二氧化钛纳米管的制备
- 格式:pdf
- 大小:5.77 MB
- 文档页数:9
二氧化钛纳米管的合成及其表征纳米技术的发展使人类能够获得一系列新型材料,其中最广泛应用的是纳米管。
纳米管是一种纳米结构,具有独特的结构和性能,可以用于各种电子、能源和医疗保健等领域。
而二氧化钛纳米管(TiO2NTs)则是一种新型的纳米管材料,它的出现在不同的表面特性和应用方面都有着独特的优势。
本文主要研究二氧化钛纳米管的合成及其表征。
TiO2NTs成是一种有趣而复杂的过程,可以从金属氧化物,超支化物和非金属氧化物等多种原料中制备出。
在氧化物溶液中,TiO2NTs 以采用溶剂法(sol-gel法)、浸渍法(impregnation法)、湍流反应釜(flow chemistry reactor)、热溶解法(thermal dissolution 法)等方法合成。
其中,溶剂法是纳米管材料的最常用合成方法,此方法具有低成本和可控的特点,使得TiO2NTs的制备更加便捷、高效。
TiO2NTs的表征方法有表面活性剂测试(surfactant testing)、X射线衍射(XRD)、透射电子显微镜(TEM)、拉曼光谱(Raman spectroscopy)、X射线光电子能谱(XPS)。
表面活性剂测试是评估TiO2NTs表面性能的最常用方法,其可以测量TiO2NTs表面电性、疏水性、乳状性、乳化性等特性。
X射线衍射(XRD)可以用来分析TiO2NTs 的晶体结构和结晶度。
TEM实验可以用来评估TiO2NTs的形貌,Raman 光谱则可以评估TiO2NTs的结构特性,XPS测试则可以评估TiO2NTs 的表面组分。
综上所述,TiO2NTs是一种新型的纳米管材料,其合成及其表征可以从将多种方法,主要表征方法包括表面活性剂分析、X射线衍射、透射电子显微镜、拉曼光谱、X射线光电子能谱等。
这些测试及研究结果可以为TiO2NTs的下一步应用发展提供指导。
总之,TiO2NTs的合成及其表征具有重要的意义,有助于深入了解TiO2NTs的性质,为其在不同的应用领域的发展提供理论支持及重要的实验基础。
二氧化钛纳米管的制备及光催化降解亚甲基蓝的研究的开
题报告
一、选题背景和意义:
随着现代化进程的不断加快,人们对环境污染问题的关注日益增强。
光催化技术因其高效、经济、环保等优势,成为当前降解有机污染物的重要方法之一。
而二氧化
钛纳米管因其结构的独特性质,被广泛应用于光催化领域中对有机物的降解,成为研
究的热点。
本研究以亚甲基蓝为模型有机物,在制备二氧化钛纳米管的同时,探究其光催化降解亚甲基蓝的效果,为环境保护提供一种有效的措施。
二、研究内容和方法:
1. 制备二氧化钛纳米管:采用水热法制备二氧化钛纳米管,通过调节反应条件和控制形貌,制备具有更好光催化性能的二氧化钛纳米管。
2.评估二氧化钛纳米管的光催化性能:分别采用紫外–可见漫反射光谱(UV-Vis DRS)和时间规定的荧光光谱(TD-FS)测试二氧化钛纳米管的光催化活性。
3.光催化降解亚甲基蓝:将所制备的二氧化钛纳米管与不同浓度的亚甲基蓝溶液混合,通过光催化反应降解亚甲基蓝。
4.对反应产物的分析和鉴定:采用紫外-可见漫反射光谱和高效液相色谱等技术,对反应产物进行分析和鉴定。
三、预期成果和意义:
通过本次研究,将制备一种具有理想光催化性能的二氧化钛纳米管,并对其应用于亚甲基蓝的光催化降解进行探究。
研究结果将对提高二氧化钛纳米管的制备工艺和
光催化性能有一定的指导意义,并为有机物的光催化降解提供一种有效的方法。
862019年12月上 第23期 总第323期0 引言众所周知,纳米T i O 2是一种常见的无机功能材料,具有粒径小、比表面积大、稳定性好、紫外吸收能力强、催化活性高、电子传递速率高、价格低廉以及抗菌效果好等优点而受到国内外研究者广泛的关注。
