2019届河北省衡水中学高三小二调试题 数学理
- 格式:doc
- 大小:603.50 KB
- 文档页数:9
2019届河北省衡水中学高三开学二调考试(数学理)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|1},{|1},A x x B x x =>-=≥则“x ∈A 且x B∉”成立的充要条件是( )A.-1<x ≤1B.x ≤1C.x>-1D.-1<x<12.曲线3()2f x x =+在x=1处的切线倾斜角是( )A.16πB.13πC.56πD.23π 3.下列命题中的假命题是( )A.0,32x x x ∀>>B.(0,),1x x e x ∀∈+∞>+C.000(0,),sin x x x ∃∈+∞<D.00,lg 0x R x ∃∈< 4.设函数21223,0,()1log ,0,x x f x x x -⎧+≤=⎨->⎩若f(a)=4,则实数a 的值为( ) A.12 B.18 C.12或18 D.1165.设m,n ∈R ,已知log 2,log 2a b m n ==,且1,1)a b a b +=>>,则m n mn+的最大值是( )D.126.已知f(x)是定义在[-2b,1+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≤f(2x)的解集为( )A.2[1,]3- B.1[1,]3- C.[-1,1] D.1[,1]37.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),当x ∈[0,1]时,f(x)=-2x+1,设函数|1|1()()(13)2x g x x -=-<<,则函数f(x)与g(x)的图象交点个数为( )A.3B.4C.5D.68.已知f(x)是定义在(0,)+∞上的单调函数,且对任意的x ∈(0,)+∞都有3(())2f f x x -=,则方程()()2f x f x '-=的一个根所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 9.若函数1()2(0)x x f x e x a a -=+->在区间(0,2)内有两个不同的零点,则实数a 的取值范围为( )A.22)e B.(0,2] C.22(2,2]e + D.3424(2,2)e +10.已知函数32()ln ,()5,a f x x x g x x x x =+=--若对任意的121,[,2]2x x ∈,都有12()()2f x g x -≥成立,则实数a 的取值范围是( )A.[1,)+∞B.(0,)+∞C.(,0)-∞D.(,1]-∞-11.2()f x x bx c =++,若方程f(x)=x 无实根,则方程f(f(x))=x( ) A.有四个相异实根 B.有两个相异实根 C.有一个实根 D.无实数根12.已知函数11()x x f x e e --=+,则满足1(1)f x e e --<+的x 的取值范围是( ) A.1<x<3 B.0<x<2 C.0<x<e D.1<x<e第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知命题2:,1p x R x m ∀∈+>;命题:()(3)x q f x m =-是增函数.若“p q ∧”为假命题且“p q ∨”为真命题,则实数m 的取值范围为 . 14.12)x dx +=⎰.15. 若直角坐标平面内不同两点P,Q 满足条件: ①P,Q 都在函数y=f(x)的图象上;②P,Q 关于原点对称,则称(P,Q )是函数y=f(x)的一个“伙伴点组”(点组(P,Q )与(Q,P)可看成同一个“伙伴点组”).已知2(1),0,()1,0k x x f x x x +<⎧=⎨+≥⎩有两个“伙伴点组”,则实数k 的取值范围是 . 16.已知k>0,b>0,且kx+b ≥ln(x+2)对任意的x>-2恒成立,则bk的最小值为 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)高三小二调(理数)参考答案及解析一、选题题1-5 DDCBA 6-10 BBDDA 11-12 DA 二、填空题 13.[1,2) 14. 14π+ 15.(2)++∞16.1三、解答题17. 解:(1)函数f(x)的定义域为{|0,}x x x R ≠∈,(12)(4)842()3333x a x a x af x x x -+-==-+, 所以4(2)()()03a f x f x --+==恒成立,所以a=2.(4分)(2)由题(1)得28()33xf x x =-,所以228()033f x x '=--<,所以f(x)在区间(0,)+∞上为单调减函数.因为11[,]x m n ∈,所以128()2,33128()2,33f m m m mf n n nn ⎧=-=-⎪⎪⎨⎪=-=-⎪⎩所以m ,n 是方程2680x x -+=的两根, 又因为m>n>1,所以m=4且n=2.(10分)18.解:(1)由()323f x x x =-得()2'63f x x =-.令()'0f x =,得x =x =因为()210f -=-,f ⎛= ⎝,f =()11f =-, 所以() f x 在区间[]2,1-上的最大值为f ⎛= ⎝.(4分)(2)设过点()1,P t 的直线与曲线()y f x =相切于点()00,x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()()200063y y x x x -=--,因此()()2000631t y x x -=--. 整理得32004630x x t -++=.设()32463g x x x t =-++,则“过点()1,P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”.(7分)()()2'1212121g x x x x x =-=-. ()g x 与()'g x 的变化情况如下:所以, ()03g t =+是()g x 的极大值, ()11g t =+是()g x 的极小值. 当()003g t =+≤,即3t ≤-时,此时()g x 在区间(],1-∞和()1,+∞上分别至多有1个零点, 所以()g x 至多有2个零点. 当()110g t =+≥,即1t ≥-时,此时()g x 在区间(),0-∞和[)0,+∞上分别至多有1个零点, 所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时, 因为()170g t -=-<,()2110g t =+>,所以()g x 分别在区间[)1,0-,[)0,1和[)1,2上恰有1个零点.由于()g x 在区间(),0-∞和()1,+∞上单调,所以()g x 分别在区间(),0-∞和[)1,+∞上恰有1个零点. 综上可知,当过点()1,P t 存在3条直线与曲线()y f x =相切时,t的取值范围是(3,1)--.(12分)19.解:(1)2211()a ax f x x x x-'=-+=, 当x=1时,()0f x '=,解得a=1. 经验证a=1满足条件.(4分)(2)当a=1时,22(2)21(1)3221x t x t x t f x x x x x ++++++>=+++++, 整理得t<(x+2)ln(x+1)-x. 令h(x)=(x+2)ln(x+1)-x ,则21()ln(1)1ln(1)0(1),11x h x x x x x x +'=++-=++>≥++所以min ()3ln 21h x =-,即t<3ln2-1∈(0,2).又因为,t N *∈ 所以t=1.(12分)20.解:(1)函数()()2+1ln f x a x ax =-的定义域为(0,)+∞,()()2+12+1()a ax a f x a x x-+'=-=,令()()2+1m x ax a =-+, 因为函数()y f x =在定义域内为单调函数,说明()0f x '≥或()0f x '≤恒成立, 即()()2+1m x ax a =-+的符号大于等于零或小于等于零恒成立,当0a =时,()20m x =>,()0f x '>,()y f x =在定义域内为单调增函数; 当0a >时,()()2+1m x ax a =-+为减函数, 只需()(0)2+10m a =≤,即1a ≤-,不符合要求; 当0a <时,()()2+1m x ax a =-+为增函数,只需()(0)2+10m a =≥即可,即1a ≥-,解得10a -≤<, 此时()y f x =在定义域内为单调增函数.综上所述[1,0]a ∈-.(5分) (2)22111()(1)222g x x x x =-=--在区间(1,)+∞单调递增, 不妨设121x x >>,则12()()g x g x >,则1212()()1()()f x f x g x g x ->--等价于1212()()(()())f x f xg x g x ->--,等价于1122()()()+()f x g x f x g x +>,(8分)设()21()()+()2+1ln (1)2n x f x g x x a x a x ==+-+, 法一:则22(1)()(1)(1)2a n x x a a x +'=+-+≥+=-, 由于17a -<<,故()0n x '>,即()n x 在(1,)+∞上单调递增,从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证!(12分) 法二:22(1)(1)2(1)()(1)=a x a x a n x x a x x +-+++'=+-+,令2()(1)2(1)p x x a x a =-+++,22(1)8(1)67(7)(1)0a a a a a a ∆=+-+=--=-+<,即2()(1)2(1)0p x x a x a =-+++>在17a -<<时恒成立, 说明()0n x '>,即()n x 在(1,)+∞上单调递增,从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证!(12分) 21. 