北京市清华附中2019-2020学年高一年级居家自主学习在线检测试卷(期末)数学
- 格式:pdf
- 大小:918.09 KB
- 文档页数:4
北京市清华大学附属中学朝阳学校2019-2020学年高一下物理期末模拟试卷一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得5分,选不全的得3分,有选错的或不答的得0分) 1、关于万有引力和万有引力定律的理解正确的是( ) A .m 1与m 2受到的引力总是大小相等、方向相反,是一对平衡力 B .m 1与m 2受到的引力总是大小相等的,而与m 1、m 2是否相等无关 C .不能看作质点的两物体间不存在相互作用的引力 D .只有能看作质点的两物体间的引力才能用122Gm m F r计算 2、如图所示,自由下落的小球,从它接触到竖直放置的轻质弹簧开始,一直到弹簧被压缩到 最短的过程中,下列说法正确的是A .小球的动能先增大后减小B .小球在刚接触弹簧时动能最大C .小球的机械能守恒D .小球的动能和弹簧的弹性势能之和不变3、如图所示,左端固定的轻质弹簧被物块压缩,物块被释放后,由静止开始从A 点沿粗糙水平向右运动。
离开弹簧后,经过B 点的动能为k E ,该过程中,弹簧对物块做的功为W ,则物块克服摩擦力做的功W f 为A .k EB .WC .k E +WD .W-k E4、从同一高度落下的玻璃杯掉在水泥地上比掉在泥土地上易碎,是因为掉在水泥地上时,杯子 A .动量的变化量大 B .动量大C .受到的冲量大D .受到的作用力大5、将一个物体以15m/s 的速度从20m 的高度水平抛出,落地时它的速度方向与地面夹角是多少( )(不计空气阻力,取210m/s g =) A .37︒B .45︒C .53︒D .60︒6、木星的半径约为R=7.0×710m 。
早期伽利略用自制的望远镜发现了木星的四颗卫星,其中,木卫三离木星表面的高度约为h=1.03×910m,它绕木星做匀速圆周运动的周期约等于T=6.0×510s ,已知引力常量G=6.67×1110-N·m 2/kg 2,则木星质量的数量级为 A .2110kg B .2410kg C .2710kg D .3010kg7、如图所示,内壁光滑半径大小为R 的圆轨道竖直固定在水平桌面上,一个质量为m 的小球恰好能通过轨道最高点在轨道内做圆周运动。
高一第一学期期末试卷物 理第Ⅰ卷请将第Ⅰ卷中所有题目的答案填涂在机读卡上,填写在试卷上无效。
一、单项选择题(每题只有一项正确答案,每题3分,共36分) 1.在国际单位制中,力学的三个基本单位是( )A .kg 、m 、m /s 2B .kg 、 m / s 、NC .kg 、m 、sD .kg 、 m / s 2、N2.下列哪些说法是正确的( )A .体操运动员双手握住单杠吊在空中不动时处于失重状态B .蹦床运动员在空中上升和下落过程中都处于失重状态C .举重运动员在举起杠铃后不动的那段时间内处于超重状态D .游泳运动员仰卧在水面静止不动时处于失重状态3.下列关于曲线运动的说法中,正确的是( )A .对于匀速圆周运动的物体,它所受到的向心力是一个恒定不变的力B .平抛运动是变加速曲线运动C .曲线运动的加速度方向可能与速度在同一直线上D .两个直线运动合成后,其合运动可能是曲线运动4.如图所示,A 、B 两物体叠放在一起,用手拖住B ,让它们静止靠在墙边,然后释放,它们同时沿竖直墙面下滑,已知m A >m B ,则物体B ( ) A .只受一个重力B .受到重力、摩擦力各一个C .受到重力、弹力各一个D .受到重力、摩擦力各一个,弹力两个5.人造卫星在轨道上绕地球做圆周运动,它所受的向心力F 跟轨道半径r 的关系是( )A .由公式rmv F 2=可知F 和r 成反比B .由公式F =mω2r 可知F 和ω2成正比 C .由公式F =mωv 可知F 和r 无关 D .由公式2rGMm F =可知F 和r 2成反比6.若离地面高度为h 处的重力加速度值,是地球表面处重力加速度值的13,则高度h 是地球半径的( ) A .3倍 B .13倍 C倍 D .-1)倍7.地球表面重力加速度为g ,地球半径为R ,万有引力恒量为G ,下式关于地球密度的估算式正确的是( )(球的体积公式:V=34πR 3) A .RG g πρ43= B .GR g 243πρ= C .RG g =ρ D .2GR g=ρ8.如图所示,车厢里悬挂着两个质量不同的小球,上面的球比下面的球质量大,当车厢向右作匀加速运动(空气阻力不计)时,下列各图中正确的是( )9.物体做平抛运动的规律可以概括为两点:(1)在水平方向做匀速直线运动;(2)在竖直方向做自由落体运动。
2019-2020学年北京市清华附中高一(上)期末数学试卷一.选择题(每小题4分,共40分).1.(4分)已知集合A={x|x2<1},且a∈A,则a的值可能为()A.﹣2B.﹣1C.0D.12.(4分)下列函数在定义域内单调递增的是()A.y=x2B.y=tan x C.y=0.5x D.y=lgx3.(4分)若点P(4,3)在角α的终边上,则cosα=()A.B.C.D.4.(4分)在a=log30.1,b=tan,c=2,d=sin2中,最大的数为()A.a B.b C.c D.d5.(4分)“α+β=+2kπ,k∈Z”是“sinα=cosβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(4分)下列区间包含函数f(x)=x+log2x﹣5零点的为()A.(1,2)B.(2,3)C.(3,4)D.(4,5)7.(4分)函数f(x)=的定义域为()A.(﹣1,0)∪(0,+∞)B.[﹣1,0)∪(0,+∞)C.[﹣1,+∞)D.(﹣1,+∞)8.(4分)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件9.(4分)已知θ=(0,),sin2θ=,则sinθ﹣cosθ=()A.B.﹣C.D.﹣10.(4分)若函数f(x)的图象上存在一点A(x0,y0),满足x0+y0=0,且x0y0≠0,称函数f(x)为“可相反函数”.在:①y=sin x;②y=lnx;③y=x2+4x+1;④y=﹣e﹣x中,为“可相反函数”的全部序号是()A.①②B.②③C.①③④D.②③④二、填空题(每小题5分,共30分).11.(5分)已知幂函数f(x)=x m经过点(2,),则f()=.12.(5分)已知θ为第二象限角,且sinθ=,则sin(θ+)=.13.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图,则函数f(x)的单调递增区间为.14.(5分)关于函数f(x)=sin x与g(x)=cos x有下面三个结论:①函数f(x)的图象可由函数g(x)的图象平移得到:②函数f(x)与函数g(x)在(,π)上均单调递减;③若直线x=t与这两个函数的图象分别交于不同的A,B两点,则|AB|≤1.其中全部正确结论的序号为.15.(5分)已知函数f(x)=,若函数y=f(x)﹣k恰有两个不同的零点.则实数k的取值范围为.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”.x0是它的一个均值点,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,则实数m的取值范围是.三、解答题(共6小题,共80分).17.(13分)计算:(1)log64+2log63.(2)×(3)cos120°+tan135°.18.(13分)已知=.(1)若α为第三象限角,求cosα的值;(2)求tan(α+)的值;(3)求cos2α的值.19.(13分)已知函数f(x)=|log a x|(a>0,a≠1).(1)若f(2)=,求实数a的值;(2)若0<x1<x2,且f(x1)=f(x2),求x1x2的值;(3)若函数f(x)在[,3]的最大值与最小值之和为2,求实数a的值.20.(13分)已知函数f(x)=4cos x sin(x+).(1)求f()的值;(2)求函数f(x)的最小正周期及其图象的对称轴方程:(3)对于任意x∈[0,m]均有f(x)≥f(0)成立,求实数m的取值范围.21.(14分)若函数f(x)的定义域为R,且存在非零实数T,使得对于任意x∈R,f(x+T)=Tf(x)恒成立,称函数f(x)满足性质P(T).(1)分别判断下列函数是否满足性质P(1),并说明理由;①f(x)=sin2πx;②g(x)=cosπx.(2)若函数f(x)既满足性质P(2).又满足性质P(3),求函数f(x)的解析式;(3)若函数f(x)满足性质P(1.01).求证:存在x0∈R.使得|f(x0)|<0.001.22.(14分)已知集合A为非空数集,定义A+={x|x=a+b,a,b∈A},A﹣={x|x=|a﹣b|,a,b∈A}.(1)若集合A={﹣1,1},直接写出集合A+及A﹣;(2)若集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A﹣=A,求证x1+x4=x2+x3;(3)若集A⊆{x|0≤x≤2020,x∈N},且A+∩A﹣=∅,求集合A中元素的个数的最大值.2019-2020学年北京市清华附中高一(上)期末数学试卷参考答案与试题解析一.选择题(每小题4分,共40分).1.(4分)已知集合A={x|x2<1},且a∈A,则a的值可能为()A.﹣2B.﹣1C.0D.1【分析】化简集合A,利用元素与集合之间的关系即可得出.【解答】解:集合A={x|x2<1}={x|﹣1<x<1},四个选项中,只有0∈A,故选:C.2.(4分)下列函数在定义域内单调递增的是()A.y=x2B.y=tan x C.y=0.5x D.y=lgx【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=x2,是二次函数,在其定义域上不是单调函数,不符合题意;对于B,y=tan x,是正切函数,在其定义域上不是单调函数,不符合题意;对于C,y=0.5x,是指数函数,在定义域内单调递减,不符合题意;对于D,y=lgx,是对数函数,在定义域内单调递增,符合题意;故选:D.3.(4分)若点P(4,3)在角α的终边上,则cosα=()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,求得cosα的值.【解答】解:∵点P(4,3)在角α的终边上,则cosα==,故选:A.4.(4分)在a=log30.1,b=tan,c=2,d=sin2中,最大的数为()A.a B.b C.c D.d【分析】分别判断三个数的大小,进行比较即可.【解答】解:a=log30.1<0,b=tan=1,c=2∈(0,1),d=sin2<1,则最大的是b=1.故选:B.5.(4分)“α+β=+2kπ,k∈Z”是“sinα=cosβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】sinα=cosβ⇒cos(﹣α)=cosβ,可得β=2kπ±((﹣α),k∈Z.即可判断出结论.【解答】解:sinα=cosβ⇒cos(﹣α)=cosβ,∴β=2kπ±((﹣α),k∈Z.化为:α+β=+2kπ,k∈Z,或β﹣α=﹣+2kπ,k∈Z,∴“α+β=+2kπ,k∈Z“是“sinα=cosβ“的充分不必要条件.故选:A.6.(4分)下列区间包含函数f(x)=x+log2x﹣5零点的为()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【分析】此类选择题可以用代入计算出函数值,利用零点判定定理解决【解答】解:经计算f(1)=1﹣5=﹣4<0,f(2)=2+1﹣5=﹣2<0,f(3)=3+log23﹣5=log23﹣2<0,f(4)=4+2﹣5=1>0,故函数的零点所在区间为(3,4),故选:C.7.(4分)函数f(x)=的定义域为()A.(﹣1,0)∪(0,+∞)B.[﹣1,0)∪(0,+∞)C.[﹣1,+∞)D.