第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,所以中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,所以x=1.25,所以中位数为26.25,故A错误;最高矩形是第三组数据,第三组数据的中间值为27.5,所以众数为27.5,故B错误;学生1分钟仰卧起坐的成绩超过30次的频率为0.04×5=0.2,所以超过30次的人数为400×0.2=80,故C正确;学生1分钟仰卧起坐的成绩少于20次的频率为0.02×5=0.1,所以1分钟仰卧起坐的成绩少于20次的人数为400×0.1=40,故D错误.故选C.8.某程序框图如图所示,若输出S=3,则判断框中M为( )A.k<14?B.k≤14? C.k≤15? D.k>15? 答案 B解析由程序框图可知S=11+2+12+3+…+1k+k+1,因为1k+k+1=k+1-k,所以S=2-1+3-2+4-3+…+k+1-k=k+1-1,所以S=k+1-1=3,解得k=15,即当k=15时程序退出,故选B.9.某班一次测试成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息可确定被抽测的人数及分数在[90,100]内的人数分别为( )A.20,2B.24,4C.25,2D.25,4答案 C解析 由频率分布直方图可得分数在[50,60)内的频率是0.008×10=0.08,又由茎叶图可得分数在[50,60)内的频数是2,则被抽测的人数为20.08=25.又由频率分布直方图可得分数在[90,100]内的频率与分数在[50,60)内的频率相同,则频数也相同,都是2,故选C. 10.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是认为“学生性别与支持该活动没有关系”的把握是( )A.99.9%B .99%C .1%D .0.1% 答案 C解析 因为 6.635<6.705<10.828,所以有1%的把握认为“学生性别与支持该活动没有关系”,故选C.11.设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到线性回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该中学某高中女生身高增加1cm ,则其体重约增加0.85kgD .若该中学某高中女生身高为160cm ,则可断定其体重必为50.29kg 答案 D解析 y 与x 具有正线性相关关系,A 正确;由线性回归方程的性质可知,B 正确;身高每增加1 cm ,体重约增加0.85 kg ,C 正确;某女生身高为160 cm ,则其身高约为50.29 kg ,D 错误,故选D.12.以下四个结论,正确的是( )①质检员从匀速传递的产品生产流水线上,每间隔10分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在频率分布直方图中,所有小矩形的面积之和为1;③在线性回归方程y ^=0.2x +12中,当变量x 每增加一个单位时,变量y 一定增加0.2个单位;④对于两个分类变量X 与Y ,求出其统计量K 2的观测值k ,观测值k 越大,我们认为“X 与Y有关系”的把握程度就越大. A .①④B.②③C.①③D.②④ 答案 D解析 对于①,易得这样的抽样为系统抽样,①错误;对于②,由频率分布直方图的概念易得②正确;对于③,由线性回归方程的概念易得变量y 约增加0.2个单位,③错误;对于④,由独立性检验易得④正确.综上所述,故选D.第Ⅱ卷(非选择题 共70分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据平均数x ,则x 的值为________.答案 19.7解析 由题意得平均数x =14×2+17×1+20×3+23×42+1+3+4=19.7.14.抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为________. 答案 20解析 由数据可得甲的平均数是15(65+80+70+85+75)=75,方差为15[(65-75)2+(80-75)2+(70-75)2+(85-75)2+(75-75)2]=50,乙的平均数是15(80+70+75+80+70)=75,方差为15[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20<50,故成绩较稳定的学生为乙,其方差为20.15.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在[40,60)内的汽车有________辆.答案 80解析 由频率分布直方图可得时速在[40,60)内的频率为(0.01+0.03)×10=0.4,则时速在[40,60)内的汽车有0.4×200=80(辆).16.下列命题中,正确的命题是________.(写出所有正确命题的序号)①回归直线y ^=b ^x +a ^恒过样本点的中心(x ,y ),且至少过一个样本点; ②将一组数据的每个数据都加一个相同的常数后,方差不变; ③用R 2来刻画回归效果,R 2越接近0,说明回归的效果越好;④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6. 答案 ②④解析 回归直线y ^=b ^x +a ^恒过样本点的中心(x ,y ),不一定过样本点,①错误;将一组数据的每个数据都加一个相同的常数后,数据的波动性不变,故方差不变,②正确;用R 2来刻画回归效果,R 2越接近1,说明回归的效果越好,③错误;④中系统抽样方法是正确的.