《有限元法》考试试卷
- 格式:doc
- 大小:109.50 KB
- 文档页数:2
有限单元法考试题及答案一、选择题1. 有限元法是一种用于求解偏微分方程的数值方法,其基本思想是将连续域离散化成有限个互不重叠的子域。
这种说法正确吗?A. 正确B. 错误答案:A2. 在有限元法中,单元的选取通常遵循以下哪个原则?A. 单元越小越好B. 单元越大越好C. 单元大小应根据问题的具体需求来确定D. 单元大小固定不变答案:C3. 有限元分析中,边界条件的处理方式不包括以下哪一项?A. 强制边界条件B. 自然边界条件C. 忽略边界条件D. 周期性边界条件答案:C4. 在有限元法中,下列哪个不是常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D5. 有限元法中,形函数的作用是什么?A. 描述单元的几何形状B. 描述单元的物理属性C. 用于构建单元的局部刚度矩阵D. 用于描述单元内部的位移场答案:D二、简答题1. 简述有限元法的基本步骤。
答案:有限元法的基本步骤包括:定义问题域和边界条件,划分网格,选择单元类型,定义形函数,组装全局刚度矩阵,施加边界条件,求解线性方程组,提取结果。
2. 有限元法中,局部刚度矩阵是如何构建的?答案:局部刚度矩阵是通过单元的形函数和材料属性来构建的。
首先,根据单元的形函数和材料属性,计算单元的应变和应力。
然后,利用应变和应力,通过积分得到单元的局部刚度矩阵。
三、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间受力P。
请使用有限元法求解该杆的位移和应力分布。
答案:首先,将杆划分为若干个单元,每个单元的长度为Δx。
然后,为每个单元定义形函数,通常是线性形函数。
接着,根据形函数和材料属性(如杨氏模量E),构建每个单元的局部刚度矩阵。
将所有单元的局部刚度矩阵组装成全局刚度矩阵。
由于杆两端固定,边界条件为位移为零。
最后,将力P施加到中间节点,求解全局刚度矩阵对应的线性方程组,得到节点位移。
应力可以通过位移和形函数计算得到。
《有限元法》复习题一. 单选题1.平面刚架单元坐标转换矩阵的阶数为( ) A .2⨯2 B .2⨯4 C .4⨯4 D .6⨯62.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8⨯8阶矩阵 B.10⨯10阶矩阵 C.12⨯12阶矩阵 D.16⨯16阶矩阵3.坐标转换矩阵可归类为( )A.正交矩阵B.奇异矩阵C.正定矩阵D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( )A 11112322244434000000k k k k k k k k k k k k k k -⎡⎤⎢⎥-++-⎢⎥⎢⎥-+⎢⎥-+⎣⎦ B. 1111222244434000000k k k k k k k k k k k k k -⎡⎤⎢⎥-+-⎢⎥⎢⎥-+-⎢⎥-+⎣⎦C. 11112323224434340000k k k k k k k k k k k k k k k k -⎡⎤⎢⎥-++--⎢⎥⎢⎥-+-⎢⎥--+⎣⎦D. 1111223224434340000k k k k k k k k k k k k k k k -⎡⎤⎢⎥-+--⎢⎥⎢⎥-+⎢⎥--+⎣⎦5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。
A.1行2列B.3行12列C.6行12列D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( )A.第3行和第3列上的所有元素换为大数AB.第6行第6列上的对角线元素乘以大数AC.第3行和第3列上的所有元素换为零D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( )A.只有节点符合位移模式B.只有边界点符合位移模式C.只有边界点和节点符合位移模式D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( )A.单元刚度矩阵阶数不同B.局部坐标系的维数不同C.无任何不同D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( )A.400和200B.400和160C.484和200D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( )A.单元数量应多一些,单元尺寸小一些B.单元数量应少一些,单元尺寸大一些C.单元数量应多一些,单元尺寸大一些D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( )A.应变为零,但应力不为零B.应力为零,但应变不为零C.应变、应力都为零D.应变、应力都不为零16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0 D. F yi =-50KN F yj =-100KN F yk =018.半斜带宽矩阵r 行s 列的元素对应于竖带矩阵元素( )。
1、有限元法是近似求解(连续)场问题的数值方法。