解:(1)()f x 的定义域为()0,+∞, ()f x 在定义域内单调递增,()2'20f x x m x =+-≥,即22m x x≤+在()0,+∞上恒成立,由224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞. (4分) (2)由(1)知()2222'2x mx f x x m x x -+=+-=,当1752m <<时()f x 有两个极值点,此时1212120,1,012mx x x x x x +=>=∴<<<.因为1111725,2m x x ⎛⎫⎛⎫=+∈⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211,x x =于是()()()()22121112222ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+,令()2214ln h x x x x=-+,则()()22321'0x h x x --=<,所以()h x 在11,42⎛⎫⎪⎝⎭上单调递减, ()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即()()()1211141ln2161ln24216f x f x ⎛⎫--<-<-- ⎪⎝⎭,故()()12f x f x -的取值范围为152554ln2,8ln2416⎛⎫--⎪⎝⎭.(12分)22. 解:(1)2()231x x f x ae ae '=-+,设0x e t =>,则2()()231f x g t at at '==-+,当a=0时,()10f x '=>,函数f(x)在R 上为增函数,无极值点. 当a>0时,298a a ∆=-, 若809a <≤时,0∆≤, ()0f x '≥,函数f(x)在R 上为增函数,无极值点. 若89a >时,0∆>,设2()231g t at at =-+的两个不相等的正实数根为12,t t ,且12t t <, 则212()2312()()x x x x f x ae ae a e t e t '=-+=--,所以当1(,ln ),()0x t f x '∈-∞>,f(x)单调递增;当12(ln ,ln ),()0x t t f x '∈<,f(x)单调递减; 当2(ln ,),()0x t f x '∈+∞>,f(x)单调递增.因此此时函数f(x)有两个极值点. 同理当a<0时,2()231g t at at =-+的两个不相等的实数根12,t t ,且120t t <<,当2(ln ,),()0x t f x '∈+∞<,f(x)单调递减,当2(,ln ),()0x t f x '∈-∞>,f(x)单调递增, 所以函数f(x)只有一个极值点. 综上可知,当809a ≤≤时f (x)无极值点;当a<0时f(x)有一个极值点;当89a >时,f(x)有两个极值点.(6分)(2)对于0,1xx e t ∀>=>, 由(1)知当809a ≤≤时函数f(x)在R 上为增函数,由f(0)=0,所以f(x)≥0成立. 若89a >,设2()231g t at at =-+的两个不相等的正实数根为12,t t , 12t t <且1212131,22t t t t a =<+=,∴1234t t <<.则若0,()0x f x ∀>≥成立,则要求21t <,即g(1)=2a-3a+1≥0,解得a ≤1.此时f(x)在(0,)+∞为增函数,0,()0x f x ∀>≥成立. 若当a<0时,222()(32)(32)(31)2xx x x x x x f x x a ee e a e e ae a e a =+-+≤+-+=--+,又21,()(31)20x t e t at a t a ϕ=>=--+≥显然不恒成立. 综上所述,a 的取值范围是0≤a ≤1.(12分)。
2018-2019学年度高三年级小二调考试数学(理科)试卷第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|1},{|1},A x x B x x =>-=≥则“x ∈A 且x B∉”成立的充要条件是( )A.-1<x ≤1B.x ≤1C.x>-1D.-1<x<12.曲线3()2f x x =+在x=1处的切线倾斜角是( )A.16πB.13πC.56πD.23π 3.下列命题中的假命题是( )A.0,32x x x ∀>>B.(0,),1x x e x ∀∈+∞>+C.000(0,),sin x x x ∃∈+∞<D.00,lg 0x R x ∃∈<4.设函数21223,0,()1log ,0,x x f x x x -⎧+≤=⎨->⎩若f(a)=4,则实数a 的值为( ) A.12 B.18 C.12或18 D.1165.设m,n ∈R,已知log 2,log 2a b m n ==,且1,1)a b a b +=>>,则m n mn+的最大值是( )D.126.已知f(x)是定义在[-2b,1+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≤f(2x)的解集为( )A.2[1,]3- B.1[1,]3- C.[-1,1] D.1[,1]37.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),当x ∈[0,1]时,f(x)=-2x+1,设函数|1|1()()(13)2x g x x -=-<<,则函数f(x)与g(x)的图象交点个数为( )A.3B.4C.5D.68.已知f(x)是定义在(0,)+∞上的单调函数,且对任意的x ∈(0,)+∞都有3(())2f f x x -=,则方程()()2f x f x '-=的一个根所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 9.若函数1()2(0)x x f x e x a a -=+->在区间(0,2)内有两个不同的零点,则实数a 的取值范围为( )A.22)e B.(0,2] C.22(2,2]e + D.3424(2,2)e +10.已知函数32()ln ,()5,a f x x x g x x x x =+=--若对任意的121,[,2]2x x ∈,都有12()()2f x g x -≥成立,则实数a 的取值范围是( )A.[1,)+∞B.(0,)+∞C.(,0)-∞D.(,1]-∞-11.2()f x x bx c =++,若方程f(x)=x 无实根,则方程f(f(x))=x( ) A.有四个相异实根 B.有两个相异实根 C.有一个实根 D.无实数根12.已知函数11()x x f x e e --=+,则满足1(1)f x e e --<+的x 的取值范围是( ) A.1<x<3 B.0<x<2 C.0<x<e D.1<x<e第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知命题2:,1p x R x m ∀∈+>;命题:()(3)x q f x m =-是增函数.若“p q ∧”为假命题且“p q ∨”为真命题,则实数m 的取值范围为 . 14.12)x dx +=⎰.15. 若直角坐标平面内不同两点P,Q 满足条件: ①P,Q 都在函数y=f(x)的图象上;②P,Q 关于原点对称,则称(P,Q)是函数y=f(x)的一个“伙伴点组”(点组(P,Q)与(Q,P)可看成同一个“伙伴点组”).已知2(1),0,()1,0k x x f x x x +<⎧=⎨+≥⎩有两个“伙伴点组”,则实数k 的取值范围是 . 16.已知k>0,b>0,且kx+b ≥ln(x+2)对任意的x>-2恒成立,则bk的最小值为 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)高三小二调(理数)参考答案及解析一、选题题1-5 DDCBA 6-10 BBDDA 11-12 DA 二、填空题 13.[1,2) 14. 14π+ 15.(2)++∞16.1三、解答题17. 解:(1)函数f(x)的定义域为{|0,}x x x R ≠∈,(12)(4)842()3333x a x a x af x x x -+-==-+, 所以4(2)()()03a f x f x --+==恒成立,所以a=2.(4分)(2)由题(1)得28()33xf x x =-,所以228()033f x x '=--<,所以f(x)在区间(0,)+∞上为单调减函数.因为11[,]x m n ∈,所以128()2,33128()2,33f m m m mf n n nn ⎧=-=-⎪⎪⎨⎪=-=-⎪⎩所以m,n 是方程2680x x -+=的两根, 又因为m>n>1,所以m=4且n=2.(10分)18.解:(1)由()323f x x x =-得()2'63f x x =-.令()'0f x =,得x =x =因为()210f -=-,f ⎛=⎝,f =()11f =-, 所以() f x 在区间[]2,1-上的最大值为f ⎛= ⎝.(4分)(2)设过点()1,P t 的直线与曲线()y f x =相切于点()00,x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()()200063y y x x x -=--,因此()()2000631t y x x -=--. 整理得32004630x x t -++=.设()32463g x x x t =-++,则“过点()1,P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”.(7分)()()2'1212121g x x x x x =-=-. ()g x 与()'g x 的变化情况如下:所以, ()03g t =+是()g x 的极大值, ()11g t =+是()g x 的极小值. 当()003g t =+≤,即3t ≤-时,此时()g x 在区间(],1-∞和()1,+∞上分别至多有1个零点, 所以()g x 至多有2个零点. 当()110g t =+≥,即1t ≥-时,此时()g x 在区间(),0-∞和[)0,+∞上分别至多有1个零点, 所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时, 因为()170g t -=-<,()2110g t =+>,所以()g x 分别在区间[)1,0-,[)0,1和[)1,2上恰有1个零点.