故正确的命题有②④.三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)某网站针对“2019年法定节假日调休安排”提出的A ,B ,C 三种放假方案进行了问卷调查,调查结果如下:(1)从所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从支持A 方案的人中抽取了6人,求n 的值;(2)从支持B 方案的人中,用分层抽样的方法抽取5人,这5人中在35岁以下的人数是多少?35岁以上(含35岁)的人数是多少? 解 (1)由题意知,6100+200=n200+400+800+100+100+400,解得n =40.(2)这5人中,35岁以下的人数为5400+100×400=4,35岁以上(含35岁)的人数为5400+100×100=1.18.(12分)每年的春节后,某市市政府都会发动公务员参与到植树活动中去.为保证树苗的质量,林管部门在植树前会对树苗进行检测,现从甲、乙两种树苗中各抽取了10株树苗,量出的高度如下(单位:厘米).甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,34,26,10,44,46.(1)根据量出的高度,完成茎叶图;(2)根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论. 解 (1)茎叶图如图所示.(2)统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗高度的中位数为27,乙种树苗高度的中位数为32.19.(13分)某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系.参考数据:参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 根据所给数据得到如下2×2列联表:根据2×2列联表中的数据,得到K 2的观测值为 k =50×(30×5-10×5)2(30+10)(5+5)(30+5)(10+5)≈2.38<2.706. ∴不能在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系. 20.(13分)某农科所对冬季昼夜温差x (℃)与某反季节新品种大豆种子的发芽数y (颗)之间的关系进行了分析研究,他们分别记录了12月1日至12月5日每天的昼夜温差与实验室每天每100颗种子的发芽数,得到的数据如下表所示:该农科所确定的研究方案是:先从这5组数据中选取3组求线性回归方程,剩下的2组数据用于线性回归方程的检验.(1)请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^; (2)若由线性回归方程得到的估计数据与所选的验证数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?如果可靠,请预测温差为14℃时种子的发芽数;如果不可靠,请说明理由. 解 (1)由已知得x =11+13+123=12, y =25+30+263=27, 则b ^=52,a ^=y -b ^x =-3.所以y 关于x 的线性回归方程为y ^=52x -3.(2)当x =10时,y ^=52×10-3=22,|22-23|<2;当x =8时,y ^=52×8-3=17,|17-16|<2.所以(1)中所得到的线性回归方程是可靠的. 当x =14时,有y ^=52×14-3=32,即预测当温差为14℃时,每天每100颗种子的发芽数约为32颗.。
高考数学一轮复习:算法初步、统计、统计案例第一节算法初步命题分析预测学科核心素养从近五年的考查情况来看,本节是高考的必考内容,一般以选择题、填空题的形式出现,难度中等偏下.主要的命题角度有选择结构与分段函数相结合,求循环结构的输入、输出值,补全程序框图等.本节通过算法流程图及其应用考查考生的数学运算和逻辑推理核心素养.授课提示:对应学生用书第233页知识点算法与算法流程图1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.算法流程图定义:流程图又称程序框图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构名称内容顺序结构选择结构循环结构定义由若干个依次执行的步骤组成,这是任何一个算法都离不开的基本结构算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件反复执行某些步骤的情况,反复执行的步骤称为循环体算法流程图•温馨提醒•1.易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.1.(2021·唐山摸底)如图所示的算法流程图的功能是()A .求1-13+15-17+…-119的值B .求1+13+15+17+…+119的值C .求1+13+15+17+…+121的值D .求1-13+15-17+…+121的值解析:输入a =1,n =1,S =0;S =1,a =-1,n =3;S =1-13,a =1,n =5;S =1-13+15,a =-1,n =7;S =1-13+15-17,a =1,n =9;…;S =1-13+15-17+…-119,a =1,n =21,21>19,退出循环.输出S =1-13+15-17+…-119.答案:A2.执行如图所示的算法流程图,则输出S 的值为________.