2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(节点)相连。
3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。
4、以(节点位移)为基本未知量的求解方法称为位移量。
5、以(节点力)为基本未知量的求解方法称为力法。
7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。
8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。
9、进行直梁有限元分析,节点位移有(转角)、(挠度)。
10、平面刚架有限元分析,节点位移有(转角)、(挠度)、(???)。
11、在弹性和小变形下,节点力和节点位移关系是()。
12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。
13、弹性力学平面问题方程个数有(8),未知数(8)个。
15h、几何方程是研究(应变)和(位移)关系的方程。
16、物理方程描述(应力)和(应变)关系的方程。
17、平衡方程反映(应力)和(位移)关系的方程。
18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。
19、形函数在单元节点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一节点上,三个形函数之和为(1)。
20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。
21、节点编号时,同一单元相邻节点的(编号)尽量小。
25、单元刚度矩阵描述了(节点力)和(节点位移)之间的关系。
矩形单元边界上位移是(线性)变化的。
从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中( C )。
力法 B、位移法 C、应变法 D、混合法下面对有限元法特点的叙述中,哪种说法是错误的( D )。
可以模拟各种几何形状负责的结构,得出其近似值。
解题步骤可以系统化,标准化。
容易处理非均匀连续介质,可以求解非线性问题。
需要适用于整个结构的插值函数。
有限元考试复习资料(含计算题)1试说明用有限元法解题的主要步骤。
(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。
(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。
(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。
(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。
2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。
P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。
3什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。
则在载荷作用下产生的应力、应变和位移也都对称此轴。
这种问题就称为轴对称问题。
可以用轴对称单元求解。
4什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。
比例阻尼的特点为具有正交性。
其本质上反应了阻尼与结构物理特性的关系。
5何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。
②优点:可以很方便地用来离散具有复杂形体的结构。
由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。
有限元考试试题及答案一、简答题(5道,共计25分)。
1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。
2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。
3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。
4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。
常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。
(2)结点位移3个分量。
(3)基本方程比平面问题多。
3个平衡方程,6个几何方程,6个物理方程。
5.简述四节点四边形等参数单元的平面问题分析过程。
(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
二、论述题(3道,共计30分)。
1. 简述四节点四边形等参数单元的平面问题分析过程。
(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