(2)由(1)知()2222'2x mx f x x m x x -+=+-=,当1752m <<时()f x 有两个极值点,此时1212120,1,012mx x x x x x +=>=∴<<<.因为1111725,2m x x ⎛⎫⎛⎫=+∈⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211,x x =于是()()()()22121112222ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+,令()2214ln h x x x x=-+,则()()22321'0x h x x--=<,所以()h x 在11,42⎛⎫⎪⎝⎭上单调递减, ()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即()()()1211141ln2161ln24216f x f x ⎛⎫--<-<-- ⎪⎝⎭,故()()12f x f x -的取值范围为152554ln2,8ln2416⎛⎫-- ⎪⎝⎭.(12分)22. 解:(1)2()231xx f x aeae '=-+,设0x e t =>,则2()()231f x g t at at '==-+,当a=0时,()10f x '=>,函数f(x)在R 上为增函数,无极值点. 当a>0时,298a a ∆=-, 若809a <≤时,0∆≤, ()0f x '≥,函数f(x)在R 上为增函数,无极值点. 若89a >时,0∆>,设2()231g t at at =-+的两个不相等的正实数根为12,t t ,且12t t <, 则212()2312()()x x x x f x ae ae a e t e t '=-+=--,所以当1(,ln ),()0x t f x '∈-∞>,f(x)单调递增;当12(ln ,ln ),()0x t t f x '∈<,f (x )单调递减;当2(ln ,),()0x t f x '∈+∞>,f(x)单调递增.因此此时函数f(x)有两个极值点. 同理当a<0时,2()231g t at at =-+的两个不相等的实数根12,t t ,且120t t <<, 当2(ln ,),()0x t f x '∈+∞<,f(x)单调递减,当2(,ln ),()0x t f x '∈-∞>,f(x)单调递增, 所以函数f(x)只有一个极值点. 综上可知,当809a ≤≤时f(x)无极值点;当a<0时f(x)有一个极值点;当89a >时,f(x)有两个极值点.(6分)(2)对于0,1xx e t ∀>=>, 由(1)知当809a ≤≤时函数f(x)在R 上为增函数,由f(0)=0,所以f(x)≥0成立. 若89a >,设2()231g t at at =-+的两个不相等的正实数根为12,t t , 12t t <且1212131,22t t t t a =<+=,∴1234t t <<.则若0,()0x f x ∀>≥成立,则要求21t <,即g(1)=2a-3a+1≥0,解得a ≤1.此时f(x)在(0,)+∞为增函数,0,()0x f x ∀>≥成立. 若当a<0时,222()(32)(32)(31)2xx x x x x x f x x a ee e a e e ae a e a =+-+≤+-+=--+,又21,()(31)20x t e t at a t a ϕ=>=--+≥显然不恒成立. 综上所述,a 的取值范围是0≤a ≤1.(12分)。
河北省衡水中学2019届高三上学期二调考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设集合,集合,则()M ={x |log 2(x−1)<0}N ={x |x ≥−2}M ∩N =A. B. C. D. {x |−2≤x <2}{x |x ≥−2}{x |x <2}{x |1<x <2}【答案】D 【解析】由题意得,M ={x|0<x ‒1<1}={x |1<x <2}∴.选D .N ∩M ={x |1<x <2}2.已知,则()sin (π5−α)=14cos (2α+3π5)=A. B. C. D.−787818−18【答案】A 【解析】由题意可得:cos (2α+3π5)=cos 2(α+3π10)=cos 2[π2−(π5−α)]=2cos 2[π2−(π5−α)]−1=2sin 2(π5−α)−1=−78.本题选择A 选项.3.等差数列的前n 项和为,若,,则 {a n }S n a 3+a 7‒a 10=5a 11‒a 4=7S 13=(A. 152B. 154C. 156D. 158【答案】C 【解析】【分析】利用等差数列的通项公式和前n 项和公式即可得出.【详解】设公差为d ,由,,可得,解出,.a 3+a 7‒a 10=5a 11‒a 4=7{a 1‒d =57d =7a 1=6d =1.∴S 13=13×6+13×122×1=156故选:C .【点睛】熟练掌握等差数列的通项公式和前n 项和公式是解题的关键.4.要得到函数的图象,只需将函数的图象上所有的点y =2sin 2x y =2cos (2x−π4)A. 再向左平行移动个单位长度B. 再向右平行移动个单位长度π4π8C. 再向右平行移动个单位长度D. 再向左平行移动个单位长度π4π8【答案】B 【解析】【分析】现将两个函数变为同名的函数,然后利用三角函数图像变换的知识得出珍贵选项.【详解】由于,故需将的图象上所有的点,向右平行移动个单位长y =2sin 2x =2cos (2x−π2)y =2cos (2x ‒π4)π8度得到.故选B.2cos [2(x−π8)−π4]=2cos (2x−π2)=2sin 2x【点睛】本小题主要考查三角函数图像变换,考查三角函数诱导公式,考查化归与转化的数学思想方法,属于基础题.5.若关于的方程有解,则实数的最小值为( )x log 13(a−3x )=x−2a A. 4 B. 6C. 8D. 2【答案】B 【解析】方程有解等价于,所以实数的最小log 13(a ‒3x )=x ‒2(13)x−2=a−3x ⇒a =(13)x−2+3x ≥2(13)x−2×3x =6a 值为66.已知数列的前n 项和为,,,且对于任意,,满足,{a n }S n a 1=1a 2=2n >1n ∈N ∗S n +1+S n ‒1=2(S n +1)则的值为 S 10A. 90 B. 91 C. 96 D. 100【答案】B 【解析】【分析】对于任意,,满足,可得,可得n >1n ∈N ∗S n +1+S n ‒1=2(S n +1)S n +1‒S n =S n ‒S n ‒1+2利用等差数列的通项公式与求和公式即可得出.a n +1‒a n =2.【详解】对于任意,,满足,∵n >1n ∈N ∗S n +1+S n ‒1=2(S n +1),∴S n +1‒S n =S n ‒S n ‒1+2.∴a n +1‒a n =2数列在时是等差数列,公差为2.,,∴{a n }n ≥2a 1=1a 2=2则.S 10=1+9×2+9×82×2=91故选:B .【点睛】本题考查了数列递推关系、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种S n a n a n S n−1方法需要检验n=1时通项公式是否适用。
2018-2019学年度高三年级小二调考试数学(理科)试卷第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|1},{|1},A x x B x x =>-=≥则“x ∈A 且x B∉”成立的充要条件是( )A.-1<x ≤1B.x ≤1C.x>-1D.-1<x<12.曲线3()2f x x =+在x=1处的切线倾斜角是( )A.16πB.13πC.56πD.23π 3.下列命题中的假命题是( )A.0,32x x x ∀>>B.(0,),1x x e x ∀∈+∞>+C.000(0,),sin x x x ∃∈+∞<D.00,lg 0x R x ∃∈< 4.设函数21223,0,()1log ,0,x x f x x x -⎧+≤=⎨->⎩若f(a)=4,则实数a 的值为( ) A.12 B.18 C.12或18 D.1165.设m,n ∈R ,已知log 2,log 2a b m n ==,且1,1)a b a b +=>>,则m n mn+的最大值是( )D.126.已知f(x)是定义在[-2b,1+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≤f(2x)的解集为( )A.2[1,]3- B.1[1,]3- C.[-1,1] D.1[,1]37.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),当x ∈[0,1]时,f(x)=-2x+1,设函数|1|1()()(13)2x g x x -=-<<,则函数f(x)与g(x)的图象交点个数为( )A.3B.4C.5D.68.已知f(x)是定义在(0,)+∞上的单调函数,且对任意的x ∈(0,)+∞都有3(())2f f x x -=,则方程()()2f x f x '-=的一个根所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 9.若函数1()2(0)x x f x e x a a -=+->在区间(0,2)内有两个不同的零点,则实数a 的取值范围为( )A.22)e B.(0,2] C.22(2,2]e + D.3424(2,2)e +10.已知函数32()ln ,()5,a f x x x g x x x x =+=--若对任意的121,[,2]2x x ∈,都有12()()2f x g x -≥成立,则实数a 的取值范围是( )A.[1,)+∞B.(0,)+∞C.(,0)-∞D.(,1]-∞-11.2()f x x bx c =++,若方程f(x)=x 无实根,则方程f(f(x))=x( ) A.有四个相异实根 B.有两个相异实根 C.有一个实根 D.无实数根12.