周炳琨激光原理第二章习题解答(完整版)
- 格式:doc
- 大小:933.50 KB
- 文档页数:15
第二章 开放式光腔与高斯光束1. 证明121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下列图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
则1221,1Lg g R ==-,再根据稳定性条件 1201g g <<可得22011LR R L <-<>⇒。
第二章 开放式光腔与高斯光束1. 证明121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下列图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
则1221,1Lg g R ==-,再根据稳定性条件 1201g g <<可得22011LR R L <-<>⇒。
《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即 c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为 0γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=0ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即: TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b 为波尔兹曼常数,T 为热力学温度。
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
第二章开放式光腔与高斯光束1.证明如图2.1所示傍轴光线进入平面介质界面的光线变换矩阵为12 1 0ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,根据几何关系可知211122,sin sinr rηθηθ==傍轴光线sinθθB则1122ηθηθ=,写成矩阵形式2121121 0r rθθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为1210 1dηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 010 00 1r rdθθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦化简后21211210 1dr rθθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
周炳琨激光原理第二章习题解答(完整版)1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M 1→M 2→M 1,初始坐标为⎪⎪⎭⎫ ⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫ ⎝⎛θ11r =T ⎪⎪⎭⎫⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r 而对称共焦腔,R 1=R 2=L 则A=1-2R L 2=-1 B=2L ⎪⎪⎭⎫⎝⎛-2R L 1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0 D=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=-1 所以,T=⎪⎪⎭⎫ ⎝⎛--1001故,⎪⎪⎭⎫⎝⎛θ22r =⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0<g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L(a 对平凹腔:R 2=∞,则g 2=1,0<1-1R L<1,即0<L<R 1 (b)对双凹腔:0<g 1•g 2<1, 0<⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1 LR >1,L R >2或L R <1L R <2且LR R >+21(c)对凹凸腔:R 1=1R ,R 2=-2R ,0<⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
第二章开放式光腔与高斯光束1.证明如图2.1所示傍轴光线进入平面介质界面的光线变换矩阵为121 0ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,根据几何关系可知211122,sin sinr rηθηθ==傍轴光线sinθθB则1122ηθηθ=,写成矩阵形式2121121 0r rθθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为1210 1dηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 010 00 1r rdθθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦化简后21211210 1dr rθθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
2023激光原理第6版(周炳坤著)课后答案下载2023激光原理第6版(周炳坤著)课后答案下载
内容主要包括光和物质作用经典理论、速率方程理论、光学谐振腔理论,以及对连续激光器工作特性的分析。
对激光放大器、激光器性能改善技术也做了简要介绍。