(﹣1,+∞)【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则ln(x+1)≠0,且x+1>0,即x>﹣1且x≠0,故函数的定义域为{x|x>﹣1且x≠0},故选:A.8.(4分)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【分析】若每批生产x件,则平均仓储时间为天,可得仓储总费用为,再加上生产准备费用为800元,可得生产x件产品的生产准备费用与仓储费用之和是=元,由此求出平均每件的生产准备费用与仓储费用之和,再用基本不等式求出最小值对应的x值【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故选:B.9.(4分)已知θ=(0,),sin2θ=,则sinθ﹣cosθ=()A.B.﹣C.D.﹣【分析】由已知利用同角三角函数基本关系式,二倍角的正弦函数公式即可求解.【解答】解:∵θ=(0,),sin2θ=,∴sinθ﹣cosθ<0,∴sinθ﹣cosθ=﹣=﹣=﹣=﹣.故选:D.10.(4分)若函数f(x)的图象上存在一点A(x0,y0),满足x0+y0=0,且x0y0≠0,称函数f(x)为“可相反函数”.在:①y=sin x;②y=lnx;③y=x2+4x+1;④y=﹣e﹣x中,为“可相反函数”的全部序号是()A.①②B.②③C.①③④D.②③④【分析】根据已知条件把问题转化为函数f(x)与直线y=﹣x有交点且交点不在坐标原点,结合图象即可得到结论【解答】解:由定义可得:;函数f(x)为“可相反函数”,即函数f(x)与直线y=﹣x有交点且交点不在坐标原点.结合图象可得:只有②③④符合要求;故选:D.二、填空题(每小题5分,共30分).11.(5分)已知幂函数f(x)=x m经过点(2,),则f()=.【分析】把点的坐标代入幂函数解析式求出m的值,求出解析式,再计算f()的值.【解答】解:幂函数f(x)=x m经过点(2,),即2m=,解得m=﹣2,所以f(x)=x﹣2;所以f()==.故答案为:.12.(5分)已知θ为第二象限角,且sinθ=,则sin(θ+)=﹣.【分析】由已知结合同角平方关系可求cosθ,然后结合诱导公式进行化简即可求解.【解答】解:因为θ为第二象限角,且sinθ=,所以cos,则sin(θ+)=cosθ=﹣.故答案为:﹣13.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图,则函数f(x)的单调递增区间为[2k﹣,2k﹣],k∈Z.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的单调性,得出结论.【解答】解:根据函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=1,•=﹣,∴ω=π.再根据五点法作图,可得π×+φ=π,∴φ=,f(x)=sin(π•x+).令2kπ﹣≤π•x+≤2kπ+,求得2k﹣≤x≤2k﹣,故函数的增区间为[2k﹣,2k﹣],k∈Z,故答案为:[2k﹣,2k﹣],k∈Z.14.(5分)关于函数f(x)=sin x与g(x)=cos x有下面三个结论:①函数f(x)的图象可由函数g(x)的图象平移得到:②函数f(x)与函数g(x)在(,π)上均单调递减;③若直线x=t与这两个函数的图象分别交于不同的A,B两点,则|AB|≤1.其中全部正确结论的序号为①②.【分析】根据正弦函数与余弦函数的性质逐个判断即可.【解答】解:对于①,由于f(x)=sin x=cos(x+),所以函数f(x)=sin x的图象可由函数g(x)=cos x的图象向左平移个单位得到;①正确;对于②,函数f(x)=sin x在(,π)上为减函数,函数g(x)=cos x在(,π)上为减函数;②正确;对于③,若直线x=t与这两个函数的图象分别交于不同的A,B两点,则|AB|=|sin t﹣cos t|=|sin(t﹣)|≤.故③错误;故正确结论序号为①②;故答案为:①②.15.(5分)已知函数f(x)=,若函数y=f(x)﹣k恰有两个不同的零点.则实数k的取值范围为(﹣1,0)∪[1,3].【分析】题目等价于函数f(x)与y=k的图象有2个不同的交点,作出图象,数形结合即可【解答】解:条件等价于方程f(x)=k有2个不等实根,也即函数f(x)与y=k的图象有2个不同的交点,作出函数f(x)的图象如图:由图象可知,﹣1<k<0或1≤k≤3,故k∈(﹣1,0)∪[1,3],故答案为(﹣1,0)∪[1,3].16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”.x0是它的一个均值点,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,则实数m的取值范围是[0,+∞).【分析】根据题意,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,方程x2+mx=,即x2+mx﹣m=0在(﹣1,1)内有实数根,若函数g(x)=x2+mx﹣m 在(﹣1,1)内有零点.首先满足:△≥0,解得m≥0,或m≤﹣4.g(1)=1>0,g(﹣1)=1﹣2m.对称轴:x=﹣.对m分类讨论即可得出.【解答】解:根据题意,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,则方程x2+mx=,即x2+mx﹣m=0在(﹣1,1)内有实数根,若函数g(x)=x2+mx﹣m在(﹣1,1)内有零点.则△=m2+4m≥0,解得m≥0,或m≤﹣4.g(1)=1>0,g(﹣1)=1﹣2m.g(0)=﹣m.对称轴:x=﹣.①m≥0时,﹣≤0,g(0)=﹣m≤0,g(1)>0,因此此时函数g(x)在(﹣1,1)内一定有零点.∴m≥0满足条件.②m≤﹣4时,﹣≥2,由于g(1)=1>0,因此函数g(x)=x2+mx﹣m在(﹣1,1)内不可能有零点,舍去.综上可得:实数m的取值范围是[0,+∞).故答案为:[0,+∞).三、解答题(共6小题,共80分).17.(13分)计算:(1)log64+2log63.(2)×(3)cos120°+tan135°.【分析】(1)利用对数的运算性质求解即可得解.(2)利用指数的运算即可求解.(3)利用诱导公式化简根据特殊角的三角函数值即可求解.【解答】解:(1)log64+2log63=+2===lg6;(2)×=2+2+2=2=21=2.(3)cos120°+tan135°=cos(180°﹣60°)+tan(180°﹣45°)=﹣cos60°﹣tan45°=﹣﹣1=﹣.18.(13分)已知=.(1)若α为第三象限角,求cosα的值;(2)求tan(α+)的值;(3)求cos2α的值.【分析】(1)由题意利用同角三角函数的基本关系,求得cosα的值.(2)由题意利用两角和的正切公式,求得所给式子的值.(3)由题意利用二倍角公式的余弦公式,求得cos2α的值.【解答】解:(1)∵已知==,∴tanα=3=.∵α为第三象限角,∴cosα<0,sinα<0,且sin2α+cos2α=1.求得sinα=﹣,cosα=﹣.(2)由以上可得,tan(α+)===﹣2.(3)cos2α=2cos2α﹣1=2•﹣1=﹣.19.(13分)已知函数f(x)=|log a x|(a>0,a≠1).(1)若f(2)=,求实数a的值;(2)若0<x1<x2,且f(x1)=f(x2),求x1x2的值;(3)若函数f(x)在[,3]的最大值与最小值之和为2,求实数a的值.【分析】(1)代入直接求解即可;(2)计算可知log a(x1x2)=0,由此得到x1x2=1;(3)分析可知函数f(x)在[,3]的最大值为2,讨论即可得解.【解答】解:(1)依题意,,即或,解得a=4或;(2)依题意,|log a x1|=|log a x2|,又0<x1<x2,故log a x1+log a x2=0,即log a(x1x2)=0,故x1x2=1;(3)显然当x=1时,函数f(x)=|log a x|取得最小值为0,则函数f(x)在[,3]的最大值为2,若,解得或;若f(3)=|log a3|=2,解得或;结合(2)可知,只有或满足题意.20.(13分)已知函数f(x)=4cos x sin(x+).(1)求f()的值;(2)求函数f(x)的最小正周期及其图象的对称轴方程:(3)对于任意x∈[0,m]均有f(x)≥f(0)成立,求实数m的取值范围.【分析】(1)直接利用已知条件求解即可.(2)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和对称轴求得f(x)的最小正周期和对称轴即可.(3)求出函数f(0)的值,然后求解函数在(0,π)的范围内,求出x的值等于f(0),即可得到m的最大值.【解答】解:(1)f(x)=4cos x sin(x+).f()=0.(2)依题意,得函数f(x)=4cos x sin(x+)=4cos x•(sin x+cos x)=sin2x+2cos2x ﹣1+1=2(sin2x+cos2x)+1=2sin(2x+)+1.它的最小正周期为=π.函数f(x)的图象的对称轴方程令2x+=kπ+,求得x=kπ+,k∈Z.(3)对于任意x∈[0,m]均有f(x)≥f(0)成立,f(0)=4cos0sin=2.2sin(2x+)+1=2,可得x=时,f()=2,所以0<m≤.21.(14分)若函数f(x)的定义域为R,且存在非零实数T,使得对于任意x∈R,f(x+T)=Tf(x)恒成立,称函数f(x)满足性质P(T).(1)分别判断下列函数是否满足性质P(1),并说明理由;①f(x)=sin2πx;②g(x)=cosπx.(2)若函数f(x)既满足性质P(2).又满足性质P(3),求函数f(x)的解析式;(3)若函数f(x)满足性质P(1.01).求证:存在x0∈R.使得|f(x0)|<0.001.【分析】(1)根据P(1)的定义可知,该函数的周期为1,利用公式可分别求出它们的周期;(2)根据P(2)、P(3)的性质,合理变换x的取值,结合性质,可构造出关于f(x)的方程解出f(x);(3)采用构造法,将P(1.01)的性质转化为,让函数值随着x后面累加1.01,绝对值逐渐缩小,再利用赋值法求得符合题意的x0.【解答】解:(1)令T=1,则f(x+1)=f(x),即该函数的周期为1,∵f(x)=sin2πx的周期为=1,故f(x)满足性质P(1),②g(x)=cosπx的周期为=2,故g(x)不满足性质P(1),(2)函数f(x)既满足性质P(2).又满足性质P(3),∴f(x+2)=2f(x),f(x+3)=3f(x),∴f(x+3)=f(x+1+2)=2f(x+1)=3f(x)①又f(x+2)=f(x﹣1+3)=3f(x﹣1)=2f(x)②结合f(x+1)=f(x﹣1+2)=2f(x﹣1)③,联立①②③消去f(x+1)、f(x﹣1)解得f(x)=0.(3)因为f(x+1.01)=1.01f(x),所以f(x)=f(x+1.01),所以f(x﹣1.01)=,取x=0,,,……,f(﹣n×1.01)=,(n∈N+)易知<0.001,且随着n的增大|f(﹣n×1.01)|的值递减.对两边取常用对数得:﹣nlg1.01+lg|f(0)|<﹣3整理后得,取大于的整数n时,对应的x0=﹣n×1.01满足|f(x0)|<0.001.所以,存在x0∈R.使得|f(x0)|<0.001.22.(14分)已知集合A为非空数集,定义A+={x|x=a+b,a,b∈A},A﹣={x|x=|a﹣b|,a,b∈A}.(1)若集合A={﹣1,1},直接写出集合A+及A﹣;(2)若集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A﹣=A,求证x1+x4=x2+x3;(3)若集A⊆{x|0≤x≤2020,x∈N},且A+∩A﹣=∅,求集合A中元素的个数的最大值.【分析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A ﹣,通过A+∩A﹣=∅建立不等关系求出相应的值.【解答】解:(1)根据题意,由A={﹣1,1},则A+={﹣2,0,2},A﹣={0,2};(2)由于集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A﹣=A,所以A﹣中也只包含四个元素,即A﹣={0,x2﹣x1,x3﹣x1,x4﹣x1},剩下的x3﹣x2=x4﹣x3=x2﹣x1,所以x1+x4=x2+x3;(3)设A={a1,a2,…a k} 满足题意,其中a1<a2<…<a k,则2a1<a1+a2<a1+a3<…<a1+a k<a2+a k<a3+a k<…<a k﹣1+a k<2a k,∴|A+|⩾2k﹣1,a1﹣a1<a2﹣a1<a3﹣a1<…<a k﹣a1,∴|A﹣|⩾k,∵A+∩A﹣=∅,由容斥原理|A+∪A﹣|=|A+|+|A﹣|⩾3k﹣1,A+∪A﹣中最小的元素为0,最大的元素为2a k,∴|A+∪A﹣|⩾2a k+1,∴3k﹣1⩾2a k+1⩾4041(k∈N*),∴k≤1347,实际上当A={674,675,676,…,2020}时满足题意,证明如下:设A={m,m+1,m+2,…,2020},m∈N,则A+={2m,2m+1,2m+2,…,4040},A﹣={0,1,2,…,2020﹣m},依题意有2020﹣m<2m,即m>673,故m的最小值为674,于是当m=674时,A中元素最多,即A={674,675,676,…,2020}时满足题意,综上所述,集合A中元素的个数的最大值是1347.。
