傅立叶变换红外光谱仪技术指标
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
tensor傅里叶红外光谱仪仪器参数
傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer)是一种常用于分析物质结构和化学成分的仪器。
以下是一些常见的傅里叶变换红外光谱仪的仪器参数:
光源类型:通常使用红外光源,如红外灯或者光纤激光器。
光谱范围:指仪器可以测量的红外光谱范围。
常见的范围包括近红外(NIR,近
于可见光)和中红外(MIR)。
分辨率:表示仪器可以分辨的最小波数差异。
分辨率越高,能够分辨的细微结构和特征越多。
采样方式:可以是透射采样、反射采样或者透射/反射混合采样。
探测器类型:常见的探测器包括硅(Si)探测器、氮化硅(SiN)探测器和铟锗(InGaAs)探测器。
不同的探测器对波段和灵敏度有不同的响应。
数据采集速度:指从样品中采集一次光谱所需的时间。
样品室:为了保持样品稳定和准确地测量,傅里叶变换红外光谱仪通常具有一个样品室或样品台。
附件和选件:仪器可能附带各种选件,如气体流动控制装置、样品温控装置等,以满足不同实验需求。
需要注意的是,具体的傅里叶变换红外光谱仪仪器参数可能因不同品牌、型号和配置而有所差异。
在选择和使用仪器时,应参考具体的仪器说明和使用手册以获取详细的参数和操作指南。
傅里叶红外光谱仪(FTIR)(仅供参考)一.实验目的:1.了解FTIR的工作原理以及仪器的操作。
2.通过对多孔硅的测试,初步学会分析方法。
二.实验原理:1.傅里叶红外光谱仪的工作原理:FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。
而红外光学台是红外光谱仪的最主要部分。
红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。
下图所示为红外光学台基本光路图。
傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。
动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。
每一个数据点由两个数组成,对应于X轴和Y轴。
对应同一个数据点,X值和Y值决定于光谱图的表示方式。
因此,在采集数据之前,需要设定光谱的横纵坐标单位。
红外光谱图的横坐标单位有两种表示法:波数和波长。
通常以波数为单位。
而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。
透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。
吸光度A是透射率T倒数的对数。
透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。
而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。
本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。
2.傅里叶红外光谱仪的主要特点:⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。
⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。
⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。
傅里叶变换红外(FTIR)光谱是一种常用的分析技术,它通过分析物质在红外光谱范围内的吸收和散射特性,来研究样品的成分、结构和性质。
本文将从以下几个方面对傅里叶变换红外光谱进行介绍和解析。
一、傅里叶变换红外光谱原理简介傅里叶变换红外光谱是利用物质分子对红外光的吸收和散射特性来研究其结构和成分的一种技术。