已知函数11()x x f x e e --=+,则满足1(1)f x e e --<+的x 的取值范围是( ) A.1<x<3 B.0<x<2 C.0<x<e D.1<x<e第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知命题2:,1p x R x m ∀∈+>;命题:()(3)x q f x m =-是增函数.若“p q ∧”为假命题且“p q ∨”为真命题,则实数m 的取值范围为 . 14.12)x dx +=⎰.15. 若直角坐标平面内不同两点P,Q 满足条件: ①P,Q 都在函数y=f(x)的图象上;②P,Q 关于原点对称,则称(P,Q )是函数y=f(x)的一个“伙伴点组”(点组(P,Q )与(Q,P)可看成同一个“伙伴点组”).已知2(1),0,()1,0k x x f x x x +<⎧=⎨+≥⎩有两个“伙伴点组”,则实数k 的取值范围是 . 16.已知k>0,b>0,且kx+b ≥ln(x+2)对任意的x>-2恒成立,则bk的最小值为 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)高三小二调(理数)参考答案及解析一、选题题1-5 DDCBA 6-10 BBDDA 11-12 DA 二、填空题 13.[1,2) 14. 14π+ 15.(2)++∞16.1三、解答题17. 解:(1)函数f(x)的定义域为{|0,}x x x R ≠∈,(12)(4)842()3333x a x a x af x x x -+-==-+, 所以4(2)()()03a f x f x --+==恒成立,所以a=2.(4分)(2)由题(1)得28()33xf x x =-,所以228()033f x x '=--<,所以f(x)在区间(0,)+∞上为单调减函数.因为11[,]x m n ∈,所以128()2,33128()2,33f m m m mf n n nn ⎧=-=-⎪⎪⎨⎪=-=-⎪⎩所以m ,n 是方程2680x x -+=的两根, 又因为m>n>1,所以m=4且n=2.(10分)18.解:(1)由()323f x x x =-得()2'63f x x =-.令()'0f x =,得x =x =因为()210f -=-,f ⎛= ⎝,f =()11f =-, 所以() f x 在区间[]2,1-上的最大值为f ⎛= ⎝.(4分)(2)设过点()1,P t 的直线与曲线()y f x =相切于点()00,x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()()200063y y x x x -=--,因此()()2000631t y x x -=--. 整理得32004630x x t -++=.设()32463g x x x t =-++,则“过点()1,P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”.(7分)()()2'1212121g x x x x x =-=-. ()g x 与()'g x 的变化情况如下:所以, ()03g t =+是()g x 的极大值, ()11g t =+是()g x 的极小值. 当()003g t =+≤,即3t ≤-时,此时()g x 在区间(],1-∞和()1,+∞上分别至多有1个零点, 所以()g x 至多有2个零点. 当()110g t =+≥,即1t ≥-时,此时()g x 在区间(),0-∞和[)0,+∞上分别至多有1个零点, 所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时, 因为()170g t -=-<,()2110g t =+>,所以()g x 分别在区间[)1,0-,[)0,1和[)1,2上恰有1个零点.由于()g x 在区间(),0-∞和()1,+∞上单调,所以()g x 分别在区间(),0-∞和[)1,+∞上恰有1个零点. 综上可知,当过点()1,P t 存在3条直线与曲线()y f x =相切时,t的取值范围是(3,1)--.(12分)19.解:(1)2211()a ax f x x x x-'=-+=, 当x=1时,()0f x '=,解得a=1. 经验证a=1满足条件.(4分)(2)当a=1时,22(2)21(1)3221x t x t x t f x x x x x ++++++>=+++++, 整理得t<(x+2)ln(x+1)-x. 令h(x)=(x+2)ln(x+1)-x ,则21()ln(1)1ln(1)0(1),11x h x x x x x x +'=++-=++>≥++所以min ()3ln 21h x =-,即t<3ln2-1∈(0,2).又因为,t N *∈ 所以t=1.(12分)20.解:(1)函数()()2+1ln f x a x ax =-的定义域为(0,)+∞,()()2+12+1()a ax a f x a x x-+'=-=,令()()2+1m x ax a =-+, 因为函数()y f x =在定义域内为单调函数,说明()0f x '≥或()0f x '≤恒成立, 即()()2+1m x ax a =-+的符号大于等于零或小于等于零恒成立,当0a =时,()20m x =>,()0f x '>,()y f x =在定义域内为单调增函数; 当0a >时,()()2+1m x ax a =-+为减函数, 只需()(0)2+10m a =≤,即1a ≤-,不符合要求; 当0a <时,()()2+1m x ax a =-+为增函数,只需()(0)2+10m a =≥即可,即1a ≥-,解得10a -≤<, 此时()y f x =在定义域内为单调增函数.综上所述[1,0]a ∈-.(5分) (2)22111()(1)222g x x x x =-=--在区间(1,)+∞单调递增, 不妨设121x x >>,则12()()g x g x >,则1212()()1()()f x f x g x g x ->--等价于1212()()(()())f x f xg x g x ->--,等价于1122()()()+()f x g x f x g x +>,(8分)设()21()()+()2+1ln (1)2n x f x g x x a x a x ==+-+, 法一:则22(1)()(1)(1)2a n x x a a x +'=+-+≥+=-, 由于17a -<<,故()0n x '>,即()n x 在(1,)+∞上单调递增,从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证!(12分) 法二:22(1)(1)2(1)()(1)=a x a x a n x x a x x +-+++'=+-+,令2()(1)2(1)p x x a x a =-+++,22(1)8(1)67(7)(1)0a a a a a a ∆=+-+=--=-+<,即2()(1)2(1)0p x x a x a =-+++>在17a -<<时恒成立, 说明()0n x '>,即()n x 在(1,)+∞上单调递增,从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证!(12分) 21. 解:(1)()f x 的定义域为()0,+∞, ()f x 在定义域内单调递增,()2'20f x x m x =+-≥,即22m x x≤+在()0,+∞上恒成立,由224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞. (4分) (2)由(1)知()2222'2x mx f x x m x x -+=+-=,当1752m <<时()f x 有两个极值点,此时1212120,1,012mx x x x x x +=>=∴<<<.因为1111725,2m x x ⎛⎫⎛⎫=+∈⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211,x x =于是()()()()22121112222ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+,令()2214ln h x x x x=-+,则()()22321'0x h x x --=<,所以()h x 在11,42⎛⎫⎪⎝⎭上单调递减, ()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即()()()1211141ln2161ln24216f x f x ⎛⎫--<-<-- ⎪⎝⎭,故()()12f x f x -的取值范围为152554ln2,8ln2416⎛⎫--⎪⎝⎭.(12分)22. 解:(1)2()231x x f x ae ae '=-+,设0x e t =>,则2()()231f x g t at at '==-+,当a=0时,()10f x '=>,函数f(x)在R 上为增函数,无极值点. 当a>0时,298a a ∆=-, 若809a <≤时,0∆≤, ()0f x '≥,函数f(x)在R 上为增函数,无极值点. 若89a >时,0∆>,设2()231g t at at =-+的两个不相等的正实数根为12,t t ,且12t t <, 则212()2312()()x x x x f x ae ae a e t e t '=-+=--,所以当1(,ln ),()0x t f x '∈-∞>,f(x)单调递增;当12(ln ,ln ),()0x t t f x '∈<,f(x)单调递减; 当2(ln ,),()0x t f x '∈+∞>,f(x)单调递增.因此此时函数f(x)有两个极值点. 同理当a<0时,2()231g t at at =-+的两个不相等的实数根12,t t ,且120t t <<,当2(ln ,),()0x t f x '∈+∞<,f(x)单调递减,当2(,ln ),()0x t f x '∈-∞>,f(x)单调递增, 所以函数f(x)只有一个极值点. 综上可知,当809a ≤≤时f (x)无极值点;当a<0时f(x)有一个极值点;当89a >时,f(x)有两个极值点.(6分)(2)对于0,1xx e t ∀>=>, 由(1)知当809a ≤≤时函数f(x)在R 上为增函数,由f(0)=0,所以f(x)≥0成立. 若89a >,设2()231g t at at =-+的两个不相等的正实数根为12,t t , 12t t <且1212131,22t t t t a =<+=,∴1234t t <<.则若0,()0x f x ∀>≥成立,则要求21t <,即g(1)=2a-3a+1≥0,解得a ≤1.此时f(x)在(0,)+∞为增函数,0,()0x f x ∀>≥成立. 若当a<0时,222()(32)(32)(31)2xx x x x x x f x x a ee e a e e ae a e a =+-+≤+-+=--+,又21,()(31)20x t e t at a t a ϕ=>=--+≥显然不恒成立. 综上所述,a 的取值范围是0≤a ≤1.(12分)。