2019-2020学年清华大学附属中学高三语文上学期期末试题及答案一、现代文阅读(36分)(一)现代文阅读I(9分)阅读下面的文字,完成各题。
材料一:我国经济的高质量发展使一大批新职业应运而生。
如垃圾分类师、食品造型师、创客指导师、旅游体验师、健康管理师等。
更多的职业类型,让人们在发展空间上有了多元选择,得以在个人兴趣爱好与成长发展之间找到结合点。
随着新职业的需求数量持续扩大,人才供给缺口较大。
比如,我国对养老护理员的需求约为600万人,目前实际从业人员只有30多万人;又如,目前专职从事健康管理的从业者还不多,到2020年,对健康管理师的需求将超过200万人。
如何促进新职业从业人员有序健康增长以满足市场需求,以及如何保障从业人员的合法权益等问题,亟待有效破解。
新职业的成长基础仍比较薄弱,新职业发展中还存在各类风险,打着“新职业”幌子的不法行为时有发生。
对于新职业,既要保护鼓励,也要强化引导、加强监管。
既要坚持包容审慎,为新职业留出成长空间,又要严格制定行业规范和准入标准,用科学标尺、规范体系、法律保障为新职业营造良好发展氛围。
(摘编自《新职业蕴含发展新机遇》)材料二:自2014年至2018年,我国第三产业就业人员占比从40.6%上升至46%,呈持续上升态势。
其中生活服务业因领域宽、范围广,涉及人民群众生活的方方面面,在稳定经济增长与吸纳就业上发挥着“稳定器”的作用,一大批新兴职业更是功不可没。
从调研数据看,新职业在薪资方面有着很强的竞争力,55%的新职业从业者月收入高于5000元,24.6%的新职业从业者月收入过万,11.7%的有专业技术的新职业从业者月收入在15000元以上。
城市生活服务业发展与新职业的发展程度呈正相关关系。
经济活力强、营商环境好的城市,新职业发展态势良好。
新职业从业人数、平均薪酬排名前十的城市与它们所在城市的经济体量排名基本吻合。
生活服务业新职业从业者年龄及学历分布见下图:(摘编自《2019年生活服务业新职业人群报告》)材料三:2019年,人力资源和社会保障部等三部门正式发布13个新职业,包括物联网工程技术人员、大数据工程技术人员、云计算工程技术人员、无人机驾驶员等。
2019-2020学年高一上数学期末模拟试卷含答案第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分)1.设集合M={-1,1},N={x|{x<0或x>},则下列结论正确的是()A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R2.设=(2,-1),=(-3,4),则2+等于()A.(3,4)B.(1,2)C.-7D.33.下列函数是偶函数的是()A.y=x3B.y=3xC.y=2x2-1D.y=x2+2x-14.在△ABC中,=,=,若点D满足=2,则=()A.+B.+C.+D.-5.已知a=0.23.5,b=0.24.1,c=e1.1,d=log0.23,则这四个数的大小关系是()A.a<b<c<dB.a>b>c>dC.d<b<a<cD.b>a>c>d6.设f(x)=e x+x-4,则函数f(x)的零点所在区间为()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)7.下列函数中,周期为π,且在[]上为减函数的是()A.y=sin(x+)B.y=cos(x+)C.y=cos(2x+)D.y=sin(2x+)8.已知f(x)是定义域为R的奇函数,当x<0时,f(x)=x2-x,那么当x>0时f(x)的解析式是()A.f(x)=-x2-xB.f(x)=x2+xC.f(x)=x2-xD.f(x)=-x2+x9.已知,则夹角θ为钝角时,λ取值范围为()A. B. C.λ>-且λ≠2 D.λ<-且λ≠210.设函数f(x)定义在实数集上,当x≥1时,f(x)=3x-1,且f(x+1)是偶函数,则有()A. B.C. D.11.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(),则φ的值可以为()A. B. C. D.12.若函数在区间(-∞,1]上为减函数,则a的取值范围是( )A.(0,1)B.[2,+∞)C.[2,3)D.(1,3)第Ⅱ卷(非选择题共90分)二、填空题(每小题5分,共20分)13.若非零向量,满足||=||,(2+)•=0,则与的夹角为 ______ .14.已知sin(-α)=,则cos(π-α)= ______ .15.函数y=的定义域为 ______ .16. 设函数,则下列结论正确的是 ______ (写出所有正确的编号).①f(x)的最小正周期为π;②f(x)在区间上单调递增;③f(x)取得最大值的x的集合为④将f(x)的图象向左平移个单位,得到一个奇函数的图象三、解答题17.(本题10分)已知集合A={x|-2≤x≤7},B={x|m-1≤x≤2m+1},若A∪B=A,求实数m的取值范围.18.(本题12分)已知向量,满足:||=1,||=2,且,夹角为120°(1)求|-2|(2)若(+2)⊥(k-),求实数k的值.19.(本题12分)已知sinα=且α是第二象限角.(1)求tanα的值(2)求sinα•cosα-cos2α的值;(3)求的值.20.(本题12分)已知函数图象上相邻的最高点与最低点的坐标分别为.(1)求该函数的解析式.(2)若,求f(x)的值域.21.(本题12分)已知f(x)=-sin(2x+)+2,求:(1)f(x)的最小正周期及对称轴方程(2)f(x)的单调递增区间(3)若方程f(x)-m+1=0在x∈[0,]上有解,求实数m的取值范围.22.(本题12分)已知函数(a>0,a≠1,m≠-1),是定义在(-1,1)上的奇函数.(1)求f(0)的值和实数m的值;(2)判断函数f(x)在(-1,1)上的单调性,并给出证明;(3)若且f(b-2)+f(2b-2)>0,求实数b的取值范围.数学答案【答案】1.C2.B3.C4.C5.C6.C7.D8.A9.C 10.D 11.A 12.C13.120°14.- 15.(3,] 16.①②④17.解:根据题意,若A∪B=A,必有B⊆A,分2种情况讨论:①当B=∅时,即2m+1<m-1,解可得,m<-2;(2分)②当B≠∅时,即2m+1≥m-1,解可得,m≥-2;(4分)此时有,解可得-1≤m≤3;(7分)综合可得:m的取值范围为m≤-2或-1≤m≤3.(10分)18.解:(1)=1,=4,=1×2×cos120°=-1,(2分)∴|-2|2=2-4+42=21,(4分)∴||=.(6分)(2)∵(+2)⊥(k-),∴(+2)•(k-)=0,(8分)即k-+2k-2=0,(10分)∴k-(2k-1)-8=0,解得k=-7.(12分)19. 解:(1)∵sinα=且α是第二象限角,…∴cosα=-=-,…(2分)∴tanα==-.…(3分)(2)sinα•cosα-cos2α==…(5分)==.…(7分)(3)原式==-…(9分)=-…(10分)==2.…(12分)20.解:(1)由题意可得,A=3,==-=,解得ω=2;(3分)再把点(,3)代入函数的解析式可得: 3sin (+φ)=3,即sin (+φ)=1;所以,Z k k ∈+=+2265ππφπ 再结合|φ|<,可得φ=-,(5分)故此函数的解析式为f (x )=3sin (2x-);(6分)(2)x ∈[0,]时, 2x-∈[-,],sin (2x-)∈[-,1],(8分) 所以x=0时,sin (2x-)=-,此时f (x )取得最小-,x=时,sin (2x-)=1,此时f (x )取得最大值3,(10分)所以函数f (x )的值域是[-,3]. (12分) 21.解:(1)由于f (x )=-sin (2x+)+2,它的最小正周期为=π,(1分)令2x +=k π+,求得x=+,(2分)k ∈,故函数f (x )的图象的对称轴方程为x=+,k ∈.(4分) (2)令2k π+≤2x+≤2k π+,求得k π+≤x ≤k π+,(6分)可得函数f (x )的增区间为[k π+,k π+],k ∈.(8分)(3)若方程f (x )-m+1=0在x ∈[0,]上有解,则函数f (x )的图象和直线y=m-1在x ∈[0,]上有交点.∵x ∈[0,],∴2x+∈[,],sin (2x+)∈[-,1],f (x )∈[2-,],(10分) 故m-1∈[2-,],∴m ∈[3-,]. (12分)22.解:(I )∵f (0)=log a 1=0. 因为f (x )是奇函数,所以:f (-x )=-f (x )⇒f (-x )+f (x )=0 ∴log a +log a=0;∴log a=0⇒=1,即∴1-m 2x 2=1-x 2对定义域内的x 都成立.∴m 2=1.(3分) 所以m=1或m=-1(舍) ∴m=1. (3分)(II)∵m=1∴f(x)=log a;设设-1<x1<x2<1,则∵-1<x1<x2<1∴x2-x1>0,(x1+1)(x2+1)>0∴t1>t2.(6分)当a>1时,log a t1>log a t2,即f(x1)>f(x2).∴当a>1时,f(x)在(-1,1)上是减函数.(7分)当0<a<1时,log a t1<log a t2,即f(x1)<f(x2).∴当0<a<1时,f(x)在(-1,1)上是增函数.(8分)(III)由f(b-2)+f(2b-2)>0得f(b-2)>-f(2b-2),∵函数f(x)是奇函数∴f(b-2)>f(2-2b)(9分),∴0<a<1由(II)得f(x)在(-1,1)上是增函数∴(10分)∴∴b的取值范围是(12分)2019-2020学年高一上数学期末模拟试卷含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时120分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共40分)注意事项:1. 第Ⅰ卷共10题,每小题4分,共40分.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其他答案标号.只能涂在答题纸上, 答在试卷上无效.参考公式:12.球的表面积公式24S R π=,,其中R 为球的半径.一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A =A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线A .