解析:按照算法流程图依次循环运算,当k =5时,停止循环,当k =5时,S =sin 5π6=12. 答案:123.(易错题)若[x ]表示不超过x 的最大整数,执行如图所示的算法流程图,则输出S 的值为________.解析:由算法流程图可以看出,当n=8时,S>6时,算法结束,故输出S=[0]+[2]+[4]+[6]+[8]=7.答案:7授课提示:对应学生用书第234页题型一算法流程图输出结果问题1.(2020·高考全国卷Ⅰ)执行下面的程序框图,则输出的n=()A.17B.19C.21 D.23解析:由程序框图可知S=1+3+5+…+(2m-1)=m2(m∈N+),由S>100,得m>10(m∈N+),故当m=11时循环结束,输出的值为n=2m-1=21.答案:C2.(2021·哈尔滨六中期中测试)执行如图所示的算法流程图,若输出的结果是1516,则输入的a 为( )A .3B .6C .5D .4解析:第1次循环,n =1,S =12;第2次循环,n =2,S =12+122;第3次循环,n =3,S =12+122+123;第4次循环,n =4,S =12+122+123+124=1516.因为输出的结果为1516,所以判断框的条件为n <4,所以输入的a 为4. 答案:D3.(2020·高考江苏卷)如图是一个算法流程图,若输出y 的值为-2,则输入x 的值是_________.解析:由于2x >0,所以y =x +1=-2, 解得x =-3.答案:-3解决程序框图推结果问题要注意几个常用变量(1)计数变量:用来记录某个事件发生的次数,如i =i +1. (2)累加变量:用来计算数据之和,如S =S +i . (3)累乘变量:用来计算数据之积,如p =p ×i .题型二 算法流程图的补全问题[例] (1)(2019·高考全国卷Ⅰ)如图是求12+12+12的程序框图,图中空白框中应填入( )A .A =12+AB .A =2+1AC .A =11+2AD .A =1+12A(2)(2021·石家庄模拟)执行如图所示的算法流程图,若输出的s =25,则判断框中可填入的条件是( )A .i ≤4B .i ≥4C .i ≤5D .i ≥5[解析] (1)对于选项A ,A =12+A .当k =1时,A =12+12,当k =2时,A =12+12+12,故A 正确;经验证选项B ,C ,D 均不符合题意.(2)执行算法流程图,i =1,s =100-5=95;i =2,s =95-10=85;i =3,s =85-15=70;i =4,s =70-20=50;i =5,s =50-25=25;i =6,退出循环.此时输出的s =25.结合选项知,选C .[答案] (1)A (2)C算法流程图的补全及逆向求解问题(1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全算法流程图.[题组突破]1.如图所示的算法流程图是为了求出满足2+32+43+…+n +1n<2 019的最大正整数n 的值,那么在中,应填入( )A .T <2 019B .T ≤2 019C .T ≥2 018D .T ≥2 019解析:执行程序框图,T =0,i =1;T =0+2=2,i =2;T =2+2+12=2+32,i =3;…;T =2+32+43+…+i +1i ,i =i +1.由题中算法流程图的功能是求出满足2+32+43+…+n +1n <2 019的最大正整数n 的值,知T =2+32+43+…+i +1i ≥2 019满足判断框内成立的条件,此时结束循环.故判断框中应填T ≥2 019. 答案:D2.(2021·洛阳质检)执行如图所示的算法流程图,若输出的S =2524,则判断框内填入的条件不可以是( )A .k ≤7B .k <7C .k ≤8D .k <8解析:模拟执行算法流程图,可得S =0,k =0;k =2,S =12;k =4,S =12+14;k =6,S =12+14+16;k =8,S =12+14+16+18=2524.由题意,此时应不满足条件,退出循环,输出S 的值为2524.结合选项可得判断框内填入的条件不可以是“k ≤8”. 答案:C算法流程图应用中的核心素养逻辑推理——算法与数学文化的交汇问题1.辗转相除法:求两个正整数的最大公约数的一种方法,这种算法是由欧几里得在公元前330年左右首先提出的,因此又叫欧几里得算法.2.更相减损术:任给两个正整数(若是偶数,先用2约数),以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数,直到所得的数相等为止,则这个数(等数)(或这个数与约简的数的乘积)就是所求的最大公约数.3.秦九韶算法:我国南宋数学家秦九韶在他的代表作《数书九章》中提出的一种用于计算一元n 次多项式的值的方法.[例] 南宋数学家秦九韶在《数书九章》中提出的秦九韶算法至今仍是多项式求值比较先进的算法.已知f (x )=2 018x 2 017+2 017x 2 016+…+2x +1,如图所示的算法流程图是求f (x 0)的值,在“▭”中应填的语句是( )A.n=i B.n=i+1C.n=2 018-i D.n=2 017-i[解析]由秦九韶算法得f(x)=2 018x2 017+2 017x2 016+…+2x+1=(…((2 018x+2 017)x+2 016)x+…+2)x+1,所以算法流程图的执行框内应填写的语句是n=2 018-i.[答案] C本例将算法流程图与数学史有机地交融在一起,不仅考查了应用算法思想和逻辑结构分析、解决实际问题,更弘扬了数学文化,陶冶考生的情操.[对点训练]如图所示的算法流程图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该算法流程图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:第一次执行,输入a=14,b=18,因为a<b,所以b=18-14=4;第二次执行,因为a=14,b=4,a>b,所以a=14-4=10;第三次执行,因为a=10,b=4,a>b,所以a=10-4=6;第四次执行,因为a=6,b=4,a>b,所以a=6-4=2;第五次执行,因为a=2,b =4,a<b,所以b=4-2=2,此时a=b=2.答案:B。