2018-2019学年度上学期高三二调考试数学(理科)试卷 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每题5分,共60分。
每小题给出的四个选项中只有一项是符合题意的)1.设集合{}2log (1)0,M x x =-<集合{}2,N x x =≥-则N M =I A.{}22x x -≤< B.{}2x x ≥- C.{}2x x < D.{}12x x <<2.已知1sin 54πα⎛⎫-= ⎪⎝⎭,则3cos 25πα⎛⎫+= ⎪⎝⎭A.78- B.78 C.18 D.18-3.等差数列{}n a 的前n 项和为n S ,若37101145,7,a a a a a +-=-=则13S = A.152 B.154 C.156 D.1584.要得到函数22y x =的图象,只需将函数224y x π⎛⎫=- ⎪⎝⎭的图象上所有的点A.向左平行移动4π个单位长度B.向右平行移动8π个单位长度C.向右平行移动4π个单位长度D.向左平行移动8π个单位长度5.若关于x 的方程()13log 32xa x -=-有解,则实数a 的最小值为 A.4 B.6 C.8 D.26.已知数列{}n a 的前n 项和为n S ,121,2,a a ==且对于任意1,,n n N *>∈满足()1121,n n n S S S +-+=+则10S =A.91B.90C.55D.1007.已知函数()4sin cos (0)22x x f x ωωω=>g 在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[]0,π上恰好取得一次最大值,则ω的取值范围为A.(]0,1B.30,4⎛⎤ ⎥⎝⎦C.13,24⎡⎤⎢⎥⎣⎦D.[)1,+∞ 8.已知()f n 表示正整数n 的所有因数中最大的奇数,例如:12的因数有1,2,3,4,6,12,则(12)3f =;21的因数有1,3,7,21,则(21)21,f =那么10051()i f i =∑的值为A.2488B.2495C.2498D.25009.如图,半径为2的圆O 与直线MN 相切于点P,射线PK 从PN 出发,绕点P 逆时针方向转到PM,旋转过程中,PK 与圆O 交于点Q,设,POQ x ∠=弓形PmQ 的面积()S S x =,那么()S x 的图象大致是10.已知函数()22ln f x x x =-与()()sin g x x ωϕ=+有两个公共点,则在下列函数中满足条件的周期最大的函数()g x =A.sin 2x ππ⎛⎫- ⎪⎝⎭B.sin 2x ππ⎛⎫+ ⎪⎝⎭C.sin 2x ππ⎛⎫+ ⎪⎝⎭D.sin 22x ππ⎛⎫+ ⎪⎝⎭11.已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有()()2112120,x f x x f x x x -<-记0.2 2.10.20.2 2.10.2(log 4.1)(4.1)(0.4),,4.10.4log 4.1f f f a b c ===,则 A.a c b<< B.a b c<< C.c b a<< D.b c a<<12.已知函数2(0),()ln (0).x e x f x x x ⎧-≤=⎨>⎩则下列关于函数()11(0)y f f kx k =++≠⎡⎤⎣⎦的零点个数的判断正确的是A.当k>0时,有3个零点;当k<0时,有4个零点B.当k>0时,有4个零点;当k<0时,有3个零点C.无论k 为何值,均有3个零点D.无论k 为何值,均有4个零点第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数21()tan 3()22f x x x πθθ=++≠在区间3⎡⎤⎢⎥⎣⎦上是单调函数,其中θ是直线l 的倾斜角,则θ的所有可能取值范围是 .[来源:Z 。
2019-2020学年河北省衡水中学高三(上)小二调数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知全集U={﹣1,log23,2,4},A={x|log2(x2﹣x)=1},B={x|2x=3}.则∁U A∩B=()A.{﹣1,2}B.{4}C.{2}D.{log23}2.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p43.(5分)某种新药服用x小时后血液中残留为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为()A.上午10:00 B.中午12:00 C.下午4:00 D.下午6:004.(5分)以下有关命题的说法错误的是()A.“x=1”是“x2﹣3x+2=0”的充分不必要条件B.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”C.对于命题p:∃x>0,使得x2+x+1<0,则¬p:∀x≤0,均有x2+x+1≥0 D.若p∨q为假命题,则p、q均为假命题5.(5分)如图是函数y=cos(2x﹣)在一个周期内的图象,则阴影部分的面积是()A.B.C.D.﹣6.(5分)执行如图所示程序框图,则输出的s=()A.﹣2013 B.2013 C.﹣2012 D.20127.(5分)某几何体的三视图如图所示,俯视图为等腰梯形,则该几何体的表面积是()A.B.9+3C.18 D.12+38.(5分)已知函数y=f(x)是定义在R上的奇函数,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3)•f(log3),则a,b,c的大小关系是()A.a>b>c B.c>>b>a C.c>a>b D.a>c>b9.(5分)已知函数f(x)满足f(x+1)=﹣f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2,若在区间[﹣1,3]内,函数g(x)=f(x)﹣kx﹣k有4个零点,则实数k的取值范围是()A.B. C. D.10.(5分)设曲线y=(ax﹣1)e x在点A(x0,y0)处的切线为l1,曲线y=(1﹣x)e﹣x在点B(x0,y1)处的切线为l2,若存在x0∈[0,],使得l1⊥l2,则实数a的取值范围是()A.(﹣∞,1]B.(,+∞)C.(1,)D.[1,]11.(5分)已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x﹣sinx,若不等式f(﹣4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是()A.(﹣∞,﹣)B.(﹣,0) C.(﹣∞,0)∪(,+∞)D.(﹣∞,﹣)∪(,+∞)12.(5分)在平面直角坐标系中,点P是由不等式组所确定的平面区域内的动点,Q是直线2x+y=0上任意一点,O为坐标原点,则|+|的最小值为()A.B.C.D.1二、填空题(共4小题,每小题5分,满分20分)13.(5分)A={﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},B∩A=B,求m的取值范围.14.(5分)已知函数f(x)=x2﹣2ax﹣aln(2x)在(1,2)上单调递减,则a 的取值范围是.15.(5分)已知变量x,y满足约束条件,且有无穷多个点(x,y)使目标函数z=x+my取得最小值,则m=.16.(5分)已知函数f(x)=且f(x)﹣ax≥﹣1对于定域内的任意的x恒成立,则a的取值范围是.三、解答题(本大题共8题,共70分.解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17.(12分)在△ABC中,a,b,c分别为角A、B、C的对边,D为边AC的中点,a=3,cos∠ABC=.(Ⅰ)若c=3,求sin∠ACB的值;(Ⅱ)若BD=3,求△ABC的面积.18.(12分)已知函数f(x)=﹣(1+2a)x+ln(2x+1).(1)设a=1时,求函数f(x)在(﹣,2)上的最大值(2)a>0时讨论函数f(x)的单调区间.19.(12分)设a∈R,函数f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足f(﹣)=f(0).(1)求f(x)的单调递减区间;(2)设锐角△ABC的内角A,B,C所对的边分别为a,b,c,且=,求f(A)的取值范围.20.(12分)设函数f(x)=x2+bx﹣alnx.(Ⅰ)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),n∈N,求n.(Ⅱ)若对任意b∈[﹣2,﹣1],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.21.(12分)已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.请考生在22,23,24题中任选一题作答,并用2B铅笔将答题纸上所选题目对应的题号右侧方框涂黑,按所涂题目进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。