平行B .相交C .异面D .以上均有可能 3.已知幂函数()αx x f =的图象经过点⎝ ⎛⎭⎪⎫2,22,则()4f 的值等于 A .16 B.116 C .2 D.124.A.(-2,1)B.[-2,1]C.()+∞-,2D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为AB D .26.已知圆0964:221=+--+y x y x c ,圆019612:222=-+++y x y x c ,则两圆位置关系是A .相交B .内切C .外切D .相离7.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于A .-3B .-1C .1D .38.函数yA .RB .⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞) D. (0,+∞)9.若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是A. 78 cm 3B.23cm 3C.56 cm 3D. 12cm 3 10.已知函数()y f x =的定义域为{|x x R ∈且2}x ≠,且()2y f x =+是偶函数,当2x < 时,,那么当2x >时,函数()f x 的递减区间是A .()3,5B .()3,+∞C .(]2,4D .()2,+∞第Ⅱ卷(非选择题,共80分)二、填空题本大题共5小题,每小题4分,共20分. 11. 计算 =+⨯+2lg 5lg 2lg )5(lg 2________.12. 已知直线013:1=-+y ax l 与直线()0112:2=+-+y a x l 垂直,则实数a =_____. 13.设()()()x f x g x x g =++=2,32,则()x f =________.14. 已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为 . 15. 圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是 .三、解答题本大题共6小题, 共60分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分8分)设集合{|13}A x x =-≤<,{|242}B x x x =-≥-, {|1}C x x a =≥-.(Ⅰ)求A B ;(Ⅱ)若B C C =,求实数a 的取值范围.17.(本小题满分8分)已知平面内两点(8,6)(22)A B -,,.(Ⅰ)求过点(2,3)P -且与直线AB 平行的直线l 的方程; (Ⅱ)求线段AB 的垂直平分线方程.18.(本小题满分10分)已知函数()log (1)log (3) (01)a a f x x x a =-++<<. (Ⅰ)求函数()f x 的零点;(Ⅱ)若函数()f x 的最小值为4-,求a 的值.19.(本小题满分10分)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (Ⅰ)当a 为何值时,直线l 与圆C 相切;(Ⅱ)当直线l 与圆C 相交于A ,B 两点,且AB =22时,求直线l 的方程.20.(本小题满分12分)三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,△ABC 是边长为4的等边三角形,D 为AB 边中点,且CC 1=2AB . (Ⅰ)求证:平面C 1CD⊥平面ADC 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)求三棱锥D ﹣CAB 1的体积.21. (本小题满分12分)已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(Ⅰ)判断f(x)在[-1,1]上的单调性,并证明; (Ⅱ)解不等式:()()x f x f 3112-<-;(Ⅲ)若f(x)≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 一、选择题 1 2 3 4 5 6 7 8 9 10 CDDDBCABAC二、填空题11、1 12、35 13、2x +7 14、15、x 2+y 2-10y =0 三、解答题16、解: (Ⅰ)由题意知,{|2}Bx x =≥ 2分所以{}|23A B x x ⋂=≤< 4分 (Ⅱ)因为B C C ⋃=,所以B C ⊆ 6分 所以12a -≤,即3a ≤ 8分 17、解:(Ⅰ)2分 得直线l 的方程4310x y ++= 4分 (Ⅱ)因为AB 的中点坐标为(5,2)-,AB 的垂直平分线斜率为分 得AB 的中垂线方程为34230x y --= 8分18、解:(Ⅰ)要使函数有意义:则有1030x x -⎧⎨+⎩>>,解之得:31x -<< 2分函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+由()0f x =,得2231x x --+=即2220xx +-=,()f x ∴的零点是分(Ⅱ)函数化为:22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦31x -∵<< 201)44x ++≤∴<-( 7分01a ∵<<2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴即min ()log 4a f x =由log 44a =-,得44a-=,分 19、解:(Ⅰ)若直线l 与圆C 相切,则有圆心(0,4)到直线l :ax +y +2a =0的分分 (Ⅱ)过圆心C 作CD ⊥AB ,垂足为D.则由AB =22和圆半径为2得CD =2 7分所以解得7-=a 或1-.故所求直线方程为7x -y +14=0或x -y +2=0. 10分20、解:(Ⅰ)∵CC 1⊥平面ABC ,又AB ⊂平面ABC ,∴CC 1⊥AB∵△ABC 是等边三角形,CD 为AB 边上的中线,∴C D ⊥AB 2分∵CD ∩CC 1=C ∴AB ⊥平面C 1CD∵AB ⊂平面ADC 1∴平面C 1CD⊥平面ADC 1; 4分(Ⅱ)连结BC 1,交B 1C 于点O ,连结DO .则O 是BC 1的中点,DO 是△BAC 1的中位线.∴DO∥AC 1.∵DO ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1; 8分 (Ⅲ)∵CC 1⊥平面ABC ,BB 1∥CC 1,∴BB 1⊥平面ABC .∴BB 1 为三棱锥D ﹣CBB 1 的高.=.∴三棱锥D ﹣CAB 1的体积为. 12分21、解:(Ⅰ)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f(x)为奇函数,∴f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2), 2分由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).∴f(x)在[-1,1]上单调递增. 4分(Ⅱ)∵f(x)在[-1,1]上单调递增,∴⎪⎩⎪⎨⎧-<-≤-≤-≤-≤-x x x x 3112131111216分7分(Ⅲ)∵f(1)=1,f(x)在[-1,1]上单调递增.∴在[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]恒成立. 9分下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0且g(1)≥0,∴m≤-2或m≥2.综上,m=0或m≤-2或m≥2 12分2019-2020学年高一上数学期末模拟试卷含答案1.直线3ax -y -1=0与直线(a -23)x +y +1=0垂直,则a 的值是( )A .-1或13B .1或13C .-13或-1D .-13或1解析:选D.由3a(a -23)+(-1)×1=0,得a =-13或a =12.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积及体积为A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确解析:选A.由三视图知该几何体为一个圆锥,其底面半径为3 cm ,母线长为5 cm ,高为4 cm ,求表面积时不要漏掉底面积.3.把直径分别为6 cm,8 cm,10 cm 的三个铁球熔成一个大铁球,则这个大铁球的半径为 A .3 cm B .6 cm C .8 cmD .12 cm解析:选B.设大铁球的半径为R ,则有43πR 3=43π·(62)3+43π· (82)3+43π·(102)3,解得R =6.4.已知点A(1-t,1-t ,t),B(2,t ,t),则A 、B 两点距离的最小值为( ) A.55 B.555C.355D .2解析:选C.由距离公式d(A 、B) =[2-(1-t )]2+[t -(1-t )]2+(t -t )2=5t 2-2t +2=5(t -15)2+95,显然当t =15时,d(A 、B)min =355,即A 、B 两点之间的最短距离为355. 5.(2011年高考四川卷)l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3 B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3 C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面 D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B. A 答案还有异面或者相交,C 、D 不一定6.对于直线m 、n 和平面α、β,能得出α⊥β的一个条件是( ) A .m ⊥n ,m ∥α,n ∥β B .m ⊥n ,α∩β=m ,n ⊂α C .m ∥n ,n ⊥β,m ⊂αD .m ∥n ,m ⊥α,n ⊥β解析:选C.⎭⎪⎬⎪⎫⎭⎬⎫m ∥n n ⊥β⇒m ⊥β m ⊂α⇒α⊥β7.在空间四边形ABCD 中,若AB =BC ,AD =CD ,E 为对角线AC 的中点,下列判断正确的是( )A .平面ABD ⊥平面BDCB .平面ABC ⊥平面ABD C .平面ABC ⊥平面ADCD .平面ABC ⊥平面BED解析:选D.如图所示,连接BE 、DE.⎭⎪⎬⎪⎫⎭⎬⎫BE ⊥AC DE ⊥AC ⇒AC ⊥平面BDE AC ⊂平面ABC⇒平面ABC ⊥平面BDE.8.已知直线l :y =x +m 与曲线y =1-x 2有两个公共点,则实数m 的取值范围是( )A .(-2,2)B .(-1,1)C .[1,2)D .(-2,2)解析:选C. 曲线y =1-x 2表示单位圆的上半部分,画出直线l 与曲线在同一坐标系中的图象,可观察出仅当直线l 在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l 与曲线有两个交点.当直线l 过点(-1,0)时,m =1;当直线l 为圆的上切线时,m =2(注:m =-2,直线l 为下切线).9.若⊙C 1:x 2+y 2-2mx +m 2=4和⊙C 2:x 2+y 2+2x -4my =8-4m 2相交,则m 的取值范围是( )A .(-125,-25)B .(0,2)C .(-125,-25)∪(0,2) D .(-125,2) 解析:选C.圆C 1和C 2的圆心坐标及半径分别为C 1(m,0),r 1=2,C 2(-1,2m),r 2=3.由两圆相交的条件得3-2<|C 1C 2|<3+2,即1<5m 2+2m +1<25,解得-125<m<-25或0<m<2 β.10.