《激光原理》可作为高校激光原理课程的`教材,也可供从事激光工作的研究人员、技术人员以及高校有关专业的研究生参考。
激光原理第6版(周炳坤著):内容简介
第1章激光概论
第2章光和物质的近共振相互作用
第3章速率方程理论
第4章光学谐振腔理论
第5章连续激光器的工作特性
附录A常用物理常数表
附录B激光大事记及在国内发展足迹
激光原理第6版(周炳坤著):目录
点击此处下载激光原理第6版(周炳坤著)课后答案。
第二章 开放式光腔与高斯光束1. 证明121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下列图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
则1221,1Lg g R ==-,再根据稳定性条件 1201g g <<可得22011LR R L <-<>⇒。
《激光原理》习题解答 第二章习题解答1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合.证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。
共焦腔分为实共焦腔和虚共焦腔。
公共焦点在腔内的共焦腔是实共焦腔,反之是虚共焦腔。
两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。
) 根据以上一系列定义,我们取具对称共焦腔为例来证明。
设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知:L R R R ===21因此,一次往返转换矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1001D C B A T 共轴球面腔的稳定判别式子()1211<+<-D A 如果()121-=+D A 或者()121=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。
本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。
经过两个往返的转换矩阵式2T ,⎥⎦⎤⎢⎣⎡=10012T 坐标转换公式为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。
2 试求平凹、双凹、凹凸共轴球面腔的稳定条件。
解答如下:共轴球面腔的()21221222121R R L R L R L D A +--≡+,如果满足()1211<+<-D A ,则腔是稳定腔,反之为非稳腔,两者之间存在临界腔,临界腔是否是稳定腔,要具体分析。
第二章 开放式光腔与高斯光束1. 证明如图2.1 所示傍轴光线进入平面介质界面的光线变换矩阵为r 2 r 1,1sin 1 2 sin 2 傍轴光线 sin 则 1 1 2 2 , 写成矩阵形式2. 证明光线通过图 2.2 所示厚度为 d 的平行平面介质的光线变换矩阵为 12 d0 1证明 :设入射光线坐标参数为 r 1, 1,出射光线坐标参数为 r 2, 2 ,入射光线首先经界面1折射,然后在介质 2中自由传播横向距离 d ,最后经界面 2 折射后出射 。
根据 1题的结论和自由传播的光线变换矩阵可得3.试利用往返矩阵证明共焦腔为稳定腔 , 即任意傍轴光线在其中可以往返无限多次 ,而且 两次往返即自行闭合证:设光线在球面镜腔内的往返情况如下图所示证明 : 设入射光线坐标参数为r 1, 1, 出射光线坐标参数为 r 22 ,根据几何关系可知学习帮手r 221d2r 11得证。
r 2 2其往返矩阵为于是光线在腔内往返任意多次均不会溢出腔外 , 所以共焦腔为稳定腔4.试求平凹 、双凹 、凹凸共轴球面镜腔的稳定性条件解: 共轴球面腔稳定性条件 0 g 1g 2 1其中 g 1 1 1 L ,g 2 1 L1 21R 1 2R 2对平凹共轴球面镜腔有 R 1,R 2 0。
则 g 1 1,g 2 1 L, 再根据稳定性条件R2L0 g 1g 2 1可得 0 1 1 R 2 L 。
1 2R22对凹凸共轴球面镜腔有 , R 1 0,R 2 0则 g 1 1L对 双 凹 共 轴 球 面 腔 有 , R 1 0,R 2 0 则 g 11 R L ,g 2R 11R2 , 根 据 稳 定 性 条 件 TA CR 1101由于是共焦腔 , 则有将上式代入计算得往返矩R1 R 2LT01 01T nT r 1T L T r 2T Ln1n 10n011n 100101可以看出 ,光线在腔内往返两次的变换矩阵为单位阵 ,所以光线两次往返即自行闭合 1L 1L 1R 1 L 或R 1R 2R 2 LR20, 根据稳定性条件R2,g 20 g 1g 2 1 可得 00 R 1 L0 R 2 L 。
第二章开放式光腔与XX光束1.证明如图2.1所示傍轴光线进入平面介质界面的光线变换矩阵为证明:设入射光线坐标参数为,出射光线坐标参数为,根据几何关系可知傍轴光线则,写成矩阵形式得证2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为。
证明:设入射光线坐标参数为,出射光线坐标参数为,入射光线首先经界面1折射,然后在介质2xx自由传播横向距离d,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得化简后得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有R i = R2 = L将上式代入计算得往返矩阵T m [A D1"101〔01 一可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件其中对平凹共轴球面镜腔有则,再根据稳定性条件可得。
对双凹共轴球面腔有,则根据稳定性条件可得。
对凹凸共轴球面镜腔有,则根据稳定性条件可得。