2020版高考文科数学(北师大版)一轮复习试题
课时规范练47算法初步
基础巩固组
1.如图,若依次输入的x分别为,相应输出的y分别为y1,y2,则y1,y2的大小关系是()
A.y1=y2
B.y1>y2
C.y1<y2
D.无法确定
2.(2018河南郑州三模,3)阅读程序框图,该算法的功能是输出()
A.数列{2n-1}的第4项
B.数列{2n-1}的第5项
C.数列{2n-1}的前4项的和
D.数列{2n-1}的前5项的和
3.(2018安徽六安模拟,5)某程序框图如图所示,则输出的n值是()
A.21
B.22
C.23
D.24
4.执行如图所示的程序框图,若输入的x=2 017,则输出的i=()
A.2
B.3
C.4
D.5
5.执行如图所示的程序框图,如果输入的x,y∈R,那么输出的S的最大值为()
A.0
B.1
C.2
D.3
6.(2018山东、湖北重点中学冲刺模拟,5)按如图所示的程序框图,某同学在区间[0,9]上随机地取一个数作为x输入,则该同学能得到“OK”的概率是()
A. B. C. D.
7.(2018山西模拟)阅读下列程序:
如果输入x=-2,则输出结果为()
A.2
B.-12
C.10
D.-4
8.(2018湖南长郡中学开学考试,6)执行如图所示的程序框图输出的结果是()。
单元质检卷十算法初步、统计与统计案例(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.(2018河北唐山三模,4)总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为()66 67 40 67 1464 05 71 95 8611 05 65 09 6876 83 20 37 9057 16 00 11 6614 90 84 45 1175 73 88 05 9052 83 20 37 90A.05B.09C.11D.202.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A.2B.4C.5D.63.(2018河南安阳押题卷,6)我们可以用随机模拟的方法估计π的值,如下程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为527,则由此可估计π的近似值是()A.126B.3.132C.3.151D.3.1624.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()5.(2019届福建形成性测试卷,7)某市在对两千多名出租车司机的年龄进行的调查中,从两千多名出租车司机中随机抽选100名司机,已知这100名司机的年龄都在20岁至50岁之间,且根据调查结果得出的年龄情况频率分布直方图如图所示(部分图表污损).利用这个残缺的频率分布直方图,可估计该市出租车司机年龄的中位数大约是()A.31.4岁B.32.4岁C.33.4岁D.36.4岁6.在利用最小二乘法求回归方程y=0.67x+54.9时,用到了下面表中的5组数据,则表格中a的值为()A.68B.70C.75D.72二、填空题(本大题共3小题,每小题7分,共21分)7.(2018重庆二诊,13)某公司对一批产品的质量进行检测,现采用系统抽样的方法从100件产品中抽取5件进行检测,对这100件产品随机编号后分成5组,第一组1~20号,第二组21~40号,…,第五组81~100号,若在第二组中抽取的编号为24,则在第四组中抽取的编号为.8.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线大约是分.9.(2018陕西宝鸡质量检测三,14)已知a、b、c为集合A={1,2,3,4,5}中三个不同的数,通过如图所示算法框图给出的算法输出一个整数a,则输出的数a=5的概率是.三、解答题(本大题共3小题,共37分)10.(12分)“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出如图茎叶图.(1)根据茎叶图,比较两城市满意度评分的平均值和方差(不要求计算出具体值,得出结论即可);(2)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成下列2×2列联表,并据此样本分析你是否有95%的把握认为城市拥堵与认可共享单车有关.P(χ2>k0 )0.050.01k03.8416.635参考公式11.(12分)(2018安徽六安仿真模拟,18)某地级市共有200 000名中小学生,其中有7%的学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5∶3∶2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1 000元、1 500元、2 000元.经济学家调查发现,当地人均可支配年收入较上一年每增加n%,一般困难的学生中有3n%会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有2n%转为一般困难,特别困难的学生中有n%转为很困难.