当物质分子受到红外光的激发时,会发生特定振动和转动,这些振动和转动对应了物质分子内部的特定结构和键的存在。
傅里叶变换红外光谱仪利用光源产生的连续光通过样品后,得到经过样品吸收、散射后的光信号,并使用傅里叶变换算法将这些信号转换成详细的光谱图像。
通过解析这些光谱图像,可以获得样品中存在的各种成分的信息,包括它们的分子结构、官能团和键的类型、含量等。
二、傅里叶变换红外光谱的应用领域傅里叶变换红外光谱广泛应用于化学、材料、制药、生物、环境和食品等领域。
在化学领域,它常被用来鉴定有机化合物的结构、功能团的存在和含量,以及分子之间的相互作用;在材料领域,它常被用来研究材料的成分、性能和结构变化;在制药领域,它常被用来分析药品的成分和质量;在生物领域,它常被用来研究蛋白质、多糖等生物大分子的结构和功能。
三、傅里叶变换红外光谱的特点和优势傅里叶变换红外光谱具有快速、准确、非破坏性等特点。
相比传统的红外光谱技术,傅里叶变换红外光谱仪具有更高的光谱分辨率和灵敏度,可以检测到更低浓度的样品成分,还能够通过多种光谱技术的组合来获得更多细致的信息。
傅里叶变换红外光谱技术还可以与其他分析技术相结合,如拉曼光谱、质谱等,扩大了其应用范围和分析能力。
四、结语傅里叶变换红外光谱技术作为一种强大的分析工具,为科学研究和工程实践提供了重要的支持。
随着技术的不断发展,傅里叶变换红外光谱将在更多领域发挥其作用,为人们的生活和工作带来更多便利和科学发现。
傅里叶变换红外光谱(FTIR)技术是一种非常重要的分析技术,在许多领域都有着广泛的应用。
傅里叶变换红外光谱仪详细清单及参数一、光学系统光学系统是傅里叶变换红外光谱仪的关键部分之一,它主要包括光源、样品室、干涉仪和探测器等组成。
1.光源:傅里叶变换红外光谱仪一般采用电热源作为光源,通过加热使其产生红外辐射。
常见的电热源包括红外灯、细丝灯等。
2.样品室:样品室是用来放置样品的空间,一般采用密封的、光学透明的材料制成,保证样品在被测量期间不受外界环境污染。
同时,样品室还应具备恒温控制功能,以消除温度对测量结果的影响。
3.干涉仪:干涉仪是红外光谱仪的关键组成部分,它通过将样品产生的红外辐射与参比光通过干涉来获取样品的红外光谱信息。
常见的干涉仪有菲涅尔型、迈克尔逊型等。
4.探测器:探测器是用来接收和转换样品产生的红外辐射信号的元件,常见的探测器有半导体探测器、热电偶探测器等。
探测器的选择应根据测量的要求来确定。
二、主要参数1. 波数范围:红外光谱仪的波数范围指的是仪器可以测量的红外辐射的波数范围,常见的波数范围有4000-400 cm⁻¹,但具体的范围会因不同的仪器而有所不同。
2.分辨率:分辨率是红外光谱仪区分两个波数之间距离的能力,一般用单位波数间隔表示。
分辨率与干涉仪的镜面反射率、光学路径的差异、光源波数稳定性等因素有关。
3.信噪比:信噪比是指仪器输出信号的噪声与仪器输出信号的幅度之比,它反映了仪器探测信号的稳定性和准确性。
信噪比越高,说明仪器的信号检测能力越强。
4.采样速度:采样速度是指样品在红外光谱仪中被扫描所需的时间,它决定了仪器的工作效率。
采样速度越快,样品的扫描时间越短,从而提高了仪器的工作效率。
5.数据处理软件:红外光谱仪通常配备专用的数据处理软件,用于实现对采集到的数据的处理、分析和解释。
数据处理软件的功能和性能直接影响到用户对样品光谱信息的获取和分析。
以上是傅里叶变换红外光谱仪的详细清单及参数。
傅里叶变换红外光谱仪在化学、生物、医药等领域具有广泛的应用价值,通过对样品的红外光谱信息的测定和分析,可以帮助科研人员了解样品的结构和成分,从而为实验研究提供有效支持。
傅里叶变换红外光谱仪的指标傅里叶变换红外光谱仪(Fourier transform infrared spectrometer, FTIR)是一种常用的分析测试仪器,广泛应用于化学、生命科学、材料科学等领域。
其基本原理是利用红外吸收光谱技术进行分析,即样品分子吸收红外辐射产生振动、转动等的能量变化,通过对吸收曲线进行傅里叶变换分析,得到样品的红外光谱信息。