5•激光器的谐振腔由一面曲率半径为的凸面镜和曲率半径为的凹面镜组成,工作物质长,其折射率为1.52,求腔长L在什么范围内是稳定腔。
解:设两腔镜和的曲率半径分别为和,工作物质长,折射率当腔内放入工作物质时,稳定性条件中的腔长应做等效,设工作物质长为,工作物质左右两边剩余的腔长分别为和,贝y。
设此时的等效腔长为,则光在腔先经历自由传播横向距离,然后在工作物质左侧面折射,接着在工作物质中自由传播横向距离,再在工作物质右侧面折射,最后再自由传播横向距离,则。
]「1 ql1 °=1 町n J(0dj o 冷0 1-所以等效腔长等于1 ■01.17m<L ::2.17m6. 图2.3所示三镜环形腔,已知,试画出其等效透镜序列图,并求 球面镜的曲率半径R 在什么范围内该腔是稳定腔。
周炳琨激光原理第二章习题解答(完整版)1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M1→M 2→M 1,初始坐标为⎪⎪⎭⎫⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫⎝⎛θ11r =T⎪⎪⎭⎫ ⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r而对称共焦腔,R 1=R 2=L则A=1-2R L 2=-1B=2L ⎪⎪⎭⎫ ⎝⎛-2R L 1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0 D=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=-1所以,T=⎪⎪⎭⎫⎝⎛--1001故,⎪⎪⎭⎫ ⎝⎛θ22r =⎪⎪⎭⎫⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0<g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L (a 对平凹腔:R 2=∞,则g 2=1,0<1-1R L <1,即0<L<R1(b)对双凹腔:0<g 1•g 2<1, 0<⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1 L R >1,L R >2或L R <1L R <2且LR R >+21(c)对凹凸腔:R 1=1R ,R 2=-2R ,0<⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
解:由图可见有工作物质时光的单程传播有效腔长减小为无工作物质时的⎪⎭⎫⎝⎛--=n 11L L L C e ?由0<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+2111e e L L <1,得2m L 1m e << 则17m .2L 17m .1c <<4.图2.1所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。
图示环形强为非共轴球面镜腔。
在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的2/)cos (θR f =,对于在与此垂直的平面内传输的弧矢光线,)cos 2/(θR f =,θ为光轴与球面镜法线的夹角。
解:透镜序列图为该三镜环形腔的往返矩阵为:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=D C B A 10L 11f 1-0110L 11f 1-0110L 11001T2f L f L 31D A ⎪⎭⎫ ⎝⎛+-==由稳定腔的条件:()1D A 211<+<-,得:22f L 1f L 0<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-< 2Lf 3L <<或L f >。
若为子午光线,由 30cos R 21f =则32L R 33L 4<<或34L R > 若为弧矢光线,由 2cos30R f =,则2L3R 3L <<或R 3R >5.有一方形孔径共焦腔氦氖激光器,L =30cm ,d=2a=0.12cm,nm 8.632=λ,镜的反射率为11=r ,96.02=r ,其他损耗以每程0.003估计。
此激光器能否作单模运转?如果想在共焦镜面附近加一个方形小孔阑来选择TEM 00,小孔边长应为多大?试根据图2.5.5作一大略的估计、氦氖增益由公式d le lg 10*3140+=-计算。
解: 菲涅耳数9.18.632*30)06.0(22≈==nm cm cm L a N λ∞=R ∞=R增益为075.112.03010*314=+=-e lgTEM0模衍射损耗为910*7.4- TEM 01模衍射损耗为106-,总损耗为0.043,增益大于损耗;TEM 02模衍射损耗为10*56-,总损耗为0.043,增益大于损耗;衍射损耗与腔镜损耗和其它损耗相比均可忽略,三横模损耗均可表示为234.0=δ105.1e *e 0g >=-l δ 因此不能作单模运转为实现TEM0单横模运转所加小孔光阑边长为:m L s 10*0.58.632*3022240≈==-ππλω6.试求出方形镜共焦腔面上TEM 30模的节线位置,这些节线是等距分布的吗?解:012833)(=-=X X H X01=X ,263,2±=X ,由26,02±=x L λπ得节线位置:1=x ,πλ433,2L x ±=因此节线是等间距分布的。
7.求圆形镜共焦腔TEM 20和TEM 02模在镜面上光斑的节线位置。
解:TEM 02模的节线位置由缔合拉盖尔多项式:由02)()42(212=+-=ζζζL 得222,1±=ζ,又ωζ2022sr =则ωs r 0221±=TEM 20模的节线位置为0r =或sin2φ=0,即:23,,2,0πππφ=8.今有一球面腔,m R 5.11=,m R 12-=,L =80cm 。