2019年河北省衡水高三(下)二调数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{A k =∈N }N ,{|2B x x n ==或3,x n n =∈}N ,则A B =( )A .{}6,9B .{}3,6,9C .{}1,6,9,10D .{}6,9,102. 若复数z 满足()2z 12i 13i (i -+=+为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,ln 2xp x e x ⎛⎫∃>> ⎪⎝⎭;命题:1,1,log 2log a b q a b b a ∀>>+≥下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧ C. ()p q ∧⌝ D .()p q ∨⌝5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .310π B .320π C.3110π- D .3120π-6. 若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C.1619D .127.已知)221sin a x dx π-=⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( ) A .158-B .212- C.54-D .1-8. 已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么13f ⎛⎫= ⎪⎝⎭( )A.2π-.12-C.14D .34π-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.28+.36+C. 36+.44+10. 执行如图所示的程序框图,输出S 的值等于( )A.21tan9π-- B.25tan922tan9ππ-C. 22tan9D.25tan 921tan9ππ-- 11.椭圆()222101y x b b+=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A.⎫⎪⎭ B .1,12⎛⎫ ⎪⎝⎭C.⎛ ⎝D .10,2⎛⎫⎪⎝⎭12. 已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭ B .21,0e ⎡⎤-⎢⎥⎣⎦ C.21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知V ABC 中,若3=AB ,4=AC ,6⋅=uu u r uu u rAB AC ,则=BC . 14.某所学校计划招聘男教师x 名,女教师y 名,x 和y 须满足约束条件25,2,5.-≥⎧⎪-≤⎨⎪<⎩x y x y x 则该校招聘的教师人数最多是 名. 15.若直线10x ay +-=与2430x y +-=平行,则51x a x ⎛⎫+- ⎪⎝⎭的展开式中x 的系数为 .16.已知定义在()0,∞上的函数()f x 的导函数()f x '是连续不断的,若方程()0f x '=无解,且()0,x ∀∈+∞,()2015log 2017-=⎡⎤⎣⎦f f x x ,设()0.52=a f ,()4log 3b f =,()log 3c f π=,则,,a b c 的大小关系是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 是等差数列,且1a ,2a (12<a a )分别为方程2650-+=x x 的二根.(1)求数列{}n a 的前n 项和n S ; (2)在(1)中,设=+n n S b n c ,求证:当12=-c 时,数列{}n b 是等差数列. 18.为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少? (2)若所有“优秀警员”中选3名代表,用ξ表示所选女“优秀警员”的人数,试求ξ的分布列和数学期望.19.如图,V ABC 为边长为2的正三角形,∥AE CD ,且⊥AE 平面ABC ,22==AE CD .(1)求证:平面⊥BDE 平面BCD ; (2)求二面角--D EC B 的高.20.已知椭圆C :22221+=x y a b()>>a b c 的离心率为12,(),0A a ,()0,b b ,(),0-D a ,△ABD 的面积为(1)求椭圆C 的方程;(2)如图,设(),o o P x y 是椭圆C 在第二象限的部分上的一点,且直线PA 与y 轴交于点M ,直线PB 与 x 轴交于点N ,求四边形ABNM 的面积.21.已知函数()()ln 1=--f x x a x (1)求函数()f x 的极值;(2)当0a ≠时,过原点分别做曲线 ()y f x =与x y e =的切线1l ,2l ,若两切线的斜率互为倒数,求证:12<<a .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知圆C 的参数方程为cos ,sin 2,θθ=⎧⎨=+⎩x y (θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos θθρ+=.(1)求圆C 的普通方程和直线l 的直角坐标方程; (2)求直线l 被圆C 所截得的弦长. 23.选修4-5:不等式选讲 已知函数()1=-f x x 12++-x . (1)求不等式()1≥f x 的解集;(2)若关于x 的不等式()22≥--f x a a 在R 上恒成立,求实数a 的取值范围.2019年河北省衡水高三(下)二调数学试卷(理科)一、选择题1-5:DCBAD 6-10: ABDBA 11-12:AC二、填空题13.7 15.210 16.a c b >> 三、解答题17.解:(1)解方程2650-+=x x 得其二根分别为1和51a ,212()<a a a 分别为方程2650x x -+=的二根 所以11=a ,25=a ,所以{}n a 等差数列的公差为4()1142-∴=⋅+⋅n n n S n 22=-n n (2)当21-=c 时,==+n n S b n c 22212-=-n n n n 1+∴-=n n b b 2(1)22+-=n n所以{}n b 是以2为首项,公差为2的等差数列18.解:(1)根据茎叶图,有“优秀警员”12人,“优秀陪练员”18人 用分层抽样的方法,每个人被抽中的概率是101303= 所以选中的“优秀警员”有4人,“优秀陪练员”有6人. 用事件A 表示“至少有1名“优秀警员”被选中”,则()464101==C P A C 1513121014-=. 因此,至少有1人是“优秀警员”的概率是1314(2)依题意,ξ的取值为0,1,2,3.3831214(0)55ξ===C p C , 124831228(1)55C C p C ξ===,214831212(2)55C C p C ξ===, 343121(3)55C p C ξ===, 因此,ξ的分布列如下:1428015555ξ∴=⨯+⨯E 1212315555+⨯+⨯= 19.解:(1)(1)如下图所示:取BD边的中点F ,BC 的中点为G ,连接AG ,FG ,EF ,由题意可知,FG 是BCD ∆的中位线所以∥FG AE 且=FG AE ,即四边形AEFG 为平行四边形, 所以∥AG EF由AG ⊥平面BCD 可知,EF ⊥平面BCD ,又EF ⊂面BDE , 故平面⊥BDE 平面BCD(2)由2=AB ,1=AE 可知,BE =DE = 又2DC BC ==,EC 为△BEC ,△DEC 的公共边,知≅△△BEC DEC 过点在△BEC 内做BM EC ⊥,垂足为M ,连接DM ,则DM EC ⊥,所以DMB ∠为所求二面角的平面角在等腰三角形EBC 中BE EC ==2BC =.由面积相等可知:5MB =,5MD =;BD =根据余弦定理222cos 2+-∠=⋅⋅MD MB BD DMB MD MB14= 所以二面角D EC B --20.解:(1)由题意得()22212122⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩c a a b a b c 2=a,=b 所以椭圆C 的方程为22143+=x y .(2)由(1)知,()2,0A,(B ,由题意可得12=⋅四边形ABNM S AN BM 因为00(,)P x y ,020-<<x,00<y ,22003412+=x y .所以直线PA 的方程为00(2)2=--y y x x 令0=x ,得0022=--M y y x .从而=MBMy 0022=-y x . 直线PB的方程为00=y y x x 令0=y,得=N x .从而2=-N ANx 2=+.所以⋅=ANBM 00222+-y x===12∴=⋅四边形ABNM S ANBM =21. 解:(1)1()f x a x'=-①若0a ≤时,1()f x a x'=-0> 所以函数()f x 在()0,+∞单调递增,故无极大值和极小值 ②若0>a ,由1()0'=-=f x a x 得1=x a, 所以1(0,)∈x a.函数()f x 单调递增,1()∈+∞,x a ,函数()f x 单调递减 故函数()f x 有极大值ln 1--a a ,无极小值.(2)设切线2l 的方程为2y k x =,切点为22(,)x y ,则22x y e =,2222x y k e x ==,所以21x =,2y e =,则22x k e e ==. 由题意知,切线1l 的斜率为1211k k e==,1l 的方程为11y k x x e ==.设1l 与曲线()y f x =的切点为11(,)x y ,则1111()'==-k f x a x 111==ye x , 所以1111x y ax e ==-,111a x e=-. 又因为111ln (1)y x a x =--,消去1y 和a 后,整理得1111ln 10x x e-+-= 令11()ln 1m x x x e =-+-,则22111)('xx x x x m -=-=, 所以()m x 在(0,1)上单调递减,在(1,)+∞上单调递增. 又0x 为()m x 的一个零点,所以①若1(0,1)x ∈,因为11()20m e e e =-+->,1(1)0m e =-<,所以11(,1)x e∈, 因为1111ln 10x x e -+-= 所以111=-a x e11ln =-x ,所以12a <<. ②若1(1,)x ∈+∞,因为()m x 在(1,)+∞上单调递增,且()0=m e ,则1=x e , 所以11ln 0=-=a x (舍去).综上可知,12<<a22.解:(1)圆C 的参数方程化为普通方程为 22(2)1+-=x y ,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,(2)圆心到直线的距离d ==, 故直线l 被圆C所截得的弦长为=23. 解:(1)原不等式等价于123≤-⎧⎨-≥⎩x x 或1123-<≤⎧⎨≥⎩x 或123>⎧⎨≥⎩x x 解得:32≤-x 或32≥x , ∴不等式的解集为32⎧≤-⎨⎩x x 或32⎫≥⎬⎭x . (2)()|1||1|2=-++-f x x x |(1)(1)|20≥--+-=x x ,且()22≥--f x a a 在R 上恒成立, 220∴--≤a a ,解得12-≤≤a , ∴实数a 的取值范围是12-≤≤a。