FTIR光谱仪的指标一般包括以下几个方面:1. 分辨率:分辨率是指FTIR光谱仪在扫描过程中,能够分辨两个相邻波数之间的距离或差异大小,例如,2000cm-1和2001cm-1之间的能量差异。
分辨率越高,检测精度越高。
2. 波数范围:波数范围是指FTIR光谱仪能够扫描的红外波长范围。
一般来说,通常在4000~400 cm-1之间。
3. 灵敏度:灵敏度指FTIR光谱仪能够检测到的最小信号强度,也被称为噪声水平。
灵敏度越高,检测的信号强度越小。
4. 采样方式:FTIR光谱仪的采样方式有ATR,透射光谱,反射光谱等。
采样方式的选择应根据样品的性质和研究目的进行优选。
5. 光源:FTIR光谱仪的光源可以是氢气灯、钨灯,也可以是红外光引导光纤。
6. 探测器:探测器是光谱仪中的重要部件,包括光敏电阻器、光敏二极管、光电倍增管等多种形式。
探测器的灵敏度和噪声抑制能力是影响检测结果的重要因素。
7. 软件:FTIR光谱仪的软件是用于光谱处理和数据分析的工具。
合适的软件应能够处理大量的数据,并具有数据查看、分析和报告生成等功能。
综上所述,FTIR光谱仪的指标是相互关联的。
正确的选择光谱仪需要考虑样品的特性和研究需求,将不同指标进行平衡和优化,选择出最佳的光谱仪。
傅里叶变换红外光谱仪alpha ii 主要技术指标一、引言傅里叶变换红外光谱仪(FT-IR)是一种重要的分析仪器,广泛应用于各个领域。
其中,Alpha II 是德国Bruker公司推出的一款高性能傅里叶变换红外光谱仪。
本文将详细介绍Alpha II 主要技术指标,以帮助大家更好地了解这款仪器。
二、傅里叶变换红外光谱仪Alpha II 主要技术指标概述1.光谱范围:Alpha II 的光谱范围为中红外区域,波数范围为4000 cm^-1至400 cm^-1。
2.分辨率:Alpha II 具有高分辨率,可达到0.5 cm^-1。
3.波数精度:该仪器的波数精度为±0.01 cm^-1。
4.灵敏度:Alpha II 具有较高的灵敏度,对于低浓度样品也能实现准确检测。
5.扫描速度:Alpha II 的扫描速度快,可以在较短的时间内完成大量样品的分析。
6.光源:Alpha II 采用高性能的干涉仪和激光光源,保证了光谱的稳定性和准确性。
7.检测器:Alpha II 配备高灵敏度的检测器,可实现高信噪比的数据采集。
8.仪器尺寸和重量:Alpha II 的尺寸紧凑,占地面积小,重量轻,便于携带和安装。
三、Alpha II 在红外光谱分析中的应用Alpha II 在红外光谱分析领域具有广泛的应用,如材料分析、生物医学领域、环境监测、化学化工行业等。
通过红外光谱分析,可以获取样品的结构、组成、化学键等信息,为相关领域的研究提供重要依据。
四、我国在该领域的发展现状与展望近年来,我国在傅里叶变换红外光谱仪领域取得了显著的发展。
不仅引进了国际先进技术,还加大了自主研发力度。
目前,国内多家企业已成功研发出具有国内领先水平的高性能傅里叶变换红外光谱仪,并在多个领域取得了广泛应用。
未来,我国在该领域有望实现更大突破。
五、结论傅里叶变换红外光谱仪Alpha II 凭借其出色的性能和广泛的应用领域,成为了分析仪器市场的一款热门产品。
傅里叶红外光谱仪一、产品简介傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。
它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
二、基本原理光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。
两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。
干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
三、主要特点1、信噪比高傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。