已知圆C :(x -a)2+(y -2)2=4(a>0)及直线l :x -y +3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A. 2B.2-1 C .2- 2D.2+1解析:选B.圆心(a,2)到直线l :x -y +3=0的距离d =|a -2+3|2=|a +1|2,依题意⎝⎛⎭⎪⎫|a +1|22+⎝⎛⎭⎪⎫2322=4,解得a =2-1.11.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是 A .2πR 2 B.94πR 2C.83πR 2 D.52πR 2解析:选B.如图所示,设圆柱底面半径为r,则其高为3R-3r,全面积S=2πr2+2πr(3R-3r)=6πRr-4πr2=-4π(r-34R)2+94πR2,故当r=34R时全面积有最大值94πR2.12. 如图所示,三棱锥P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2x(x∈[0,3]),下列四个图象大致描绘了三棱锥N-AMC 的体积V与x的变化关系,其中正确的是()解析:选A.V=13S△AMC·NO=13(12×3x×sin30°)·(8-2x)=-12(x-2)2+2,x∈[0,3],故选A.二、填空题(本大题共4小题,请把答案填在题中横线上)13.三角形ABC的边AC,AB的高所在直线方程分别为2x-3y+1=0,x+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2x-3y+1=0,所以k AC=-3 2.所以AC的方程为y-2=-32(x-1),即3x+2y-7=0,同理可求直线AB 的方程为x -y +1=0. 下面求直线BC 的方程,由⎩⎨⎧ 3x +2y -7=0,x +y =0,得顶点C(7,-7), 由⎩⎨⎧x -y +1=0,2x -3y +1=0,得顶点B(-2,-1). 所以k BC =-23,直线BC :y +1=-23(x +2),即2x +3y +7=0.14.过点A(1,-1),B(-1,1)且圆心在直线x +y -2=0上的圆的方程是________. 解析:易求得AB 的中点为(0,0),斜率为-1,从而其垂直平分线为直线y =x ,根据圆的几何性质,这条直线应该过圆心,将它与直线x +y -2=0联立得到圆心O(1,1),半径r =|OA|=2.答案:(x -1)2+(y -1)2=415. 如图所示,AB 是⊙O 的直径,PA ⊥平面⊙O ,C 为圆周上一点,AB =5 cm ,AC =2 cm ,则B 到平面PAC 的距离为________.解析:连接BC.∵C 为圆周上的一点,AB 为直径,∴BC ⊥AC. 又∵PA ⊥平面⊙O ,BC ⊂平面⊙O , ∴PA ⊥BC ,又∵PA ∩AC =A , ∴BC ⊥平面PAC ,C 为垂足, ∴BC 即为B 到平面PAC 的距离. 在Rt △ABC 中,BC =AB 2-AC 2=52-22=21(cm). 答案:21 cm16.下列说法中正确的是________.①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.解析:由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确.因为经过直线外一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面.故③错误.答案:①②④三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.证明:(1)因为E、F分别是AP、AD的中点,∴EF∥PD,又∵P,D∈面PCD,E,F∉面PCD,∴直线EF∥平面PCD.(2)∵AB=AD,∠BAD=60°,F是AD的中点,∴BF⊥AD,又平面PAD⊥平面ABCD,面PAD∩面ABCD=AD,∴BF⊥面PAD,∴平面BEF⊥平面PAD.18.在棱长为1的正方体ABCD-A1B1C1D1中,F为BD的中点,G在CD上,且CG=CD4,H为C1G的中点,求:(1)FH的长;(2)三角形FHB的周长.解:如图,以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立空间直角坐标系.由于正方体的棱长为1,则有D(0,0,0),B(1,1,0),G(0,34,0),C1(0,1,1).(1)因为F 和H 分别为BD 和C 1G 的中点, 所以F(12,12,0),H(0,78,12).所以FH = (12-0)2+(12-78)2+(0-12)2 =418.(2)由(1)可知FH =418, 又BH = (1-0)2+(1-78)2+(0-12)2`=98,BF =22, 所以三角形FHB 的周长等于42+41+98.19.已知()()1,011log ≠>-+=a a xxx f a且 (1)求()x f 的定义域; (2)证明()x f 为奇函数;(3)求使()x f >0成立的x 的取值范围. (14分) 19;解:(1)()().011,011,011<-+<-+∴>-+x x x x x x 即()()11,11,x f x -∴<<-∴的定义域为(2)证明:()()()x f xxx x x x x f x x x f aa a a -=-+-=⎪⎭⎫⎝⎛-+=+-=-∴-+=-11log 11log 11log ,11log 1()x f ∴中为奇函数. (3)解当a>1时, ()x f >0,则111>-+x x ,则012,0111<-<+-+x xx x ()10,012<<∴<-∴x x x因此当a>1时,使()0>x f 的x 的取值范围为(0,1).10<<a 当时, ()1110,0<-+<>xxx f 则则,011,0111<-+>+-+xxx x解得01<<-x因此10<<a 当时, 使()0>x f 的x 的取值范围为(-1,0).20.已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率为1的直线l ,使l 被圆C 截得弦AB ,以AB 为直径的圆经过原点O ?若存在,写出直线l 的方程;若不存在,说明理由.解:法一:假设存在且令l 为y =x +m.圆C 化为(x -1)2+(y +2)2=9,圆心C(1,-2),则AB 中点N 是两直线x -y +m =0与y +2=-(x -1)的交点,即N(-m +12,m -12).以AB 为直径的圆过原点,|AN|=|ON|. 又CN ⊥AB ,|CN|=|1+2+m|2, 所以|AN|=CA 2-CN 2=9-(3+m )22.又|ON|=(-m +12)2+(m -12)2,由|AN|=|ON|,得m =1或m =-4.所以存在直线l ,方程为x -y +1=0或x -y -4=0. 法二:假设存在,令y =x +m , 由⎩⎨⎧y =x +m ,x 2+y 2-2x +4y -4=0, 消去y ,得2x 2+(2m +2)x +m 2+4m -4=0.① 因为以AB 为直径的圆过原点,所以OA ⊥OB. 设A(x 1,y 1),B(x 2,y 2),k OA ·k OB =y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.由方程①,得x 1+x 2=-m -1,x 1x 2=m 2+4m -42.②y 1y 2=(x 1+m)(x 2+m)=x 1x 2+m(x 1+x 2)+m 2, 所以x 1x 2+y 1y 2=2x 1x 2+m(x 1+x 2)+m 2=0. 把②代入,m 2+3m -4=0.解得m =1或m =-4. 将m =1和m =-4分别代入方程①,检验得Δ>0,所以存在直线l,方程为x-y+1=0或x-y-4=0.21. 如图△ABC中,AC=BC=22AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.(1)求证:GF∥平面ABC;(2)求证:平面EBC⊥平面ACD;(3)求几何体ADEBC的体积V.解:(1)证明:如图,取BE的中点H,连接HF,GH.∵G,F分别是EC和BD的中点,∴HG∥BC,HF∥DE.又∵四边形ADEB为正方形,∴DE∥AB,从而HF∥AB.∴HF∥平面ABC,HG∥平面ABC.∴平面HGF∥平面ABC.∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB.又∵平面ABED⊥平面ABC,∴BE⊥平面ABC.∴BE⊥AC.又∵CA2+CB2=AB2,∴AC⊥BC.∴AC⊥平面BCE.从而平面EBC⊥平面ACD.(3)取AB的中点N,连接CN,∵AC=BC,∴CN ⊥AB ,且CN =12AB =12a.又平面ABED ⊥平面ABC , ∴CN ⊥平面ABED. ∵C -ABED 是四棱锥,∴V C -ABED =13S ABED ·CN =13a 2·12a =16a 3.22.已知圆x 2+y 2-2x -4y +m =0. (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥ON(O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解:(1)方程x 2+y 2-2x -4y +m =0,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎨⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y)2+y 2-2×(4-2y)-4y +m =0, 化简得5y 2-16y +m +8=0. 设M(x 1,y 1),N(x 2,y 2),则 ⎩⎪⎨⎪⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得 16-8×165+5×m +85=0,解之得m=8 5.(3)由m=85,代入5y2-16y+m+8=0,2019-2020学年高一上数学期末模拟试卷含答案第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A .圆柱B .圆锥C .球体D .圆柱、圆锥、球的组合体2.已知A (-1,3)、B (3,-1),则直线AB 的倾斜角为( )A. 45oB. 60oB. 120oD. 135o3.已知直线1:21l y x =+,若直线2l 与1l 关于直线1x =对称,则2l 的斜率为( )A .-2B .-12 C.12D .24.123,,l l l 是空间三条不同的直线,则下列命题正确的是( )A .1223,l l l l ⊥⊥13l l ⇒PB .1223,l l l l ⊥P 13l l ⇒⊥C .123l l l P P 123,l l l ⇒,共面D .123,l l l ,共点123,l l l ⇒,共面5.在空间直角坐标系中一点P (1,3,4)到x 轴的距离是( ) A .5 B .10 C .17 D .266.若两条平行线12,l l 的方程分别是2x +3my -m +2=0, mx +6y -4=0,记12,l l 之间的距离为d ,则m ,d 分别为( )A. m=2,d=41313B. m=2,d=105C. m =2,d=2105D. m =–2,d=1057.设, l m 是两条不同直线,, αβ是两个不同平面,下列命题正确的是( ) A .若,l m m α⊥⊂,则lα⊥ B .若,l l αβP P ,则αβ//C .若,l l m α⊥P ,则m α⊥D .若,l ααβ⊥P ,则l β⊥8.直线y =—3x 绕原点按逆时针方向旋转090后所得直线与圆 (x-2)2+y 2=1的位置关系是( )A .直线过圆心B .直线与圆相交,但不过圆心C .直线与圆相切D .直线与圆没有公共点9.平面α的斜线l 与平面α所成的角是45°,则斜线l 与平面α内所有不过斜足的直线所成的角中,最大的角是( )A .30°B .45°C .60°D .90°10.