山东科技大学2012—2013学年第一学期《有限元方法》考试试卷(A卷)班级姓名学号一、选择题(每题1分,共10分)1、弹性力学与材料力学的主要不同之处在于C。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
σ是 C 。
2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。
3、利用ANSYS进行结构分析时,结果文件为。
A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。
4、在ANSYS的单元库中,PLANE42单元属于。
A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。
5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。
A. 特性;B. 说明;C. 参考号;D.方法。
6、ANSYS与Pro/E的接口文件类型是。
A..x_t;B. .prt;C. .sat;D. .model。
7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。
A. DOF约束;B. 力;C. 体载荷;D.应力。
8、要求面或者体有规则的形状,即必须满足一定的准则。
A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。
9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。
A.阶跃载荷;B. 有限元模型载荷;C. 实体模型载荷;D. 斜坡载荷。
10、有限元法首先求出的解是,单元应力和应变可由它求得。
A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。
二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。
2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。
3、典型的ANSYS文件包括、、。
4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。
《有限元法》复习题一.单选题1.平面刚架单元坐标转换矩阵的阶数为()A.2⨯2 B.2⨯4 C.4⨯4 D.6⨯62.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为()A.8⨯8阶矩阵B.10⨯10阶矩阵C.12⨯12阶矩阵D.16⨯16阶矩阵3.坐标转换矩阵可归类为()A.正交矩阵B.奇异矩阵C.正定矩阵D.对称矩阵4.图示弹簧系统的总体刚度矩阵为()A111123222444340000k kk k k k kk k k kk k k-⎡⎤⎢⎥-++-⎢⎥⎢⎥-+⎢⎥-+⎣⎦B.11112222444340000k kk k k kk k k kk k k-⎡⎤⎢⎥-+-⎢⎥⎢⎥-+-⎢⎥-+⎣⎦C.111123232244343400k kk k k k k kk k k kk k k k-⎡⎤⎢⎥-++--⎢⎥⎢⎥-+-⎢⎥--+⎣⎦D.11112232244343400k kk k k k kk k k kk k k k-⎡⎤⎢⎥-+--⎢⎥⎢⎥-+⎢⎥--+⎣⎦5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k24应放在总体刚度矩阵的( )。
A.1行2列B.3行12列C.6行12列D.3行6列6.对一根只受轴向载荷的杆单元,k12为负号的物理意义可理解为()A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的()A.第3行和第3列上的所有元素换为大数AB.第6行第6列上的对角线元素乘以大数AC.第3行和第3列上的所有元素换为零D.第6行和第6列上的所有元素换为零8.在任何一个单元内()A.只有节点符合位移模式B.只有边界点符合位移模式C.只有边界点和节点符合位移模式D.单元内任意点均符合位移模式9.平面应力问题中(Z轴与该平面垂直),所有非零应力分量均位于()A.XY平面内B.XZ平面内C.YZ平面内D.XYZ空间内12.刚架杆单元与平面三角形单元()A.单元刚度矩阵阶数不同B.局部坐标系的维数不同C.无任何不同D.节点截荷和位移分量数不同13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K*]的元素总数分别是()A.400和200B.400和160C.484和200D.484和16014.在有限元分析中,划分单元时,在应力变化大的区域应该()A.单元数量应多一些,单元尺寸小一些B.单元数量应少一些,单元尺寸大一些C.单元数量应多一些,单元尺寸大一些D.单元尺寸和数量随便确定15.在平面应力问题中,沿板厚方向()A.应变为零,但应力不为零B.应力为零,但应变不为零C.应变、应力都为零D.应变、应力都不为零16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将()A. E换成E/(1-μ2),μ换成μ/(1-μ2)B. E换成E/(1-μ2),μ换成μ/(1-μ)C. E换成E/(1-μ),μ换成μ/(1-μ2)D. E换成E/(1-μ),μ换成μ/(1-μ)17.图示三角形单元非节点载荷的节点等效载荷为()A.F yi=-100KN F yj=-50KN F yk=0B. F yi=-80KN F yj=-70KN F yk=0C. F yi=-70KN F yj=-80KN F yk=0D. F yi=-50KN F yj=-100KN F yk=018.半斜带宽矩阵r行s列的元素对应于竖带矩阵元素( )。