试证明该腔为稳定腔;求出它的等价共焦腔的参数。
解:g 1=1-1R L =0.47 g 2=1-2R L=1.8 ,g 1•g 2=0.846即:0< g 1•g 2<1,所以该腔为稳定腔。
由公式(2.8.4) Z 1=()()()212R L R L L R L -+--=-1.31mZ 2=()()()211R L R L L R L -+---=-0.15mf 2=()()()()()[]2212121R L R L L R R L R L R L -+--+--=0.25m 2f=0.5m9.某二氧化碳激光器采用平凹腔,L =50cm ,R =2m ,2a =1cm ,m μλ6.10=。
试计算ω1s 、ω2s 、ω0、θ0、δ100、δ200各为多少。
解:1111=-=R L g,43122=-=R L g,⎥⎦⎤⎢⎣⎡-+--=))(()(211221411L R R L R L L R R L s πλω)]([241L R L -=πλ )(1∞→Rπλ443=m 10*7.13≈-⎥⎦⎤⎢⎣⎡-+--=))(()(212122412L R R L R L L R R L s πλω)(22241LR R L -=πλ,)(1∞→Rπλ434=m10*0.23≈-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+=)1(]2[2212121212410g g g g g g g g Lπλθrad 10*0.43≈-∞==2s121ef1a N πω, 0100=δ05.2a N 2s222ef2==πω, -1020010*8.1=δ10.试证明,在所有λL a 2相同而R 不同的对称稳定球面腔中,共焦腔的衍射损耗最低。
这里L 表示腔长,R R R ==21为对称球面腔反射镜的曲率半径,a 为镜的横向线度。
证明:在共焦腔中,除了衍射引起的光束发散作用以外,还有腔镜对光束的会聚作用。
这两种因素一起决定腔的损耗的大小。
对共焦腔而言,傍轴光线的几何偏折损耗为零。
只要N 不太小,共焦腔模就将集中在镜面中心附近,在边缘处振幅很小,衍射损耗极低。
11.今有一平面镜和一R=1m 的凹面镜,问:应如何构成一平凹稳定腔以获得最小的基模远场角;画出光束发散角与腔长L 的关系曲线。
解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+=)1(]2[221212121210g g g g g g g g L πλθ⎥⎦⎤⎢⎣⎡-=g g L 221241πλ,)1(1=g⎪⎪⎭⎫ ⎝⎛-=)(12241L R L L πλ当m R L 5.022==时,θ0最小.12.推导出平凹稳定腔基模在镜面上光斑大小的表达式,作出:(1)当R =100cm 时,ω1s ,ω2s 随L 而变化的曲线;(2)当L =100cm 时,ω1s ,ω2s 随R 而变化的曲线。
解:⎥⎦⎤⎢⎣⎡-+--=))(()(211221411L R R L R L L R R L s πλω)]([241L R L -=πλ, )(1∞→R⎥⎦⎤⎢⎣⎡-+--=))(()(212122412L R R L R L L R R L s πλω)(22241LR R L -=πλ)(1∞→R(1)cm R R 1002==(2)cm L 100=13.某二氧化碳激光器,采用平凹腔,凹面镜的R =2m ,腔长L =1m 。
试给出它所产生的高斯光束的腰斑半径ω0的大小和位置、该高斯光束的f 及θ的大小。
解:)]()[())()((21221212R L R L L R R L R L R L f -+--+--=21m )12(*1)(2=-=-=L R L即:m 1=f10*7.3230-≈=fπλθ mf 10*8.130-≈=πλω14.某高斯光束腰斑大小为mm 14.10=ω,m μλ6.10=。
求与束腰相距cm 30、m 10、m 1000远处的光斑半径ω及波前曲率半径R 。
解:2)(1)(fz z +=ωω,z f z z R 2)(+= 其中,m f 385.02≈=λπω cm z 30=: mm cm 45.1)30(≈ω,m cm R 79.0)30(≈ m z 10= : mm m 6.29)10(≈ω, m m R 0.10)10(≈ m z 1000=:m m 96.2)1000(≈ω,m m R 1000)1000(≈15.若已知某高斯光束之mm 3.00=ω,nm 8.632=λ。
求束腰处的q 参数值,与束腰相距cm 30处的q 参数值,以及在与束腰相距无限远处的q 值。
解:∞→-=)0(,)0(11200R i R q πωλ 束腰处:cm i if i q 66.44200⋅≈==λπω )8.10.2()(0 z q z q +=cm i cm q cm z )66.4430()30(:30+≈= ∞=∞∞=)(:q z16.某高斯光束mm 2.10=ω,m μλ6.10=。
今用cm F 2=的锗透镜来聚焦,当束腰与透镜的距离为m 10、m 1、cm 10、0时,求焦斑大小和位置,并分析所得的结果。
解:m f 43.020≈=λπω 222)()(f F l F F l F l +--+=' (2.10.17)22222)(f l F F +-='ωω (2.10.18)m l 10=: m l 210004.2-⨯≈', m 601040.2-⨯='ω m l 1=: m l 210034.2-⨯≈', m 501025.2-⨯='ω cm l 10=: m l 210017.2-⨯≈', m 501053.5-⨯='ω 0=l : m l 210996.1-⨯≈', m 501062.5-⨯='ω可见,透镜对束腰斑起会聚作用,位置基本不变在透镜焦点位置。