2、重现性好傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。
3、扫描速度快傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。
四、技术参数光谱范围: 4000--400cm-1或7800--350cm-1(中红外) /125000--350cm-1(近、中红外)最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1信噪比: 15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)分束器:溴化钾镀锗/ 宽带溴化钾镀锗检测器: DTGS检测器 / DLATGS检测器光源:空冷陶瓷光源五、主流产品推荐天津港东生产的FTIR-650 傅里叶变换红外光谱仪、FTIR-850 傅里叶变换红外光谱仪;北京瑞利生产的WQF-510 付立叶变换红外光谱仪、WQF-520 付立叶变换红外光谱仪;美国Thermo Fisher 生产的Nicolet 6700、IS10、IS5 付立叶变换红外光谱仪;德国Bruker Optics 生产的Tensor 27、Tensor 37 傅立叶变换红外光谱仪;。
傅里叶变换红外光谱仪的工作原理介绍光谱仪工作原理傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪,同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪;紧要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、掌控电路板和电源构成。
可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
工作原理:红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。
红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm—1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学构成中的各种问题较为有效,因而中红外区是红外光谱中应用广泛的区域,一般所说的红外光谱大都是指这一范围。
红外光谱属于吸取光谱,是由于化合物分子振动时吸取特定波长的红外光而产生的,化学键振动所吸取的红外光的波长取决于化学键动常数和连接在两端的原子折合质量,也就是取决于的结构特征。
这就是红外光谱测定化合物结构的理论依据。
红外光谱作为“分子的指纹”广泛的用于分子结构和物质化学构成的讨论。
依据分子对红外光吸取后得到谱带频率的位置、强度、形状以及吸取谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。
从光谱分析的角度看紧要是利用特征吸取谱带的频率推断分子中存在某一基团或键,由特征吸取谱带频率的变化推想靠近的基团或键,进而确定分子的化学结构,当然也可由特征吸取谱带强度的更改对混合物及化合物进行定量分析。
而鉴于红外光谱的应用广泛性,绘出红外光谱的红外光谱仪也成了科学家们的重点讨论对象.傅立叶变换红外(FT—IR)光谱仪是依据光的相干性原理设计的,因此是一种干涉型光谱仪,它紧要由光源(硅碳棒,高压汞灯),干涉仪,检测器,计算机和记录系统构成;大多数傅立叶变换红外光谱仪使用了迈克尔逊(Michelson)干涉仪,因此试验测量的原始光谱图是光源的干涉图;然后通过计算机对干涉图进行快速傅立叶变换计算,从而得到以波长或波数为函数的光谱图,因此,谱图称为傅立叶变换红外光谱,仪器称为傅立叶变换红外光谱仪。
JJG 001-1996 傅里叶变换红外光谱仪检定规程适用范围:适用于新安装、使用中和修理后的傅里叶变换红外光谱仪(以下简称仪器)的检定。