e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。
图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。
有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。
1.写出线弹性平面问题三类基本方程和二类边界条件(分量或指标形式),并指出相应的自变量。
答:三个基本方程 ①平衡方程②本构方程 平面应力 平面应变应变协调方程③几何方程二类边界条件 ①力的边界条件②位移边界条件 如今给定的位移边界为,则有(在),,其中分别为边界上x ,y 方向上的位移分量 2. 简述有限元法分析的基本步骤和相对应的基本表达式。
答:江见鲸的教材P26页(4步的这是),如果想要写完成7步的话那就是P8①步骤:⑴将结构离散化⑵单元分析,求得单元节点位移及节点力的关系,计算单元刚度矩阵⑶以节点为隔离体,建立平衡方程⑷施加荷载⑸引入边界条件⑹求解方程,求得节点位移⑺对每一单元循环,由单元节点位移通过单元刚度矩阵求得单元应力或杆件内力②表达式:位移模式几何矩阵 [B]=弹性矩阵应力矩阵3. 单元分析中,假设的位移模式应满足哪些条件,为什么?平面三结点三角形单元中,能否构造如下的位移模式(说明原因)答:这类问题参照江见鲸的教材P13,要求满足的三个条件不能。
因为不满足完备性,缺少表示刚体位移的常数项和表示应变是位移一阶导数的常应变项不能保证解的收敛性。
4. 简述加权余量法、半解析法、样条有限元法、边界单元法的特点。
答:加权余量法:当n 有限时,定解方程存在偏差(余量),取权函数,强迫余量在某种平均意义上均为采用使余量的加权积分为0的等效积分以“弱”形式来求得微分方程近似解的方法。
半解析法:离散及解析相结合的方法,减少计算工作量,降低费用。
样条有限元法:具有紧凑型及良好的光滑性,明确的表达式的优点,所得到的结果均在单元节点上,在数据的后处理方面更为方便和精确。
边界单元法:将所研究问题的偏微分方程,设法转换为在边界上定义的边界积分方程,然后将边界积分方程离散化为只含有边界结点未知量的代数方程组,解此方程组可得边界节点上的未知量并可由此进一步求得所研究区域中的未知量,它除了能处理有限元方法所适应的大部分问题外,还能处理有限元法不易解决的无限域问题。
一 判断题(20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(×)10单元位移函数包括了常应变和刚体位移,则该单元一定是完备协调单元。
二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内;后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。
2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。
3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。
4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。
5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。
6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。
7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。
有限单元试题一、问答题(50分)1.(5分)有限单元位移法求解弹性力学问题的基本步骤有哪些?2.(5分)有限元法在单元划分的时候应注意哪些问题?3.(5分)有限元法中建立位移函数一般有广义坐标法和插值函数法,我们经常用插值函数的哪些性质来直接建立位移函数?4.(10分)在有限元法中,单元刚度矩阵和整体刚度矩阵具有哪些性质?5.(5分)什么是等参数单元?它与三角形单元和矩形单元相比有哪些优点?6.(10分)平面三角形单元与轴对称问题的三角形截面单元的不同之处在哪里?轴对称问题三角形截面单元刚度方程的推导当中,为了简化计算和消除在对称轴上r=0引起的麻烦,可怎样处理?7.(10分)在薄板弯曲理论中做了哪些假设?如何用中面位移确定板内任一点的位移?二.分析题(20分)1.(10分)对于四结点矩形单元我们通常建立如下位移函数,请分析此位移函数下单元的完备性和协调性。
⎩⎨⎧+++=+++=xy y x v xyy x u 87654321αααααααα2.(10分)有限元法在拼装整体刚度矩阵时可用扩充单元刚度方程法和对号入座法。
整体刚度矩阵中非零元素集中分布在主对角元素两侧,呈带状分布,其集中程度与结点编号有关。