河北省衡水中学2019届高三开学二调考试(数学理)第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,则“且”成立的充要条件是()A. B. C. D.【答案】D【解析】试题分析:“且”是由集合中去掉属于集合的元素剩下的元素所组成,即且=,选D.考点:集合的定义,充要条件.2.曲线在处的切线倾斜角是()A. B. C. D.【答案】D【解析】对函数求导则,则,则倾斜角为.故本题答案选.3.下列命题中的假命题是()A. B.C. D.【答案】C【解析】【分析】利用指数函数的性质判断A,B的正误;对数函数的性质判断D的正误;【详解】当x∈(0,+∞)时,3x>2x成立,A为真;设f(x)=e x-1-x,∵∀x∈(0,+∞),∴f′(x)=e x-1>0,∴函数f(x)在x∈(0,+∞)上是增函数,∴∀x∈(0,+∞),有f(x)>f(0)=0,即e x>1+x,B为真;D.显然为真,故选C.【点睛】本题考查命题的真假判断与应用,理解命题的概念是判断命题真假的关键,突出导数的考察,属于中档题.4.设函数,若,则实数a的值为()A. B. C. 或 D.【答案】B【解析】分析:根据分段函数分成两个方程组求解,最后求两者并集.详解:因为,所以所以选B.点睛:求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.5.设、,已知,,且(,),则的最大值是()A. 1B. 2C.D.【答案】A【解析】,,当且仅当时取等号,故选A.6.已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.【答案】B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选7.定义在R上的偶函数f(x)满足f(x+1)=-f(x),当x∈[0,1]时,f(x)=-2x+1,设函数,则函数f(x)与g(x)的图象交点个数为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据f(x)的周期和对称性得出函数图象,根据图象和对称轴得出交点的个数.【详解】:∵f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),∴f(x)的周期为2.∴f(1-x)=f(x-1)=f(x+1),故f(x)的图象关于直线x=1对称.又的图象关于直线x=1对称,作出f(x)的函数图象如图所示:由图象可知两函数图象在(-1,3)上共有4个交点,故选B.【点睛】本题考查了函数图象变换,属于中档题.8.已知f(x)是定义在上的单调函数,且对任意的x∈都有,则方程的一个根所在的区间是()A. (0,1)B. (1,2)C. (2,3)D. (3,4)【答案】D【解析】【分析】由题意,可知f(x)-x3是定值令t=f(x)-x3,得出f(x)=x3+t,再由f(t)=t3+t=2求出t的值即可得出f(x)的表达式,求出函数的导数,即可求出f(x)-f′(x)=2的解所在的区间选出正确选项【详解】由题意,可知f(x)-x3是定值,不妨令t=f(x)-x3,则f(x)=x3+t又f(t)=t3+t=2,整理得(t-1)(t2+t+2)=0,解得t=1所以有f(x)=x3+1所以f(x)-f′(x)=x3+1-3x2=2,令F(x)=x3-3x2-1可得F(3)=-1<0,F(4)=8>0,即F(x)=x3-3x2-1零点在区间(3,4)内所以f(x)-f′(x)=2的解所在的区间是(3,4)故选:D.【点睛】本题考查导数运算法则,函数的零点,解题的关键是判断出f(x)-x3是定值,本题考查了转化的思想,将方程的根转化为函数的零点来进行研究,降低了解题的难度9.若函数在区间内有两个不同的零点,则实数的取值范围为()A. B. C. D.【答案】D【解析】当时,在定义域上没有零点,故排除两个选项.当时,,令,解得,故函数在上递减,在上递增,而,,所以在区间上至多有一个零点,不符合题意,排除选项.故选D.【点睛】本小题主要考查利用导数求解有关函数零点的问题.由于本题是选择题,故可以采用特殊值的解法来求解.首先观察题目所给的函数,这是一个由指数函数和对数函数组合而成的函数,关键点在于对数函数部分,再观察选项,发现可以利用这两个数进行排除,分别令,利用导数来验证函数在给定区间上是否有两个不同零点来排除选项.10.已知函数,,若对任意的,,都有成立,则实数的取值范围是A. B. C. D.【答案】A【解析】令,则,所以在单调递减,单调递增,所以,则,所以,令,则,,则在区间上,,则单调递减,又,所以在单调递增,单调递减,所以,所以,故选A。
衡水中学2019届高三二诊数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。
全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡。
一、选择题(本大题共12小题,共60.0分)1.已知集合,则()A. B. C. D.【答案】A【解析】【分析】先求出集合B,然后根据集合的交集的运算求出.【详解】解:B={x|-3<x<3},又∴A∩B={1}.故选:A.【点睛】本题考查集合列举法、描述法的定义,交集的运算,属于基础题.2.=()A. B. C. D.【答案】C【解析】【分析】先对分母实数化,然后按照复数代数形式的乘除运算法则化简.【详解】=,故选C.【点睛】本题考查复数代数形式的乘除运算,属于基础题.3.已知,则tan2α=()A. B. C. D. 【答案】B【解析】【分析】直接由正切函数的倍角公式,代入求出答案即可.【详解】由正切函数倍角公式:故选B【点睛】本题主要考查了正切倍角公式,属于基础题.4.是成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】解出关于x的不等式,再结合充分必要条件的定义找出两者之间的关系.【详解】解:lnx>1⇔x>e∵x>3⇒x>e,x>e推不出x>3,∴x>3是lnx>1成立的充分不必要条件故选:A.【点睛】本题考查了充分必要条件的判断,解不等式,属于基础题.5.几何体的三视图如图所示,则这个几何体的直观图可以是【答案】B【解析】试题分析:由正视图排除A,C;由侧视图排除D,故B正确.考点:三视图.【此处有视频,请去附件查看】6.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是()A. B. C. D.【答案】D【解析】不妨设两条直角边为,故斜边,即大正方形的边长为,小正方形边长为,故概率为.7.在△ABC中|+|=|-|,AB=3,AC=4,则在方向上的投影是()A. 4B. 3C.D. 5【答案】C【解析】解:在中,,平方整理可得,在方向上的投影是.点晴:平面向量的数量积的相关计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.8.设,,,则的大小关系是()A. B. C. D.【答案】C【解析】【分析】先确定,然后将利用对数的运算,求得,从而得到的大小关系.【详解】由于,所以为三个数中最大的.由于,而,故.综上所述,故选C.【点睛】本小题主要考查指数式和对数式比较大小.解决的方法是区间分段法,如本题中的“和”作为分段的分段点.在题目给定的三个数中,有一个是大于的,有一个是介于和之间的,还有一个是小于的,由此判断出三个数的大小关系.在比较过程中,还用到了对数和指数函数的性质.9.若函数为常数,)的图象关于直线对称,则函数的图象()A. 关于直线对称B. 关于直线对称C. 关于点对称D. 关于点对称【答案】D【解析】【分析】利用三角函数的对称性求得a的值,可得g(x)的解析式,再代入选项,利用正弦函数的图象的对称性,得出结论.【详解】解:∵函数f(x)=a sin x+cos x(a为常数,x∈R)的图象关于直线x=对称,∴f(0)=f(),即,∴a=,所以函数g(x)=sin x+a cos x=sin x+cos x=sin(x+),当x=﹣时,g(x)=-,不是最值,故g(x)的图象不关于直线x=﹣对称,故A错误,当x=时,g(x)=1,不是最值,故g(x)的图象不关于直线x=对称,故B错误,当x=时,g(x)=≠0,故C错误,当x=时,g(x)=0,故D正确,故选:D.【点睛】本题考查三角恒等变形以及正弦类函数的对称性,是三角函数中综合性比较强的题目,比较全面地考查了三角函数的图象与性质,属于中档题.10.三棱锥中,底面,若,则该三棱锥外接球的表面积为()A. B. C. D.【答案】C【解析】【分析】先利用正弦定理计算出△ABC的外接圆直径2r,再结合三棱锥的特点,得出球心的位置:过△ABC外接圆圆心的垂线与线段SA中垂面的交点.再利用公式可计算出该三棱锥的外接球直径,最后利用球体表面积公式可得出答案.【详解】解:由于AB=BC=AC=3,则△ABC是边长为3的等边三角形,由正弦定理知,△ABC的外接圆直径为,由于SA⊥底面ABC,所以,△ABC外接圆圆心的垂线与线段SA中垂面的交点为该三棱锥的外接球的球心,所以外接球的半径,因此,三棱锥S﹣ABC的外接球的表面积为4πR2=4π×=21π.