则这个球的表面积为( ) A .πB .2πC .4πD .2π11.点P(4,-2)与圆224x y +=上任一点连线的中点的轨迹方程是( ) A .22(2)1)1x y -++(=B .22(2)1)4x y -++(=C .22(4)2)4x y +-+(=D .22(2)1)1x y +-+(=12.设集合{(,)|}A x y y x ==与集合{(,)|}B x y x a a R ==∈,若A B ⋂的元素只有一个,则实数a 的取值范围是( )A .a =.11a -<<或a =C .a =11a -≤< D .11a -<≤或a =第Ⅱ卷二、填空题:(本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置上.) 13.若直线3y x b =+过圆22240x y x y ++-=的圆心,则b =________.14.一个圆锥的轴截面是个边长为2的正三角形,这个圆锥的侧面积等于 . 15.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA|2+|PB|2|PC|2=__________.16.如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,给出下面四个结论:①B ,E ,F ,C 四点共面; ②直线BF 与AE 异面; ③直线EF ∥平面PBC ; ④平面BCE ⊥平面PAD ;. ⑤折线B →E →F →C 是从B 点出发,绕过三角形PAD 面,到达点C 的一条最短路径.其中正确的有_____________.(请写出所有符合条件的序号)三、解答题(本大题共6小题,共74分.解答应写出文字说明、演算步骤或推证过程)17.(本大题12分)已知直线l :kx -y +1-2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 交x 轴正半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,且|OA|=|OB|,求k 的值。
2019-2020学年北京市清华附中高一下学期期末物理试卷一、单选题(本大题共16小题,共48.0分)1.将一个物体由A处移到B处,重力做功()A. 与运动过程是否存在阻力有关B. 与运动的具体路径有关C. 与运动的位移无关D. 与运动物体本身的质量有关2.质量为0.01kg、以800m/s的速度飞行的子弹与质量为0.8kg、以10m/s的速度飞行的皮球相比()A. 子弹的动量较大B. 皮球的动量较大C. 子弹的动能较大D. 皮球的动能较大3.如图所示,波源S从平衡位置(y=0)开始振动,运动方向竖直向上(y轴正方向),振动周期T=0.01s,产生的简谐波向左、右沿水平方向向P、Q传播,波速均为80m/s,经过一段时间P、Q两点均开始振动.已知SP=1.2m,SQ=3.2m,若以Q点开始振动的时刻做为计时起点,则在下图的振动图象中,能正确描述P点振动情况的是()A. B.C. D.4.如图所示,两根完全相同、轴线在同一水平面内的平行长圆柱上放一均匀木板,木板的重心与两圆柱等距,其中木板质量m=4kg,圆柱的半径r=1cm,木板与圆柱间的动摩擦因数μ=0.1,两圆柱以角速度ω绕轴线作相反方向的转动。
现施加一过木板重心且平行圆柱轴线的拉力F于木板上,使其以速度v=0.8m/s沿圆柱表面作匀速运动。
取g=10m/s2.下列说法中正确的是()A. 若ω取不同的值,则木板所受的摩擦力大小不同B. 若ω=0,则水平拉力F=10NC. 若ω=60rad/s,则水平拉力F=3ND. 若ω=60rad/s,木板移动距离x=1.5m,则拉力所做的功为4.8J5.在图1示的装置中,可视为质点的小滑块沿固定的光滑半球形容器内壁,在竖直平面的AB之间简谐振动,用压力传感器测得滑块对器壁的压力大小F随时间t变化的曲线如图2所示,图中t=0时,滑块从A点开始运动.根据力学规律和题中所给出的信息,下列判断正确的是(g取10m/s2)()A. 滑块振动的周期是0.2πsB. 半球形容器的半径是0.4mC. 在t=0.2πs到t=0.25πs和时间段内,滑块速度一直减小D. t=0.3πs时,小滑块振动到平衡位置,所受合力为零6.某简谐运动的位移−时间图象如图所示,下列说法正确的是()A. 简谐运动的振幅为4cmB. 简谐运动的周期为0.4sC. 位移−时间图象就是振动质点的运动轨迹D. 振动质点经过图象中A点时速度方向沿t轴负方向7.如图所示,在电场中,一个负电荷从C点分别沿直线移到A点和B点,在这两个过程中,均需克服电场力做功,且做功的值相同,有可能满足这种做功情况的电场是()①正y方向的匀强电场②正x方向的匀强电场③在第Ⅰ象限内有负点电荷④在第Ⅳ象限内有正点电荷.A. ①③④B. ①②C. ③④D. ②③④8.如图所示,一水平飞行的子弹恰好能穿过用轻质销钉C销住并置于光滑水平面上的A、B两木块,且木块B获得的动能为E k1.若拔去销钉C,依然让这颗子弹水平射入A、B两木块,木块B获得的动能为E k2,已知拔去销钉C前后子弹受到木块的阻力不变。
高一年级居家自主学习在线检测试卷(选考卷)化学(清华附中高 19 级)2020.04可能用到的相对原子质量:H-1;C-12;N-14; O-16; Na-23;Mg-24;Al-27;S-32;Cl-35.5;k-39;Fe-56;Cu-64; Zn-65;Rb-85。
一、选择题(每题 2 分,共 50 分)1.下列反应中,属于放热反应的是A.碳酸钙受热分解的反应B.碳酸氢钠与柠檬酸的反应C.二氧化碳与碳单质生成一氧化碳的反应D.铁与盐酸的反应2.下列做法的目的与改变化学反应速率无关的是..A.在糕点包装内放置小包除氧剂B.在糖果制作过程中添加着色剂C.高炉炼铁前先将铁矿石粉碎D.牛奶在冰箱里保存3.已知 2Na + 2H2O == 2NaOH + H2↑ ,该反应中相关物质的化学用语中正确的是A.NaOH 的电子式B.中子数为 12 的钠原子:C.H2O 的电子式:D.Na+的结构示意图:4.2019 年为国际化学元素周期表年。
(Lv)是116号主族元素,其原子核外最外层电子数是 6。
下列说法不正确的是...A.Lv 位于第七周期第 VIA 族B.Lv 在同主族元素中金属性最弱C.Lv 的同位素原子具有相同的电子数D.中子数为 177 的 Lv 核素符号为5. 某化学反应中,反应物 B 的物质的量浓度在内,从变成了,则这内的反应速率为A. B.C. D.6.下列事实不能用元素周期律解释的是..A.碱性:CsOH > KOH B.氢化物稳定性:H2O >H2SC.金属性:Na >Mg D.热稳定性:Na2CO3> NaHCO37. 反应在一可变容积的密闭容器中进行,下列条件的改变可使反应速率加快的是A. 增加的量B.将容器的体积减小一半C.保持体积不变,充入氮气使体系的压强增大D.保持压强不变,充入氮气使体系的体积增大8.如图为铜锌稀硫酸原电池示意图,下列表述正确的是A.该装置能将电能转变为化学能B.锌电极上发生还原反应,铜电极上发生氧化反应C.电流由片通过导线流向片D.铜片上有气泡冒出,反应一段时间后,溶液的变大9.为了从海带浸取液中提取碘,某同学设计了如下实验方案:下列说法正确的是A.①中反应的离子方程式:2I− + H2O2 ==== I2 + 2OH−B.②中分液时含 I2的 CCl4溶液从分液漏斗上口倒出C.③中得到的上层溶液中含有 I−D.操作 Z 的名称是加热10.工业制取硫酸中的一步重要反应是在下催化氧化:,这是一个正反应放热的可逆反应。
北京市清华大学附属中学2023-2024学年高一下学期期末考试数学2024.7一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,且,则a 可以为()A. -2B. -1C.D.2.在复平面内,复数对应点的坐标为,则( )A. B. C. D. 3. 若向量,,,则( )A.B. C. 4D. 4. 函数的定义域为( )A. B. C. D. 5. 下列函数中,以为周期,且图象关于点中心对称的是( )A. B. C D. 6. 已知,那么在下列不等式中,不成立的是A. B. C. D. 7. 若是无穷数列,则“为等比数列”是“满足”的( )A. 充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件8. 已知甲、乙两人进行篮球罚球训练,每人练习10组,每组罚球40个,每组命中个数茎叶图如图所.的{}220A x x =-<a A ∈321iz+()2,1-z =13i +3i +3i-+13i--()2,5a = ()1,2b x x =-+ a b ⊥ x =1717-4-()f x =()1,1-()()1,12,-+∞ [)2,+∞()[)1,12,∞-⋃+ππ,04⎛⎫⎪⎝⎭tan y x =sin y x =212cos y x=-sin cos y x x=-1x <-210x ->12x x+<-sin 0x x ->cos 0x x +>{}n a {}n a {}n a ()*312N n n n n a a a a n +++⋅=⋅∈示,则下列结论错误的是( )A. 甲命中个数的极差为29B. 乙命中个数的众数是21C. 甲的命中率比乙高D. 甲每组命中个数的中位数是259. 已知,,,,成等比数列,且其中两项分别为1,9,则的最小值为( )A. B. C.D.10. 深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为,其中表示每一轮优化时使用的学习率,表示初始学习率,表示衰减系数,表示训练迭代轮数,表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为,则学习率衰减到以下(不含)所需的训练迭代轮数至少为( )(参考数据:)A. 72B. 74C. 76D. 78二、填空题共5小题,每小题5分,共25分.11. 设是等差数列,且,,则数列的前项和_____________.12. 现有甲、乙、丙、丁、戊五种智慧黑板,某学校要从中随机选取3种作为教学工具备选,则其中甲、乙、丙中至多有2种被选取的概率为_____________.13. 函数,其中且,若函数是单调函数,则的一个取值为______,若函数存在极值,则的取值范围为______.14. 已知函数,则_____________.15. 若等差数列满足.对,在中的所有项组成集合.记中最小值为,最大值为,元素个数为,所有元素和为,则下列命题中①为等比数列;②;③;④.所有正确的命题的序号是_____________.1a 2a 3a 4a 5a 5a 81-27-181127G G L L D=L 0L D G 0G 0.50.40.20.21g20.3010≈{}n a 11a =12n n a a +=+{}n a 1010S =()2,11,1x a x f x ax x x ⎧≤=⎨-+>⎩0a >1a ≠a a ()22sin sin 2cos f x x x x =+-5π12f ⎛⎫=⎪⎝⎭{}n a ()*3Nn a n n =∈*N k ∀∈{}na ()12,2kk +kT kTk b k c k L k S 12,,,,k c c c 32kk k b c +=⨯1k L k ≥-413kkS <<三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在中,,,分别为,,所对的边,已知.(1)求的大小;(2)若且的长.17. 已知数列满足,且.(1)求证:数列是等比数列,并求出的通项公式;(2)若,求满足条件最大整数.18. 已知函数.(1)当时,求曲线在处的切线方程;(2)证明:对,函数有且仅有两个极值点,,并求函数的单调区间;(3)在(2)的条件下,若,求实数的取值范围.19. 某学校为了解高一新生体质健康状况,对学生体质进行测试.