现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x取13时代表2013年,x与y(万元)近似满足关系式y=C1·,其中C1,C2为常数.(2013年至2019年该市中学生人数大致保持不变)其中k i=log2y i,k i(1)估计该市2018年人均可支配年收入;(结果精确到0.1)(2)求该市2018年的“专项教育基金”的财政预算大约为多少?附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线方程v=βu+α的斜率和截距--,α=-β.的最小二乘估计分别为β=-12.(13分)(2018江西上饶检测)某高中有高一新生500名,分成水平相同的A,B两类教学实验,为对比教学效果,现用分层抽样的方法从A,B两类学生中分别抽取了40人,60人进行测试.(1)求该学校高一新生A,B两类学生各多少人?(2)经过测试,得到以下三个数据图表:75分以上A,B两类参加测试学生成绩的茎叶图图1100名测试学生成绩的频率分布直方图图2100名学生成绩频率分布表:①先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;②该学校拟定从参加考试的79分以上(含79分)的B类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.参考答案单元质检卷十算法初步、统计与统计案例1.B从随机数表第1行的第9列和第10列数字开始由左向右读取,符合条件的编号有14,05,11,05,09,因为05出现了两次,所以选出来的第4个个体的编号为09.2.B由题得:诗词达人有8人,诗词能手有16人,诗词爱好者有16人,分层抽样抽选10名学生,所以诗词能手有16×=4人.3.D由程序框图可得x2+y2+z2<1发生的概率为π×13×=.当输出的结果为527时,x2+y2+z2<1发生的概率为,所以≈,解得π≈=3.162,故选D.4.D根据四个列联表的等高条形图知,图形D中不服药与服药时患禽流感的差异最大,它最能体现该药物对预防禽流感有效果.故选D.5.A由频率分布直方图可知[20,25)的频率为0.1,[25,30)的频率为0.3,[30,35]的频率为0.35.因为0.1+0.3<0.5<0.1+0.3+0.35,所以中位数x0∈(30,35).由0.1+0.3+(x0-30)·0.07=0.5,得x0≈31.43,故选A.6.A由题意可得=(10+20+30+40+50)=30,=(62+a+75+81+89)=(a+307),因为回归直线方程y=0.67x+54.9过样本点的中心,所以(a+307)=0.67×30+54.9,解得a=68.7.64设在第一组中抽取的号码为a1,则在各组中抽取的号码构成首项为a1,公差为20的等差数列,即a n=a1+(n-1)×20,又在第二组中抽取的号码为24,即a1+20=24,所以a1=4,所以在第四组中抽取的号码为4+(4-1)×20=64.8.80因为参加笔试的400人中择优选出100参加面试,所以每个人被择优选出的概率P==.因为随机调查24名笔试者的成绩,所以估计能够参加面试的人数为24×=6,观察题中表格可知,分数在[80,85)的有5人,分数在[85,90]的有1人,故面试的分数线大约为80分.9.由算法可知输出的a是a、b、c中最大的一个,若输出的数为5,则这三个数中必须要有5,从集合A={1,2,3,4,5}中任选三个不同的数共有10种取法:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},满足条件的有6种,故所求概率为.10.解 (1)A城市满意度评分的平均值小于B城市满意度评分的平均值;A城市满意度评分的方差大于B城市满意度评分的方差.(2)2×2列联表如下:χ2=-=≈2.667<3.841,所以没有95%的把握认为城市拥堵与认可共享单车有关.11.解 (1)因为=(13+14+15+16+17)=15,所以(x i-)2=(-2)2+(-1)2+12+22=10.由k=log2y得k=log2(C1·)=log2C1+C2x,=,log2C1=-C2=1.2-×15=-0.3,所以C1=2-0.3≈0.8,所以y=0.8×.所以C2=---当x=18时,2018年人均可支配年收入y=0.8×21.8=0.8×3.5=2.8(万).(2)由题意知2017年时该市享受“国家精准扶贫”政策的学生共200 000×7%=14 000(人),一般困难、很困难、特别困难的中学生依次有7 000人、4 200人、2 800人,2018年人均可支配收入比2017年增长-=20.1-1=0.1=10%,所以2018年该市特别困难的中学生有2 800×(1-10%)=2 520(人),很困难的学生有4 200×(1-20%)+2 800×10%=3 640(人),一般困难的学生有7 000×(1-30%)+4 200×20%=5 740(人).所以2018年的“专项教育基金”的财政预算大约为5 740×1 000+3 640×1 500+2 520×2 000=1 624(万).12.解 (1)由题意知A类学生有500×=200(人),则B类学生有500-200=300(人).(2)①②79分以上的B类学生共4人,记80分以上的三人分别是{1,2,3},79分的学生为{a}.从中抽取2人,有(12)、(13)、(1a)、(23)、(2a)、(3a)共6种抽法,抽出2人均在80分以上有:(12)、(13)、(23)共3种抽法,则抽到2人均在80分以上的概率为P==.。