主要技术要求:1. 外观2. 安装条件3. 检定条件4. 检定设备5. 样品6. 检定项目和检定方法2.范围适用于新安装、使用中和修理后的傅里叶变换红外光谱仪(以下简称仪器)的检定。
2.1 原理FTIR是利用干涉仪干涉调频的工作原理,根据干涉图和光谱图之间的对应关系,通过测量干涉图和对干涉图进行傅里叶变换来获得光谱图;它能同时测量、记录来自光源所有谱元的信息,高效率地采集来自光源的辐射能量。
检测器接收到的随光程差变化的信号强度便是光源所有谱元的贡献。
(1)式中:I(x)——干涉图B(v)——吸收光谱v——频率x——光程差I(x)是在光程差为x时检测器接收到的信号强度,也称为干涉图。
数据处理系统通过对干涉图函数进行傅里叶变换得到按频率(波数)分布的物质的吸收光谱B(v)。
(2)由于它有多通道优点,因而有较高的信噪比、分辨率、检测灵敏度和较快的扫描速度,广泛应用于物质的定性定量及结构成分分析。
是测量、研究分子振动、转动光谱的重要工具。
2.2 构成FTIR 由光学系统及数据处理系统两部分组成。
3 计量单位波数(cm-1)和吸光度。
4 计量要求4.1 计量特性仪器技术指标见表1。
4.2 等级评定等级评定按表2。
1~10项中如有2项以上(包括2项)达不到指标,要按降档处理。
表1 技术指标5 技术要求5.1 外观要求仪器应有下列标志:仪器名称、型号、制造厂名、出厂日期和仪器编号,使用说明书齐全。
仪器及附属设备外观应完好无损,联结牢固。
特别注意事项应有清楚醒目的警示标志。
5.2 安装条件仪器应安装在清洁无尘、无振动、无电磁干扰、无腐蚀性气体、通风良好、恒温恒湿的实验室;室温:20℃~25℃之间;相对湿度:≤60%;有良好的独立地线。
傅里叶变换红外光谱仪技术参数一、实验室条件电源220/230V;温度:10~35度;湿度:25~90%;二、技术指标:1.*无动态错误的改进型Michelson干涉仪,机械转动式,双动镜;2.*红外光源:长寿命、专利的发热点稳定、高能量红外黑体空腔光源,按ASTM 0法测定,能量比E4000/Emax>70%3.*扫描范围:8300-350cm-14.光谱分辨率:优于0.5cm-15.波长精度:0.01cm-16.波长准确度:0.1cm-17.*信噪比:9300:1(5s测试,峰峰值)40000:1(1min测试,峰峰值)8.*大气扣背景功能:硬件层面自动实时扣除空气中H2O和CO2干扰背景9.*校正配置:内置甲烷气体。
利用可追溯的甲烷气体,确保仪器的精度和准度。
另配聚苯乙烯薄膜。
10.*防潮:三年免更换干燥剂(生产厂家出具证明书);11.数据处理功能:1-4阶倒数,平滑,差谱,归一化,A,%T,%R,KM,LOG(1/R),纵坐标模式,cm-1,nm以及微米,+,-,×,÷,基线校正,解卷积,KK,ATR校正,峰值表,峰高峰面积计算12.软件:提供操作和分析软件。
并配置对产品真伪的鉴定最为有用的光谱比较软件,可最大程度的降低人为因素对两张光谱的相似程度的比较结果的误判三、配置要求:1.FRIT主机,防潮红外光谱仪,内置机械转动式双动镜干涉仪。
1套。
2.红外光谱操作软件,分析软件,光谱比较算法。
1套。
3.ZnSe偏振片。
1套。
4.液体采样工具包。
1套。
(包括:液体池架1套,KBr窗片2对,ZnSe窗片1对,垫片组1组)5.金刚石ATR附件。
1套。
6.配备固体采样工具包。
包括:Nujol DD 057石蜡糊(100 mL)KBr Powder (100 g) KBr粉10-cm Micro Spatula药勺2-mL Luer Syringe进样针Magnetic Film Holder磁性薄膜夹具Agate Pestle and Mortar玛瑙研钵、研棒KBr压片夹具12 吨压片机13mm KBr压片模具7.配备配套用电脑和打印机各1套。
傅里叶变换红外光谱分析傅里叶变换红外光谱分析(Fourier Transform Infrared Spectroscopy, FTIR)是利用傅里叶变换原理对物质的红外光谱进行分析的一种技术。