相对于纳米TiO 2,TiO 2纳米管(T N T )具有较大的比表面积、独特的结构特征,因此具有较强的吸附能力和杀菌效果,特别是在光催化方向具有广阔的应用前景。
目前T N T 的制备方法主要有水热合成法、模板合成法、阳极氧化法等。
水热法合成T N T 有特殊的优点,被广泛应用。
具有成本低、无污染、无煅烧、操作简单、便于工业化生产等特点,而且生成的T N T 比表面积大、结晶度高、易于回收利用。
经过Kasuga等人的创新工作,由于其TNT迷人的微观结构和优异的性能,具有较大比表面积和孔体积已获得了有希望的重要前景。
可以使用水热法从结晶二氧化钛(T i O 2)颗粒和高浓度氢氧化钠(N a O H )溶液合成高质量的TNT。
影响结晶度和涡旋结构的关键参数是Na OH 的含量。
基于“使用氢氧化钠水解二氧化钛颗粒”的报道实验表明,确实可以形成含有类似于T i O 2的“T i -O 骨架”的纳米管结构。
然而,已经认识到大量的钠(N a )被引入这些纳米管中。
这些纳米管的壁被认为具有层状结构。
许多小组试图修改工艺或分析所得二氧化钛或T N T 的结构。
T N T 的形成机制和真正组成仍在争论中。
另外,从实际应用的角度来看,诸如在各种N a O H 浓度下的结构稳定性和相应的结晶相以及煅烧温度的问题仍有待解决。
与不同晶体结构和组成,温度转变和浓度变化有关的差异清楚地表明仍需要对该主题进行进一步研究。
二氧化钛作为新兴的半导体催化剂,无毒,且不会在粒子表面生成物质影响反应速率,具有较稳定的化学性质,在催化有机废水分解中不会像无机物(Fe 2O 3)一样发生阴极光腐蚀,亦不像C d S 一样发生阳极光腐蚀,或者说,二氧化钛是较理想的水分解催化剂。
二氧化钛纳米管的制备及应用综述段秀全盖利刚周国伟(山东轻工业学院化学工程学院,山东济南250353)摘要:TiO2纳米管具有较大的直径和较高的比表面积等特点,在微电子、光催化和光电转换等领域展现出良好的应用前景。
本文对TiO2纳米管材料的合成方法、形成机理及应用研究进行了综述。
关键词:TiO2纳米管;制备;应用中图分类号: O632.6 文献标识码: APreparation and Application of TiO2 nanotubesDUAN Xiu-quan, GAI Li-gang, ZHOU Guo-wei(School of Chemical Engineering, Shandong Polytechnic University, Jinan, 250353, China) Abstract: TiO2nanotubes have wide applications in microelectronics, photocatalysis, and photoelectric conversions, due to their relatively larger diameters and higher specific surface areas. In this paper, current research progress relevant to TiO2nanotubes has been reviewed including synthetic methods, formation mechanisms, and potential applications.Keywords: TiO2 nanotubes; preparation; application自1991年日本NEC公司Iijima[1]发现碳纳米管以来,管状结构纳米材料因其独特的物理化学性能,及其在微电子、应用催化和光电转换等领域展现出的良好的应用前景,而受到广泛的关注。
TiO2纳米管的制备方法(1)10mol/L NaOH溶液的配制准确称取100.0145g固体NaOH,然后倒入250mL的烧杯中,加入去离子水,用玻璃棒搅拌至NaOH固体全部溶解,然后冷却至室温,然后再把溶液移入250mL的容量瓶中,再加去离子水稀释至刻度线,摇匀,待用。