如下图所示两种结点编号方式,第一种编号方式对应的整体刚度矩阵非零元素的分布已在左边矩阵中标出,请将第二种编号方式非零元素的分布在右边的矩阵中标出(可用对号入座法)。
并分析哪种编号方式更好。
注:半带宽B=(相关节点编号最大差值+1)×(每个结点的自由度)①②③④⑤⑥⑥⑤④③②①三.计算题(30)1.(20分)图1所示为一个平面应力状态的直角三角形单元,弹性模量为E ,泊松比μ=0,厚度为t ,试求:(1)形函数矩阵[]N (2)应变矩阵[]B (3)单元刚度矩阵[]ek注:1.平面应力状态下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=210001011[D]2μμμμE 2. ()()()[]()),,(2121m j i y c x b a y x x x y y y x y x A i i i j m m j j m m j i ++=-+-+-=2.(10分)图2所示的四结点矩形单元,求出节点3的位移。
有限元法基础试题一、填空题(5X 2分)单元刚度矩阵k e B T DBd 中,矩阵B为_______________ ,矩阵D为 ____________ 。
边界条件通常有两类。
通常发生在位置完全固定不能转动的情况为_____________ 边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为__________ 边界。
内部微元体上外力总虚功:的表达式中,第d W e x,x xy,y F bx u xy,x y,y F by v dxdy+x u,x y v,y xy u,y u,x dxdy一项为_____________________ 的虚功,第二项为_____________________ 的虚功。
弹簧单元的位移函数N1+ N2 = ___________ 。
k j数学表达式:令d j = __________ , d k= _________ , k j,则力F i k j。
二、判断题(5X 2分)位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。
()变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。
()变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。
()常应变三角单元中变形矩阵是x或y的函数。
()对称单元中变形矩阵是x或y的函数。
()三、简答题(26 分)列举有限元法的优点。
(8 分)写出有限单元法的分析过程。
(8 分)列出 3 种普通的有限元单元类型。
( 6 分)简要阐述变形体虚位移原理。
(4 分)四、计算题(54 分)对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m,单元②的弹簧常数为20000N/m,单元③的弹簧常数为10000N/m,确定各节点位移、反力以及单元②的单元力。
(10分)对于如图所示的杆组装,弹性模量E为10GPa,杆单元长L均为2m,横截面面积A均为2 X 10-4m2,弹簧常数为2000kN/m,所受荷载如图。
精品资料《有限单元法》复习参考题........................................《有限单元法》复习参考题一、简答题:1、简述应用有限单元法解决具体问题的要点。
(1) 将一个表示结构或者连续体的求解域离散为若干个子域(单元),并通过他们边界上的结点相互结合为组合体。
(2) 用每个单元内所假设的近似函数来分片地表示全求解域内待求的未知场变量。
而每个单元内的近似函数由未知场函数(或及其导数,为了叙述方便,后面略去此加注)在单元各个节点上的数值与其对应的插值函数来表达。
(3) 通过和原问题数学模型(基本方程、边界条件)等效的变分原理或者加权余量法,建立求解基本未知量(场函数的结点值)的代数方程或者常微分方程组。
2、等效积分形式和等效积分“弱”形式的区别何在?为什么等效积分“弱”形式在数值分析中得到更多的应用?在很多情况下对微分方程的等效积分形式进行分部积分可以得到等效积分的弱形式,如下式T T C D E ()F()d 0ΩΓυΩ+υυΓ=⎰⎰()(u)d ,其中C 、D 、E 、F 是微分算子。
像这种通过适当提高对任意函数和υ 的连续性要求,以降低对微分方程场函数u 的连续性要求所建立的等效积分形式称为微分方程的等效积分“弱”形式。
值得指出的是,从形式上看“弱”形式对函数u 的连续性要求降低了,但对于实际的物理问题却常常较原始的微分方程更逼近真正的解,因为原始微分方程往往对解提出了过分的要求。
所以等效积分“弱”形式在数值分析中得到更多的应用。
3、什么是Ritz (里兹)方法?其优缺点是什么?收敛的条件是什么?基于变分原理的近似解法称为Ritz (里兹),解法如下:优缺点:一般来说,使用里兹方法求解,当试探函数族的范围扩大以及待定参数的数目增多时,近似解的精度将会提高。
局限性:(1) 在求解域比较复杂的情况下,选取满足边界条件的试探函数,往往会产生难以克服的困难。