现从男、女生中各随机抽取40人,测试数据按《国家学生体质健康标准》整理如下:等级数据范围男生人数男生平均分女生人数女生平均分优秀1091.3491良好883.98841及格 16702270.2不及格60以下649.6649.1总计\4075.04071.9(1)若按规定测试数据不低于60,则称体质健康为合格.试估计该校高一新生体质健康合格的概率;(2)在高一新生中,随机选取一名男生和一名女生,试估计恰有一人的体质健康等级是优秀的概率;(3)已知表中男生与女生在优秀、良好、及格、不及格四个等级的各级平均分都接近(差的绝对值不大的.ABC V a b c A ∠B ∠C ∠()sin 2a C c A =-A 2226a b c c -=-ABC S =V a {}n a 123a =()*121n n n a a n a +=∈+N 11n a ⎧⎫-⎨⎬⎩⎭{}n a 121112025na a a +++< n ()()2xf x x a e =-0a =()y f x =()()00f ,R a ∀∈()f x 1x 212()x x x <()f x ()()()2112214x f x x f x x x -≥-a []90100,[]8089,[]6079,于0.5),但男生的总平均分75.0却明显高于女生的总平均分71.9.经研究发现,若去掉四个等级中一个等级的数据,则男生、女生的总平均分也接近,请写出去掉的这个等级.(只需写出结论)20. 已知函数,.(1)若曲线在处切线过原点,求的值;(2)若在上最小值为1,求的值;(3)当时,若,都有,求整数的最小值.21. 对给定的正整数,设数列,若存在,使得,则将数列进行操作变换,得到数列,且为,或之一,记为. 设(个),从开始进行次操作变换,依次得到数列,即,.(1)当时,分别判断从开始进行次操作变换,是否可以得到如下数列?若不可以,直接判断即可;若可以,请写出相应的及;①;②;③;(2)当时,从开始进行次操作变换,是否可能得到数列?若不可以,请说明理由;若可以,求出与的所有可能取值.(3)给定正奇数,为使的各项均不相同,求操作变换次数的最小值.()ln 1f x k x x =++R k ∈()y f x =()()1,1f k ()f x 1,e e ⎡⎤⎢⎥⎣⎦k 1k =()0,x ∞∀∈+()()22f x m x x ≤+m 3n ≥12:,,...,n A a a a 1i j n ≤<≤i j a a =A T B B 121111,,...,,1,,...,,1,,...,i i i j j j n a a a a a a a a a -+-+-+121111,,...,,1,,...,,1,,...,i i i j j j n a a a a a a a a a -+-++-()B T A =0:0,0,...,0A n 00A m T 12,,...,m A A A ()1i i A T A -=1,2,...,i m =4n =0A m T m 121,,...,m A A A -2,0,0,2-2,1,0,2-3,0,1,2--5n =0A m T :,1,0,1,2m A x --x m 5n ≥m A n m北京市清华大学附属中学2023-2024学年高一下学期期末考试数学 答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】B 【2题答案】【答案】B 【3题答案】【答案】D 【4题答案】【答案】D 【5题答案】【答案】C 【6题答案】【答案】D 【7题答案】【答案】A 【8题答案】【答案】D 【9题答案】【答案】B 【10题答案】【答案】B二、填空题共5小题,每小题5分,共25分.【11题答案】【答案】【12题答案】【答案】##09.100910【13题答案】【答案】①. 2(满足均可)②. 【14题答案】【15题答案】【答案】②③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】(1) (2)【17题答案】【答案】(1)证明略, (2)2024【18题答案】【答案】(1) (2)答案略 (3)【19题答案】【答案】(1) (2)(3)去掉的等级为优秀.【20题答案】【答案】(1) (2)或 (3)1【21题答案】【答案】(1)①可以,,,,;②不可以;③不可以1a >()0,1π6A =a =221nn na =+0y =2a ≥17203101k =1ek =e k =-4m =1:1,0,0,1A -2:1,1,1,1A --3:2,0,1,1A --(2),(3)2x =5m =324n n -。
2019-2020学年北京市海淀区清华大学附中高一(下)期末物理试卷一、单选题.本题共12小题,每小题2分,共24分.在每个小题给出的四个选项中只有一个是符合理意的.1.(2分)“必修教科书中这样表述牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.其中“改变这种状态”指的是改变物体的()A.加速度B.速度C.质量D.受力2.(2分)如图所示,质量为m的物块静止在倾角为θ的斜面上,斜面静止在地面上.重力加速度为g.关于物块的受力情况分析,下列说法不正确的是()A.物块受到重力、支持力和摩擦力作用B.物块所受支持力大小为mgtanθC.物块所受摩擦力大小为mgsinθD.斜面对物块的摩擦力与支持力的合力方向竖直向上3.(2分)古典诗词作为中华民族的优秀文化,传承了“正心、修身、齐家、治国、平天下”的思想内涵.从物理的角度看古诗词会发现有的诗词中也蕴含了朴素的物理知识.在下面四句诗词的物理分析中错误的是()A.毛泽东的《送瘟神》中“坐地日行八万里,巡天遥看一千河”.是指位于地球表面的人随地球自转每天的行程约为八万里,这个结论与人的位置无关.B.陈与义的《襄邑道中》中“飞花两岸照船红,百里榆堤半日风.卧看满天云不动,不知云与我俱东.”在这首诗中,诗人艺术性地表达了他对运动相对性的理解.诗中描述了“花”、“榆堤”和“云”的运动都是以船为参考系.C.苏轼的《江城子•密州出猎》中“会挽雕弓如满月,西北望,射天狼”诗词中描述的情景涉及到了弹性势能转化为动能的过程.D.冯梦龙的《醒世恒言》中“临崖立马收缰晚,船到江心补漏迟.”诗词中“临崖立马收缰晚”说明物体具有惯性,物体的运动状态不能突变.4.(2分)将小球竖直向上抛出,一段时问后小球落回抛出点.若小球在运动过程中所受空气阻力的大小保持不变.在小球上升、下降过程中,运动时间分别用t1、t2表示,损失的机械能分别用△E1、△E2表示.则()A.t1<t2,△E1=△E2B.t l<t2,△E1<△E2C.t l=t2,△E1=△E2D.t l>t2,△E1>△E25.(2分)如图所示,A是静止在赤道上随地球自转的物体,B、C是在赤道平面内的两颗人造卫星,B位于离地面高度等于地球半径的圆形轨道上,C是地球同步卫星.下列关系正确的是()A.物体A随地球自转的线速度大于卫星B的线速度B.卫星B的角速度小于卫星C的角速度C.物体A随地球自转的周期大于卫星C的周期D.物体A随地球自转的向心加速度小于卫星C的向心加速度6.(2分)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变7.(2分)将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30kg•m/s B.5.7×102kg•m/sC.6.0×102kg•m/s D.6.3×102kg•m/s8.(2分)某弹簧振子沿x轴的简谐振动图象如图所示,下列描述正确的是()A.t=1s时,振子的速度为零,加速度为负的最大值B.t=2s时,振子的速度为负,加速度为正的最大值C.t=3s时,振子的速度为负的最大值,加速度为零D.t=4s时,振子的速度为正,加速度为负的最大值9.(2分)对单摆的简谐运动有下列说法,其中正确的是()A.单摆摆动中,摆球所受的绳的拉力与重力的合力就是向心力B.单摆摆动中,摆球所受的绳的拉力与重力的合力就是回复力C.单摆经过平衡位置时所受的合外力为零D.单摆经过平衡位置时所受的回复力为零10.(2分)手持较长软绳端点O以周期T在竖直方向上做简谐运动,带动绳上的其他质点振动形成简谐波沿绳水平传播,示意如图.绳上有另一质点P,且O、P的平衡位置间距为L.t=0时,O位于最高点,P的位移恰好为零,速度方向竖直向上,下列判断正确的是()A.该简谐波是纵波B.该简谐波的最大波长为2LC.t=时,P在平衡位置上方D.t=时,P的速度方向竖直向上11.(2分)物理学原理在现代科技中有许多重要应用.例如,利用波的干涉,可将无线电波的干涉信号用于飞机降落的导航.如图所示,两个可发射无线电波的天线对称地固定于飞机跑道两侧,它们类似于杨氏干涉实验中的双缝.两天线同时都发出波长为λ1和λ2的无线电波.飞机降落过程中,当接收到λ1和λ2的信号都保持最强时,表明飞机已对准跑道.下列说法正确的是()A.天线发出的两种无线电波必须一样强B.导航利用了λ1与λ2两种无线电波之间的干涉C.两种无线电波在空间的强弱分布稳定D.两种无线电波各自在空间的强弱分布完全重合12.(2分)如图所示,一长木板放置在水平地面上,一根轻弹簧右端固定在长木板上,左端连接一个质量为m的小物块,小物块可以在木板上无摩擦滑动.现在用手固定长木板,把小物块向左移动,弹簧的形变量为x1;然后,同时释放小物块和木板,木板在水平地面上滑动,小物块在木板上滑动;经过一段时间后,长木板达到静止状态,小物块在长木板上继续往复运动.长木板静止后,弹簧的最大形变量为x2.已知地面对长木板的滑动摩擦力大小为f.当弹簧的形变量为x时,弹性势能E p=kx2,式中k为弹簧的劲度系数.由上述信息可以判断()A.整个过程中小物块的速度可以达到x1B.整个过程中木板在地面上运动的路程为(x﹣x)C.长木板静止后,木板所受的静摩擦力的大小不变D.若将长木板改放在光滑地面上,重复上述操作,则运动过程中物块和木板的速度方向可能相同二、不定项选择题,本题共6小题,每小题3分,共18分.在每小题给出的四个选项中,至少有一个选项是正确的.全部选对的得3分;选对但不全得2分;不选或选错得0分.13.(3分)利用发波水槽观察波的衍射现象时,看到如图所示的图样.为使衍射现象更明显,可采用的办法有()A.缩小挡板间距B.增大挡板间距C.减小波源频率D.减小水波的振幅14.(3分)若物体在运动过程中所受到的合外力不为零,则在运动过程中()A.物体的动能可能不变B.物体的速度可能不变C.物体的加速度可能不变D.物体运动的方向可能不变15.(3分)一个小球从高处由静止开始落下,从释放小球开始计时,规定竖直向上为正方向,落地点为重力势能零点.小球在接触地面前、后的动能保持不变,且忽略小球与地面发生碰撞的时间以及小球运动过程中受到的空气阻力.图分别是小球在运动过程中的位移x、速度v、动能E k和重力势能E p随时间t变化的图象,其中正确的是()A.B.C.D.16.(3分)如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x随时间t变化的图象如图乙所示.不计空气阻力,g取10m/s2.对于这个单摆的振动过程,下列说法中正确的是()A.单摆的位移x随时间t变化的关系式为x=8sin(πt)cmB.单摆的摆长约为1.0mC.从t=2.5s到t=3.0s的过程中,摆球的重力势能逐渐增大D.从t=2.5s到t=3.0s的过程中,摆球所受回复力逐渐减小17.(3分)将甲、乙两个质量相等的物体在距水平地面同一高度处,分别以v 和2v的速度水平抛出,若不计空气阻力的影响,则()A.甲物体在空中运动过程中,任何相等时间内它的动量变化都相同B.甲物体在空中运动过程中,任何相等时间内它的动能变化都相同C.两物体落地前瞬间动量对时间的变化率相同D.两物体落地前瞬间重力做功的功率相同18.(3分)如图甲所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上,一质量为m的小球,从离弹簧上端高h处由静止释放,落在弹簧上后继续向下运动到最低点的过程中,小球的速度v随时间t的变化图象如图乙所示,其中OA段为直线,AB段是与OA相切于A点的曲线,BCD是平滑的曲线.