(2)0.1 mol/L Mg(NO3)2溶液的配制准确称取 2.6125g的固体Mg(NO3)2·6H2O,然后倒入100mL的烧杯中,加入去离子水,用玻璃棒搅拌至Mg(NO3)2·6H2O固体完全溶解,然后把溶液倒入100mL的容量瓶中,再加入去离子水至刻度线,摇匀,待用。
(3)0.1mol/L HCl溶液的配制用量筒量取2.2mL浓盐酸,然后倒入100mL 的烧杯中,加入去离子水,用玻璃棒搅拌均匀后,倒入250mL的容量瓶中,再加去离子水至刻度线,摇匀,待用。
(4)1000mg/L甲基橙储备液的配制准确称取1.0021g固体甲基橙,倒入250mL的烧杯中,加入去离子水,用玻璃棒不断搅拌并加热至甲基橙固体全部溶解,然后冷却至室温,然后把溶液移入1L的容量瓶中,加入去离子水至刻度线,摇匀,放置于阴暗处,待用。
纳米管的影响因素探讨2.4 水热法制备TiO2(1)取四个干净的100mL的小烧杯,分别加入40mL、10 mol/L NaOH去离子水溶液和0.2g化学纯TiO2粉末,然后用玻璃棒搅拌均匀,然后将其分别转入50mL不锈钢高压反应釜(聚四氟乙烯内衬)中,密封,然后在180℃的条件下,在恒温干燥箱中反应,最后分别于12h、24h、36h、48h将其取出,贴上标签,让反应自然冷却至室温,然后将白色沉淀物离心分离,并用配制好的盐酸溶液洗涤3-4次,再用去离子水洗涤至pH=7,然后将产物在80℃条件下真空干燥4h,最后将上述产物在空气中用马弗炉450℃下烧结2h,研磨,装袋,待表征。
(2)取四个干净的100mL的小烧杯,分别加入40mL、10 mol/L NaOH去离子水溶液,然后,准确称量0.1g、0.2g、0.4g、1.0g化学纯TiO2粉末,分别加入到上述五个烧杯中,贴上标签,再用玻璃棒搅拌均匀,然后,把它转移到50mL 不锈钢高压反应釜(聚四氟乙烯内衬)中,密封,置于180℃恒温干燥箱中反应48h,然后把反应釜放置一段时间,自然冷却至室温,然后将白色沉淀物离心分离,并用配置好的盐酸溶液洗涤3-4次,再用去离子水洗涤至pH=7,然后将产物在80℃条件下真空干燥4h,最后将上述产物在空气中用马弗炉450℃下烧结2h,研磨,装袋,待表征。
阳极氧化法制备二氧化钛纳米管阵列的研究本文研究了一种利用阳极氧化法制备二氧化钛纳米管阵列的方法。
通过调节电解液的成分和电化学条件,制备了不同形貌和尺寸的二氧化钛纳米管阵列,并对其结构和光学性能进行了表征。
结果表明,所制备的二氧化钛纳米管阵列具有良好的结晶性、光学性能和稳定性,具有很大的应用潜力。
关键词:二氧化钛纳米管阵列,阳极氧化法,结构表征,光学性能引言:近年来,纳米技术的发展给材料科学带来了新的发展机遇。
二氧化钛是一种重要的功能材料,具有广泛的应用前景。
二氧化钛纳米管是一种新型的二氧化钛纳米结构,由于其独特的形貌和结构,具有许多特殊的物理和化学性质,已经成为研究的热点之一。
目前,制备二氧化钛纳米管阵列的方法主要有溶胶凝胶法、水热法、电化学合成法等。
其中,阳极氧化法是一种简单、可控性好、可扩展性强的制备方法,已经被广泛应用于制备纳米管和纳米线阵列等。
本文主要研究了一种利用阳极氧化法制备二氧化钛纳米管阵列的方法。
通过调节电解液的成分和电化学条件,制备了不同形貌和尺寸的二氧化钛纳米管阵列,并对其结构和光学性能进行了表征。
实验:1. 材料和仪器所使用的材料有:二氧化钛粉末(99.9%,Aldrich)、氟化铵(NH4F,99%,Sigma-Aldrich)、乙二醇(C2H6O2,99.9%,Aldrich)、去离子水。
所使用的仪器有:扫描电镜(SEM,JSM-6700F)、透射电镜(TEM,JEM-2100)、X射线衍射仪(XRD,D8 Advance)、紫外-可见光谱仪(UV-Vis,Lambda 35)。