在傅里叶变换红外光谱仪中,红外光通过样品,与样品发生相互作用后,进入光谱仪中进行光谱分析。
傅里叶变换技术可将时域信号转换为频域信号,通过对信号的频谱分析,可以对物质的结构及组成进行研究。
1.高分辨率:傅里叶变换技术可以获取高分辨率的红外光谱数据,使得狭窄的谱线能够得到更好的分辨。
2.宽波数范围:傅里叶变换红外光谱仪的波数范围广,可覆盖大部分有机物和无机物的红外吸收带。
3.快速扫描:傅里叶变换红外光谱仪采用干涉仪和检测器进行光谱扫描,扫描速度非常快,减少了样品分析时间。
1.样品制备:样品制备是傅里叶变换红外光谱分析的重要一步。
样品制备要求样品制备均匀、薄片透明、保持一定的透光率,以保证得到准确的红外光谱数据。
2.红外光谱扫描:在样品制备完成后,将样品放入红外光谱仪中进行扫描。
光谱仪会发出红外光,透过样品后,检测器会记录下光谱数据,并进行电压信号的采集。
3.数据处理:傅里叶变换红外光谱的数据处理是一个非常重要的步骤。
通过将光谱信号进行傅里叶变换,可以将时域信号转换为频域信号。
通过对频域信号的分析,可以获取物质的红外光谱图。
4.谱图解析:通过对红外光谱图的解析,可以了解样品的结构特征以及组成成分。
根据吸收峰的位置和强度,可以判断样品中的官能团和化学键的存在情况。
傅里叶变换红外光谱分析在各个领域中都有广泛的应用。
在有机化学领域,可以通过傅里叶变换红外光谱分析来判断有机物的结构、官能团及各种化学键的存在。
在材料科学领域,可以通过傅里叶变换红外光谱分析来研究材料的结构、性质及相变过程。
在药学领域,可以通过傅里叶变换红外光谱分析来确定药物的纯度及结构。
在环境分析领域,可以通过傅里叶变换红外光谱分析来鉴定和监测环境中的污染物。
傅里叶红外光谱仪测量范围傅里叶红外光谱仪测量范围傅里叶变换红外(FTIR)光谱分析技术是一项广泛应用于化学、生物、材料等领域的非破坏性测试方法。
它通过检测样品在不同光谱区间内吸收和发射的红外光谱来识别和量化不同化合物的成分,提供了一种快速、准确、灵敏的分析手段。
然而,FTIR光谱仪测量准确性的取决于其测量范围。
下面将按照以下方式介绍FTIR光谱仪的测量范围。
1. 光谱区间FTIR光谱仪可测量的光谱区间通常介于4000至400 cm-1之间。
这个范畴被分为三个区域:近红外区(4000-1200 cm-1)、中红外区(1200-400 cm-1)和远红外区(400-10 cm-1)。
不同区间内的化合物吸收和发射的红外光谱波长范围不同,因此需要选择不同区间进行测量。
2. 仪器分辨率FTIR光谱仪的分辨率是指在所述光谱范围内可分辨的最小光谱带宽。
这是一个重要的参数,可以影响FTIR测量的准确性和灵敏度。
高分辨率可以提供更高精度的测量,但需要更长的检测时间和更高的样品信噪比。
3. 信噪比FTIR光谱仪的信噪比(S/N)是指信号与背景噪声的比率。
这是影响FTIR测量灵敏度的一个重要参数。
当信噪比越高时,FTIR测量的准确性和可靠性越高。
4. 样品状态FTIR光谱仪可测量不同状态下的样品,如液体、气体、固体和薄膜。
不同状态的样品需要采用不同的采集方法和样品夹具。
5. 补偿方法由于FTIR测量受到环境因素和仪器性能的影响,因此需要使用多种补偿方法进行校准和修正。
如背景校正、消除仪器漂移和进行干涉滤波等方法。
总之,FTIR光谱仪测量范围的选择和仪器参数的调整极大地影响了FTIR测量结果的准确性和可靠性。
为了得到准确和可靠的测试结果,需要根据具体应用要求选择合适的测量范围和相应的测量参数。
傅里叶红外光谱仪傅里叶红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR)是一种利用傅里叶变换原理,对红外光谱进行分析的仪器。
它可以测量物质的吸收、透射、反射、发射等光谱特性,从而获得物质的结构、组成、性质等信息。
傅里叶红外光谱仪具有高分辨率、高灵敏度、高速度、宽波数范围等优点,广泛应用于化学、生物、医药、材料、环境、食品等领域。