(2) 为了提高近似解的精度,需要增加待定参数,即增加试探函数的项数,这就增加了求解的复杂性,而且由于试探函数定义于全域,因此不可能根据问题的要求在求解域的不同部位对试探函数提出不同精度的要求,往往由于局部精度的要求使整个问题求解增加许多困难。
有限单元法期末考试试题# 有限单元法期末考试试题## 一、选择题(每题2分,共20分)1. 有限元法中,单元划分的目的是:A. 简化问题B. 增加计算量C. 便于数值计算D. 增加模型复杂度2. 在有限元分析中,以下哪个不是单元的自由度:A. 位移B. 速度C. 转动D. 压力3. 下列哪一项不是有限元法的基本假设:A. 连续性假设B. 线性假设C. 均匀性假设D. 非均匀性假设4. 有限元法中,位移函数的选择应满足:A. 物理意义B. 几何意义C. 边界条件D. 所有上述条件5. 在有限元分析中,以下哪个不是常见的数值积分方法:A. 单点积分B. 高斯积分C. 牛顿-科特斯积分D. 梯形积分## 二、简答题(每题10分,共30分)1. 简述有限元法的基本原理及其在工程中的应用。
2. 解释什么是高斯积分,它在有限元分析中的作用是什么?3. 描述有限元分析中单元刚度矩阵的组装过程。
## 三、计算题(每题25分,共50分)1. 假设有一个二维平面应力问题,其材料的杨氏模量为210 GPa,泊松比为0.3。
给定一个矩形板,尺寸为2m x 1m,四边固定。
在板的中心施加一个向下的集中力P=10 kN。
使用有限元法求解板的中心位移。
(a) 描述问题并建立控制方程。
(b) 选择合适的单元类型并进行网格划分。
(c) 写出单元刚度矩阵的一般形式。
(d) 组装整体刚度矩阵。
(e) 应用边界条件和载荷向量,求解位移。
2. 考虑一个简单的桁架结构,由三个杆件组成,形成一个等腰三角形。
已知杆件的材料属性相同,杨氏模量E=200 GPa,截面积A=0.01 m²。
桁架的底边长度为2m,高为1m。
在顶点施加一个向下的集中力P=10 kN。
使用有限元法计算每个杆件的轴向应力。
(a) 画出桁架结构的示意图。
(b) 确定每个杆件的自由度。
(c) 写出杆件的局部刚度矩阵。
(d) 组装整体刚度矩阵。
(e) 应用载荷向量,求解每个杆件的轴向应力。
有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。
8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。
9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。
10、在有限元分析中,我们通常使用______来描述物理场的性质。
三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。
12、请说明在有限元分析中,如何处理边界条件,并举例说明。
13、请简述有限元分析的优点和局限性。
有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。
在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。
2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。
在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。
3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。
山东理工大学2011级硕士研究生《有限元法》考试试卷
学生姓名: 班级: 学号:
一、计算题(60分)
1、对于如图所示的平面结构。
已知板厚t =1mm ,载荷P =10KN 。
材料弹性模量E =200GPa ,泊松比μ为0。
(注意:单位统一用国际单位制,单元的局部编号如图所示i ,j ,m 分别为1,2,3) 1)计算型函数矩阵。
(10分) 2)计算应变和应力转换矩阵。
(5分) 3)计算刚度矩阵。
(5分) 4)计算机构的位移。
(5分)
2、对于如图所示受均布外载荷的简支梁,用一项三角函数为试函数,试用Galerkin 加权残值法求解计算梁的挠度。
(20分)
y
y (x )
P
3、对于一结构,若他的刚度矩阵和质量矩阵为
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=220241012K ,⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡=100030001M 试用解析方法求出该问题的自然频率和振型。
(15分)
二、简答题(每题5分,共40分) 1、有限元方法的特点是什么?
2、三节点三角形单元有什么特点?为什么平面三节点三角形单元是常应力常应变单元?
3、有限元分析的基本步骤是什么?
4、三角形截面轴对称单元和三角形截面平面单元有什么异同?
5、对实体模型划分网格的步骤有哪些?
6、用Rayleigh-Ritz 方法和加权余量法求解悬臂梁问题时,如果选用同样形式的试函数,两种算法的结果有什么不同,为什么?
7、对于二维桁架问题推导刚度方程时,牵涉到整体坐标系和局部参考坐标系之间的变换,变换矩阵[T ]的逆矩阵和转置矩阵之间有什么关系。
8、对于厚度不均匀的薄板,应如何按薄板进行有限元分析?。