2. 制备二氧化钛纳米管阵列制备二氧化钛纳米管阵列的方法如下:首先将二氧化钛粉末加入去离子水中,搅拌均匀后制备成浓度为1.0 g/L的二氧化钛溶液。
然后将制备好的二氧化钛溶液倒入预先清洗好的电解槽中,电解槽中的电极分别为铂电极和铝电极。
电解液的成分为:0.05 mol/L的氟化铵和0.1 mol/L的乙二醇。
一种两步阳极氧化制备二氧化钛纳米管的方法
步骤1:阳极氧化制备钛纳米膜
将钛表面清洗,并将其作为阳极放入电解槽中,用作阴极。
在电解槽中加入含有氟离子和其他适当添加剂的电解液,如含有氢氟酸和乙酸的溶液。
根据需要,调整电解液的pH值。
将电解槽连接到直流电源上,并将阳极处加正电压。
在此过程中,正极反应是钛阳极上发生的氧化反应。
通过控制电压和电流密度,可以控制氧化速率和膜的厚度。
步骤2:将二氧化钛纳米管分离
将经过阳极氧化的样品从电解槽中取出,并在合适的溶剂中进行超声处理,以将二氧化钛纳米管从钛基底上剥离。
通常,可以使用酸性或碱性溶液来分离二氧化钛纳米管。
此外,还可以根据需要,在第一步阳极氧化之前,在钛表面形成一层光致物种。
这样,通过选择适当的光照条件,可以在阳极氧化的同时实现光电化学反应,从而进一步控制二氧化钛纳米管的形貌和性质。
需要注意的是,该方法中的电解液成分、电压、电流密度、电解槽材料等参数可以根据具体要求进行调整,以获得理想的二氧化钛纳米管。
制备纳米二氧化钛的方法纳米二氧化钛是一种重要的纳米材料,具有广泛的应用前景,例如在太阳能电池、催化剂、光催化剂、抗菌剂、防晒剂等领域。
下面介绍几种制备纳米二氧化钛的方法。
1. 溶胶-凝胶法溶胶-凝胶法是一种常见的制备纳米二氧化钛的方法。
该方法主要包括溶胶制备、凝胶制备、干燥和烧结等步骤。
一般来说,溶胶制备使用钛酸四丁酯、乙酸钛、钛硝酸等钛源。
通过加入各种表面活性剂进行混合,生成钛溶胶。
然后,通过控制pH值、温度等条件,钛溶胶可以转化为钛凝胶。
之后,通过干燥和烧结可以得到纳米二氧化钛。
溶胶-凝胶法具有简单、易控制、制备规模可调的优点,但其制备成本较高,同时制备时间也较长。
2. 水热法水热法也是一种制备纳米二氧化钛的有效方法。
该方法在普通压力下,在水热条件下进行。
通过将钛源和水混合,在高温和高压的条件下,在反应瓶中反应,形成纳米二氧化钛。
锅炉管道管内沉积的纳米二氧化钛可作为理想输送介质。
水热法具有制备成本低、制备时间短的优点,是一种非常实用的制备方法。
3. 氧气气氛下燃烧法氧气气氛下燃烧法也是一种制备纳米二氧化钛的有效方法,该方法将钛源和燃烧剂混合,使其在氧气气氛下燃烧,生成氧化钛。
燃烧剂包括葡萄糖、硫酸铵等。
这种方法具有成本低、操作简单等优点,但需要进行后期处理才能得到高品质的纳米二氧化钛。
4. 离子液体辅助合成法离子液体辅助合成法是一种新兴的制备纳米二氧化钛的方法。
这种方法是通过将离子液体与金属前驱体混合,制备出纳米级别的二氧化钛。
离子液体的存在使得反应过程可控性更好,对纳米二氧化钛的形貌和尺寸有显著的影响。
此方法具有无害、环保等优点,并且得到的纳米二氧化钛的形貌和尺寸较为均匀。
综上所述,制备纳米二氧化钛的方法有多种,每种方法均有其优缺点,在具体应用中可根据需要选择合适的方法进行制备。
毕业设计(论文)题目阳极氧化制备二氧化钛纳米管机理及热处理对其影响学院化学与化学工程学院专业班级学生姓名指导教师成绩2012 年6 月20 日摘要采用阳极氧化法,在NH4F+H2O的乙二醇溶液体系下制备了TiO2纳米管列阵薄膜,建立了TiO2纳米管列阵薄膜的“电场诱导”生长模型。
TiO2纳米管的管形结构形成与TiO2的半导体性质相关。
纳米管表面吸附的纳米粒子与管壁空间有关系。
经过退火处理的纳米管管口有12~14个直径为25~35nm的纳米颗粒团聚体组成,600℃时,纳米管结构已被破坏。