傅里叶红外光谱仪的工作原理傅里叶红外光谱仪的核心部件是干涉仪,通常采用迈克尔逊干涉仪(Michelson Interferometer)。
迈克尔逊干涉仪由一个半反射镜和两个全反射镜组成,其中一个全反射镜可以沿着光路方向移动,另一个全反射镜固定不动。
当一束红外光从源头发出后,经过半反射镜分为两束,一束向固定镜反射,另一束向移动镜反射。
两束光再经过半反射镜合并后,形成干涉信号,进入检测器。
当移动镜在一定范围内往返运动时,干涉信号会随着移动镜的位置变化而变化,形成干涉图样(Interferogram)。
干涉图样是一种包含了所有波长信息的复杂信号,通过对其进行傅里叶变换,可以得到对应的红外光谱。
在傅里叶红外光谱仪中,还需要设置样品室和参考室。
样品室是放置待测样品的地方,可以根据样品的形态和性质选择不同的样品池或样品架。
参考室是放置参考物质的地方,通常选择不吸收红外光的物质,如空气或氮气。
样品室和参考室之间有一个开关装置,可以控制红外光通过哪个室。
当红外光通过样品室时,检测器接收到的干涉信号包含了样品的吸收信息;当红外光通过参考室时,检测器接收到的干涉信号只包含了仪器本身的响应信息。
通过对比两种情况下的干涉信号,可以消除仪器本身的影响,得到更准确的样品光谱。
傅里叶红外光谱仪的主要性能指标傅里叶红外光谱仪的主要性能指标有以下几个:分辨率:分辨率是指傅里叶红外光谱仪能够分辨出两个相邻波数的最小差值,单位是厘米-1(cm-1)。
分辨率越高,表示仪器能够分辨出更细微的结构差异,对于研究复杂的样品更有利。
傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简称FT-IR)是一种常用的光谱分析仪器,它利用红外光与样品相互作用,测量样品对红外光的吸收、反射、透射等特性,从而获得样品的分子结构和化学组成信息。
FT-IR具有高分辨率、高灵敏度、高精度和高速度等优点,广泛应用于化学、生物、医学、环境监测等领域。
本技术报告将介绍FT-IR的基本原理、仪器结构、实验技术、数据处理和谱图解析等方面的内容,以便读者更好地理解和使用这种仪器。
一、基本原理FT-IR的原理是基于分子振动和转动能级跃迁产生的红外吸收光谱。
当红外光照射到样品上时,如果光子的能量与分子振动或转动能级差相匹配,则光子被吸收,产生一个吸收峰。
通过测量吸收峰的位置和强度,可以获得样品的分子结构和化学组成信息。
二、仪器结构FT-IR主要由光源、分束器、干涉仪、检测器和计算机控制系统等部分组成。
光源发出的红外光经过分束器分为两束光,一束光作为参考光,另一束光通过样品后被检测器接收。
干涉仪的作用是使两束光发生干涉,产生干涉图。
检测器将干涉图转换为电信号,再通过计算机控制系统进行数据处理和谱图解析。
三、实验技术在FT-IR实验中,需要选择适当的光源、分束器、干涉仪和检测器等部件,以确保获得高质量的红外光谱。
此外,还需要注意样品的制备和测试条件,如温度、湿度和压力等。
在测试过程中,可以使用不同的实验技术,如透射光谱、反射光谱和显微光谱等,以适应不同样品的测试需求。
四、数据处理和谱图解析在获得红外光谱后,需要进行数据处理和谱图解析以获取样品的分子结构和化学组成信息。
在数据处理方面,需要消除噪声和背景干扰,提高光谱的信噪比和分辨率。
在谱图解析方面,需要识别不同峰对应的分子振动和转动模式,并结合量子化学计算等方法对分子结构进行解析。
同时,还需要注意谱图的定量分析和定性分析,以便更好地了解样品的性质和组成。
五、结论FT-IR是一种非常重要的光谱分析仪器,广泛应用于化学、生物、医学、环境监测等领域。
傅里叶变换红外光谱仪简介傅里叶变换红外光谱仪是一种可以将物质分析的仪器。
它使用了傅里叶变换技术,通过测量样品对红外辐射的吸收来分析样品的结构和成分。
这种技术在化学、生物、材料和环境科学等领域都有应用,可以分析有机和无机化合物,确定样品的成分和结构。
工作原理傅里叶变换红外光谱仪的核心部分是红外光源和光谱仪。
红外光源产生的红外光被通过样品后,经过光谱仪分析,产生光谱图。