若以小球开始下落的位置为原点,沿竖直向下方向建立坐标轴Ox,则关于A、B、C、D各点对应的小球下落的位置坐标x及所对应的加速度a的大小,以下说法正确的是()A.x A=h,a A=0 B.x B=h+,a B=0C.x C=h+,a C=g D.x D>h+,a D>g三、实验题.每空2分,共20分.19.(4分)请读出下列游标卡尺和螺旋测微器的示数.卡尺读数:cm.螺旋测微器读数:mm.20.(16分)(1)用多用电表测量小灯泡两端电压时应该采用图所示的连接方式.(2)实验小组的同学们用如图3所示的装置做“用单摆测定重力加速度”的实验.①用l表示单摆的摆长,用T表示单摆的周期,重力加速度g=.②实验时除用到秒表、刻度尺外,还应该用到下列器材中的(选填选项前的字母).A.长约1m的细线B.长约1m的橡皮绳C.直径约1cm的均匀铁球D.直径约10cm的均匀木球③选择好器材,将符合实验要求的单摆悬挂在铁架台上,应采用图中所示的固定方式.④将单摆正确悬挂后进行如下操作,其中正确的是:(选填选项前的字母).A.测出摆线长作为单摆的摆长.B.把单摆从平衡位髓拉开一个很小的角度释放,使之做简谐运动.C.在摆球经过平衡位赞时开始计时.D.用秒表测量单摆完成1次全振动所用日寸间并作为单摆的周期.⑤甲同学多次改变单摆的摆长并测得相应的周期,他根据测量数据画出了如图6所示的图象,但忘记在图中标明横坐标所代表的物理量.你认为横坐标所代表的物理量是(选填“l2”、“l”、“”)若图线斜率为k,则重力加速度g=(用k表示).⑥乙同学测得的重力加速度数值大于当地的重力加速度的实际值,造成这一情况的原因可能是(选填选项前的序号).A.开始摆动时振幅较小B.开始计时时,过早按下秒表C.测量周期时,误将摆球(n﹣1)次全振动的时间记为n次全振动的时间.⑦丙同学画出了单摆做简谐运动时的振动图象如图7所示,则摆线偏离竖直方向的雎大摆角的正弦值约为(结果保留一位有效数字).四、解答题.本题包括3小题,共38分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.21.(12分)如图所示,一质量为m=0.5kg的小物块放在水平地面上的A点,小物块以v0=9m/s的初速度从A点沿AB方向运动,与墙发生碰撞(碰撞时间极短).碰前瞬间的速度v1=7m/s,碰后以v2=6m/s反向运动直至静止.已知小物块与地面间的动摩擦因数μ=0.32,取g=10m/s2.求:(1)A点距墙面的距离x;(2)碰撞过程中,墙对小物块的冲量大小I;(3)小物块在反向运动过程中,克服摩擦力所做的功W.22.(12分)如图所示,“冰雪游乐场”滑道O点的左边为水平滑道,右边为高度h=3.2m的曲面滑道,左右两边的滑道在O点平滑连接.小孩乘坐冰车由静止开始从滑道顶端出发,经过O点后与处于静止状态的家长所坐的冰车发生碰撞,碰撞后小孩及其冰车恰好停止运动.已知小孩和冰车的总质量m=30kg,家长和冰车的总质量为M=60kg,人与冰车均可视为质点,不计一切摩擦阻力,取重力加速度g=10m/s2,求:(1)小孩乘坐冰车经过O点时的速度大小;(2)碰撞后家长和冰车共同运动的速度大小;(3)碰撞过程中小孩和家长(包括各自冰车)组成的系统损失的机械能.23.(14分)如图甲所示是游乐场中过山车的实物图片,可将过山车的一部分运动简化为图乙的模型图.模型图中光滑圆形轨道的半径R=20m,该光滑圆形轨道固定在倾角为θ=37°斜轨道面上的Q点,圆形轨道的最高点A与倾斜轨道上的P 点平齐,圆形轨道与斜轨道之间圆滑连接.现使质量m=100kg的小车(视为质点)从P点以一定的初速度v0沿斜面向下运动,不计空气阻力,已知斜轨道面与小车间的动摩擦力为μ=,取g=10m/s2,sin37°=0.6,cos37°=0.8,tan18.5°=.若小车恰好能通过圆形轨道的最高点A 处,则:(1)小车在A点的速度为多大?(2)小车运动到圆形轨道最低点时对轨道的压力大小?(3)初速度v0的大小?附加题:(共4小题,满分0分)24.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为m A=2kg、m B=1kg.初始时A静止于水平地面上,B悬于空中.先将B竖直向上再举高h=1.8m(未触及滑轮)然后由静止释放.一段时间后细绳绷直,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触.取g=10m/s2.(1)B从释放到细绳绷直时的运动时间t;(2)A的最大速度v的大小;(3)初始时B离地面的高度H.25.如图(1)所示,一根轻弹簧上端固定,下端悬挂一个质量为m的A,弹簧的劲度系数为k,用手竖直向上托起砝码A,使砝码A静止于某一初始位置,此时弹簧处于压缩状态,如图23(2)所示.现改变手对砝码A的作用力,使A以某一加速度做竖直向下的匀加速直线运动.已知砝码A向下做匀加速直线运动时,加速度的数值恰好等于在初始位置时突然撤去手的瞬时砝码A加速度数值的一半.设在砝码A的运动过程中,弹簧始终未超过其弹性限度.若手对砝码A 的作用力未改变方向前,砝码A向下做匀加速直线运动的最大距离是S.则:(1)砝码A做匀加速直线运动的加速度a=;(2)通过距离S所用的时间t.26.简谐运动是我们研究过的一种典型运动方式.(1)一个质点做机械振动,如果它的回复力与偏离平衡位置的位移大小成正比,而且方向与位移方向相反,就能判定它是简谐运动.如图1所示,将两个劲度系数分别为k1和k2的轻质弹簧套在光滑的水平杆上,弹簧的两端固定,中间接一质量为m的小球,此时两弹簧均处于原长.现将小球沿杆拉开一段距离后松开,小球以O为平衡位置往复运动.请你据此证明,小球所做的运动是简谐运动.(2)以上我们是以回复力与偏离平衡位置的位移关系来判断一个运动是否为简谐运动.但其实简谐运动也具有一些其他特征,如简谐运动质点的运动速度v与其偏离平衡位置的位移x之间的关系就都可以表示为v2=v02﹣ax2,其中v0为振动质点通过平衡位置时的瞬时速度,a为由系统本身和初始条件所决定的不变的常数.请你证明,图2中小球的运动也满足上述关系,并说明其关系式中的a与哪些物理量有关.已知弹簧的弹性势能可以表达为,其中k是弹簧的劲度系数,x是弹簧的形变量.(3)一质点沿顺时针方向以速度v0做半径为R的匀速圆周运动,如图所示.请结合第(2)问中的信息,分析论证小球在x方向上的分运动是否符合简谐运动这一特征.27.如图甲所示,水平传送A、B两轮间的距离L=3.0m,质量M=1.0kg的物块(可视为质点)随传送带一起以恒定的速率v0向左匀速运动,当物块运动到最左端时,质量m=0.020kg的子弹以u0=400m/s的水平速度向右射中物块并穿出.在传送带的右端有一传感器,测出物块被击穿后的速度随时间的变化关系如图乙所示(图中取向右运动的方向为正方向,子弹射出物块的瞬间为t=0时刻).设子弹击穿物块的时间可忽略不计,且子弹不会击中传感器而发生危险,物块的质量不因被子弹击穿而发生改变.不计空气阻力及A、B轮的大小,取重力加速度g=10m/s2.(1)求物块与传送带间的动摩擦因数μ;(2)求子弹击穿物块的过程中产生的热量Q1;(3)如果从第一颗子弹击中物块开始,每隔△t=1.5s就有一颗相同的子弹以同样的速度击穿物块,直至物块最终离开传送带.设所有子弹与物块间的相互作用力均相同,求整个过程中物块与传动带之间因摩擦产生的热量Q2.。
北京市清华附中2019-2020学年高一下学期期末考试试题一、单选题。
本题共12小题,每小题3分,共36分。
在每个小题给出的四个选项中只有一个是符合题意的。
1.下列所述的运动过程均不计空气阻力,其中机械能守恒的是()A. 小石块被水平抛出后在空中运动的过程B. 木箱沿粗糙斜面匀速下滑的过程C. 人乘电梯加速上升的过程D. 子弹射穿木块的过程【答案】A【解析】【详解】A.小石块做平抛运动时,物体只受到重力的作用,机械能守恒。
故A正确;B.木箱沿粗糙斜面匀速下滑的过程,动能不变,重力势能减小,故机械能减小,故B错误;C.人乘电梯加速上升的过程,重力势能和动能均增大,机械能增大,故C错误;D.子弹射穿木块的过程,由于摩擦生热,机械能减小,故D错误。
故选A。
2.下列关于动量、动能的说法中,正确的是()A. 若物体的动能发生了变化,则物体的加速度也发生了变化B. 若物体的动能不变,则动量也不变C. 若一个系统所受的合外力为零,则该系统的动能不变D. 物体所受合外力越大,则它的动量变化就越快【答案】D【解析】【详解】A.若物体的动能发生了变化,则速度的大小一定变化,但是物体的加速度不一定发生了变化,例如平抛运动,选项A错误;B.若物体的动能不变,则速度的大小不变,但是动量不一定不变,例如匀速圆周运动,选项B错误;C.若一个系统所受的合外力为零,则该系统的动能不一定不变,例如子弹射入放在光滑水平面的木块中时,选项C错误;D .根据动量定理可知,p F t∆=∆,即物体所受合外力越大,则它的动量变化就越快,选项D 正确。
故选D 。
3.劲度系数为20N/cm 的弹簧振子,它的振动图像如图所示,在图中A 点对应的时刻,下列说法错误的是( )A. 振子所受的弹力大小为5N ,方向指向x 轴的负方向B. 振子的速度方向指向x 轴的正方向C. 在0~4s 内振子作了1.75次全振动D. 在0~4s 内振子通过的路程为4cm【答案】C【解析】【详解】A .由图可知A 在t 轴上方,位移0.25cm x =,所以弹力5N F kx =-=- 即弹力大小为5N ,方向指向x 轴负方向, A 正确;B .由图可知过A 点作图线的切线,该切线与x 轴的正方向的夹角小于90°,切线斜率为正值,即振子的速度方向指向x 轴的正方向,B 正确;C .由图可看出,0t =和4s t =时刻振子的位移都是最大,且都在t 轴的上方,在0~4s 内经过两个周期,振子完成两次全振动,C 错误;D .在0~4s 内振子完成了2次全振动,所以在这段时间内振子通过的路程为240.50cm 4cm ⨯⨯=,D 正确。
北京市海淀区清华大学附属中学2019-2020学年高一下物理期末模拟试卷一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得5分,选不全的得3分,有选错的或不答的得0分)1、如图所示,体操运动员在落地时总要屈腿,这是为了()A.减小落地时的动量B.减小落地过程的动量变化C.减少作用时间增大作用力D.增加作用时间减小作用力2、已知某星球的质量是地球质量的18,直径是地球直径的12。
一名宇航员来到该星球,宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的()A.14B.12C.2 D.43、小球以6m/s的速度水平抛出,落到水平地面时的速度为10m/s,取g=10m/s2,小球从抛出到落地的时间及水平位移分别是A.1.0s,3.2mB.1.0s,4.8mC.0.8s,3.2mD.0.8s,4.8m4、下列说法正确的是:A.牛顿发现了万有引力定律,并测出了万有引力常量。
B.做圆周运动的物体,合力一定指向圆心C.惯性是物体的固有属性,速度大的物体惯性一定大D.国际单位制中,力学的三个国际基本单位是:kg、m、s5、如图是条形磁铁的部分磁感线分布示意图,关于图中a、b两点磁场的描述,正确的是()A.a点的磁场方向为图中B a指向B.b点的磁场方向为图中B b指向C.a点的磁感应强度大于b点的磁感应强度D.a点的磁感应强度小于b点的磁感应强度6、关于经典力学,下列说法错误的是A.由于相对论、量子力学的提出,经典力学已经被完全否定B.经典力学可看作相对论、量子力学在一定条件下的特殊情形C.经典力学在宏观物体、低速运动、引力不太大时适用D.经典力学对高速运动的微观粒子不适用7、如图所示,公园蹦极跳床深受儿童喜爱.一小孩系好安全带后静止时脚刚好接触蹦床,将小孩举高至每根轻质弹性绳都处于原长时由静止释放,对小孩下落过程的分析,下列说法正确的是A.小孩一直处于失重状态B..弹性绳对小孩的作用力一直增大C.小孩的加速度一直增大D.小孩的机械能一直减小8、滑滑梯是小朋友们喜爱的娱乐项目之一。