经过300~600℃之间不同温度处理后的TiO2纳米管呈现锐钛矿晶态,比表面积随温度升高呈下降趋势。
关键字:TiO2纳米管;阳极氧化;生长机理;热处理AbstractIn NH4F+H2O ethylene glycol solution,the TiO2 nanotube arrays were fabricated on the Ti substraet via anodic oxidation method at room temperatue.The induced electric-field growth model of TiO2 nanotube arrays was created. The formation of TiO2 nanotubes’tubular morphology is bound up with TiO2 semiconductor properties,The results show that there is relationship between nanoparticles on nanotube surface and space between walls. After annealing treatment,nanotube wall was comprised of 12~14 nanoparticles which the diameter of 25~35nm,and the nanotubes structure has been destroyed at 300~600℃.Specific surface area of nanotubes drop with temperature rise.Key words: TiO2 nanotubes;anodic oxidation;growth mechanism;annealing目录摘要 (I)Abstract .....................................................................................................I I 第1章绪论 (1)1.1TiO2 的晶体结构 (1)1.2 二氧化钛纳米材料的存在形式 (1)1.3 二氧化钛纳米管的制备方法 (2)1.3.1 水热合成法 (2)1.3.2 模板合成法 (3)1.3.3 阳极氧化法 (4)1.4 制备机理 (4)1.4.1 水热合成法机理 (4)1.4.2 模板法机理 (5)1.4.3 阳极氧化法制备二氧化钛纳米管机理 (5)1.5二氧化钛纳米管应用 (7)1.5.1 光催化降解污染物 (7)1.5.2 气敏传感器 (7)1.5.3 其他方面的应用 (7)1.6 本文的研究目的和内容 (7)第2章实验部分 (8)2.1 实验用品 (8)2.2 实验过程 (8)2.2.1 钛片的预处理 (8)2.2.2 电解液的制备 (9)2.2.3 阳极氧化过程 (9)2.2.4 样品的后处理 (9)2.2.5 表征 (9)第3章结果与讨论 (10)3.1 分析与讨论 (10)3.1.1 SEM图片解析 (10)3.1.2 阳极氧化制备TiO2纳米管机理 (11)3.1.3 不同温度处理对TiO2纳米管的微观形貌的影响 (14)3.1.4 热重曲线 (16)3.1.5 不同温度处理对TiO2纳米管的晶型影响(XRD) (16)3.1.6 不同温度处理对TiO2纳米管的N2吸附-脱吸附 (17)结论 (19)参考文献 (20)致谢 (22)第1章绪论1.1TiO2 的晶体结构到目前为止,已发现的TiO2的晶体结构总共有六种,其中自然界已探明的有四种,其结构分别为:锐钛矿(Anatase)、金红石(Rutile)、板钛矿、TiO2(B),人工合成的是另外两种,结构分别为:类碱硬锰矿的TiO2(H),类PbO2结构的TiO2。