这个图由样品吸收光的强度和红外光波数的折线图组成。
在这个图中,红外光谱的波长范围一般为4000至400 cm-1。
这个波数范围对应了不同的化学键的振动频率,从而提供了样品的成分和结构信息。
傅里叶变换红外光谱仪的工作原理是将样品通过红外光源照射,然后收集样品透射的光,这些光与原始红外辐射之间产生干涉,干涉信号被转换成光谱图。
傅里叶变换可以将这个干涉信号转换成光谱图,并且可以通过计算方法还原出样品的吸收峰,这些峰对应着样品中的化学键和它们的振动。
应用傅里叶变换红外光谱仪是一种非常有用的分析工具,可以应用于许多领域,包括:1.化学:用于鉴定无机和有机化合物的结构。
2.生物:用于分析生物分子,如蛋白质和核酸的结构。
3.材料:用于分析材料的成分,如聚合物和合金。
4.环境:用于分析空气、水和土壤样品,以检测环境污染物。
傅里叶变换红外光谱仪也可以帮助科学家确定样品的纯度和浓度。
通过与已知物质做比较,科学家可以确定样品中各成分的浓度和分子结构。
结论傅里叶变换红外光谱仪是一种极其有用的分析工具,可以用于鉴定各种物质。
它的工作原理基于样品对红外辐射的吸收和傅里叶变换技术的运用。
这种技术在化学、生物、材料和环境科学等领域都有广泛应用,可以为科学家提供有用的结构和成分信息。
该仪器准确稳定,效率高,可提高科学研究精度和效率,有助于深入了解化合物成分和结构。
傅立叶变换红外光谱仪技术指标
1.基本配置性能参数
光谱范围:7800-350cm-1
标准分辨率:优于0.8cm-1
波数精度优于0.01cm-1
灵敏度:噪音峰值小于1×10-5Abs,(即峰-峰信噪比优于40000:1;测试条件:双密封窗片、4cm-1光谱分辨率、1分钟扫描)
2干涉仪:动态调整干涉仪,同时保证长期检测的高稳定性和准确性,无光谱偏离和失真。
3. 红外光源:热稳定、高能量、长寿命红外光源,精确定位的无线接插式光源
4. 检测器: 仪器可自动识别、自动参数设置,采用24位200KHz高速A/D转换器, 保证高精度、高速数据采集。
5. 精度通讯接口:采用USB2.0速度快、适配性广的计算机与仪器通讯接口,高速数据采集
6. 智能透射测样装置:采用不同固体、液体和气体测样附件而无需位置调整,仪器能自动识别、设置和适配性诊断等智能化操作。
7. 应用功能:适配各种透射、反射应用附件及智能检测附件,仪器能自动进行附件类型识别,参数设定,性能检查及提示。
8. 红外软件操作界面可按操作者需求进行中英文等多语言切换,与Windows 7 、Windows XP、Vista兼容。
1)包括数据采集、数据处理、谱库检索等功能外,具有采集光谱质量检查、自动实验设置以及遵循ASTM 标准和相关方法进行各项性能验证;
2)具备样品质量及组分含量比对鉴别功能,高精度鉴别功能,鉴别不同晶型、含量的物质,同属不同种等样品状态。
3)高级ATR校正软件,可精确校正不同ATR采集对光谱的峰强、位移以及非极化的影响,使得ATR谱图与透过谱图高达97%的最佳匹配,实现谱图高准确度检索和鉴别。
4)多组分混合物鉴别软件,提供先进的自动光谱分离解谱功能、可对混合物和污染物样品红外光谱进行采集自动搜索分离鉴别、给出混合物不同物质相对含量的信息,支持不同红外光谱格式和拉曼光谱分析,可联网检索光谱化学结构,提供全程多媒体教学。
5)提供不少于一万张高分辨凝聚相红外光谱图(不低于4cm-1)
9. 红外附件:
1)智能型透射测样附件:
适配各种固、液、气测样装置,仪器能自动识别、设置和适配性诊断等智能化操作。
2) 国产压片机一套:包括压机、模具、样品勺、磁性样品架、玛瑙研磨、溴化钾碎晶等
3) 液体池一套:包含液体池架和KBr窗片
10.电脑打印机(赠送)
电脑:不低于戴尔Inspiron One 灵越 2320(I2320D-268)
CPU:Intel 酷睿i3 2120M,双核心四线程/ 内存:4GB/ 硬盘:1TB/ 显卡:独立显卡/光驱:DVD刻录机。
打印机:不低于惠普(HP)LaserJet Pro MFP M175nw彩色激光一体机。