故选:C.【点睛】本题考查球体表面积的计算,解决本题的关键在于找出球心的位置,考查计算能力,属于中等题.11.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为()A. B. C. D.【答案】A【解析】【分析】由双曲线的定义可得|AF1|=2a,则|AF2|=|AF1|+2a=4a,运用直角三角形的余弦函数定义和余弦定理,可得a,c的方程,再由离心率公式,解方程可得所求值.【详解】解:由双曲线的定义可得|BF1|﹣|BF2|=2a,|AB|=|BF2|,可得|AF1|=2a,则|AF2|=|AF1|+2a=4a,cos∠BF1F2==,化简可得c4﹣10a2c2+13a4=0,由e=可得e4﹣10e2+13=0,解得e2=5+2,可得e=,故选:A.【点睛】本题考查双曲线的定义、方程和性质,考查离心率的求法,注意运用直角三角形中三角函数和余弦定理,考查化简整理的运算能力,属于中档题.12.已知函数,则满足恒成立的的取值个数为()A. 0B. 1C. 2D. 3【答案】B【解析】【分析】由f(x)=(e x﹣a)(x+a2)≥0,对a分类讨论,可知a≤0时不合题意,当a>0时,f(x)的两个因式同正同负,则需在同一x处等0,则转化为﹣a2=lna的根的个数求解.【详解】解:f(x)=(e x﹣a)(x+a2)≥0,当a=0时,f(x)=(e x﹣a)(x+a2)≥0化为e x•x≥0,则x≥0,与x∈R矛盾;当a<0时,e x﹣a>0,则x+a2≥0,得x≥﹣a2,与x∈R矛盾;当a>0时,令f(x)=0,得x=lna或x=﹣a2,要使f(x)≥0恒成立,则﹣a2=lna,作出函数g(a)=﹣a2与h(a)=lna的图象如图:由图可知,a的取值个数为1个.故选:B.【点睛】本题考查恒成立问题,考查数学转化思想和分类讨论的思想,是中档题.二、填空题(本大题共4小题,共20.0分)13.的展开式中x2的系数为__________.(用数字作答)【答案】【解析】试题分析:展开式通项为,令,,所以的.故答案为.考点:二项式定理14.已知实数满足约束条件,则的最大值为_____.【答案】4【解析】【分析】作出不等式组表示的平面区域,由z=2x-y可得y=﹣2x+z,则z表示直线y=2x-z在y轴上截距的相反数,截距越小,z越大,结合图象即可求解z的最大值.【详解】解:作出实数x,y满足约束条件表示的平面区域,由z=2x-y可得y=2x-z,则z表示直线y=2x-z在y轴上截距的相反数,截距越大,z越小,作直线2x-y =0,然后把该直线向可行域平移,当直线经过的交点(2,0)时,z最大,代入z=2x-y=4 故答案为:4.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z的几何意义,属于基础题.15.抛物线上的点到的距离与到其准线距离之和的最小值是_____.【答案】【解析】【分析】先求出抛物线的焦点坐标,根据定义把p到准线的距离转化为p到焦点的距离,再由抛物线的定义可得d=|PF|+|P A|≥|AF|,再求出|AF|的值.【详解】解:∵抛物线y2=4x,∴F(1,0),如图:设p在准线上的射影A″,依抛物线的定义知P到该抛物线准线的距离为|P A″|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|P A|≥|AF|=.故答案为:.【点睛】本题考查抛物线定义的转化,考查数学转化的思想和数形结合的思想,属于基础题.16.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.【答案】【解析】【分析】由已知利用正弦定理可以得到b=2sin B,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sin B,c=2sin(﹣B),∴S△ABC=bc sin A=×2sin B×2sin(﹣B)×=sin B(cos B+sin B)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项和S n满足2a n=2+S n.(1)求证:数列{a n}是等比数列;(2)设b n=log2a2n+1,求数列{b n}的前n项和T n.【答案】(1)见解析;(2)【解析】【分析】(1)运用数列的递推式和等比数列的定义,即可得证;(2)运用等比数列的通项公式和等差数列的求和公式,计算即可得到所求和.【详解】(1)证明:数列{a n}的前n项和S n满足2a n=2+S n,可得2a1=2+S1=2+a1,解得a1=2;n≥2时,2a n-1=2+S n-1,又2a n=2+S n,相减可得2a n-2a n-1=2+S n-2-S n-1=a n,即a n=2a n-1,可得数列{a n}是首项、公比均为2的等比数列;(2)由(1)可得a n=2n,b n=log2a2n+1=log222n+1=2n+1,数列{b n}的前n项和T n=(3+2n+1)n=n2+2n.【点睛】本题考查数列的通项公式的求法,考查数列的递推式,考查等比数列和等差数列的通项公式和求和公式的运用,考查运算能力,属于基础题.18.为了解一款电冰箱的使用时间和市民对这款电冰箱的购买意愿,研究人员对该款电冰箱进行了相应的抽样调查,得到数据的统计图表如下:(1)根据图中的数据,估计该款电冰箱使用时间的中位数;(2)完善表中数据,并据此判断是否有的把握认为“愿意购买该款电冰箱“与“市民年龄”有关;(3)用频率估计概率,若在该电冰箱的生产线上随机抽取3台,记其中使用时间不低于4年的电冰箱的台数为,求的期望.附:【答案】(1);(2)有;(3).【解析】【分析】(1)依题意,该款电冰箱使用时间在区间[0,4)的频率为0.20,在区间[4,8)内的频率为0.36.可得该款电冰箱使用时间的中位数在区间[4,8内,根据条形图计算中位数的方法求解.(2)依题意,完善表中的数据,然后利用独立性检验计算公式可得K2,进而得出结论.(3)使用时间不低于4年的频率.电冰箱的台数为X~B(3,),则可得出期望.【详解】解:(1)依题意,该款电冰箱使用时间在区间[0,4)的频率为0.05×4=0.20,在区间[4,8)内的频率=0.09×4=0.36.∴该款电冰箱使用时间的中位数=0.05×4+0.09×(x﹣4)=0.5,解得x=.(2)依题意,完善表中的数据如下所示:故K2=≈243.06>10.828;故有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关.(3)使用时间不低于4年的频率=1﹣4×0.05=.∴电冰箱的台数为X~B(3,),∴X的期望E(X)=3×=.【点睛】本题考查了二项分布列的计算公式及其期望、独立性检验计算公式及其原理、频率分布直方图的性质及其应用,考查了推理能力与计算能力,属于中档题.19.如图,三棱锥中,.(1)求证:;(2)若,求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)取AC的中点O,连结BO,DO,推导出AC⊥DO,AC⊥BO,从而AC⊥平面BOD,由此能证明BD⊥AC.(2)以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出直线BC与平面ABD所成角的正弦值.【详解】证明:(1)取AC的中点O,连结BO,DO,∵AB=BC=CD=DA,∴△ABC,△ADC均为等腰三角形,∴AC⊥DO,AC⊥BO,∵DO∩BO=O,∴AC⊥平面BOD,∵BD⊂平面BOD,∴BD⊥AC.解:(2)∵CA=AB,AB=BC=CD=DA,∴OD=OB=,∴OD2+OB2==BD2,∴,∵∠DOB是二面角D﹣AC﹣B的平面角,∴平面DAC⊥平面BAC,如图,以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系O﹣xyz,设A(0,﹣1,0),则C(0,1,0),B(,0,0),D(0,0,),∴=(﹣,1,0),=,=(0,1,),设平面ABD的法向量=(x,y,z),则,取x=1,得=(1,﹣,1),设直线BC与平面ABD所成角为θ.则直线BC与平面ABD所成角的正弦值为:sinθ=.【点睛】本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.已知椭圆,点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设是椭圆上的动点,由原点向圆引两条切线,分别交椭圆于点,若直线的斜率存在,并记为,试问的面积是否为定值?若是,求出该值;若不是,请说明理由.【答案】(1);(2).【解析】【分析】(1)根据对称性可知椭圆C经过P3,P4两点,则图象不经过点P1,故P2在椭圆上,代入点坐标可求出椭圆方程,(2)由直线OP:y=k1x,OQ:y=k2x与圆M相切,运用圆心到直线的距离为半径,即可得到k1,k2为方程(x02﹣2)k2﹣2x0y0k+y02﹣2=0的两个不等的实根,运用韦达定理和点M在椭圆上,满足椭圆方程,化简即可得到k1k2=﹣,设P(x1,y1),Q(x2,y2),表示出△OPQ的面积S=|x1x2|•|k1﹣k2|,代值计算即可求出【详解】解:(1)由于P3,P4两点关于原点对称,故由题设可知C经过P3,P4两点,∵,则图象不经过点P1,故P2在椭圆上,∴b=,,解得a2=6,b2=3,故椭圆C的方程为.(2)∵直线OP:y=k1x,OQ:y=k2x,与圆M相切,由直线和圆相切的条件:d=r,可得,即有(x02﹣2)k12﹣2x0y0k1+y02﹣2=0,同理:直线OQ:y=k2x与圆M相切,可得(x02﹣2)k22﹣2x0y0k2+y02﹣2=0,即k1,k2为方程(x02﹣2)k2﹣2x0y0k+y02﹣2=0的两个不等的实根,可得k1k2=,∵点R(x0,y0)在椭圆C上,∴,∴k1k2==,设P(,P(x1,y1),Q(x2,y2),∴|OP|=•|x1|点Q到直线OP的距离d=,∵|x1|=,|x2|=,∴△OPQ的面积S=|x1x2|•|k1﹣k2|=••,=.【点睛】本题考查了椭圆的简单性质、点与圆的位置关系等基础知识与基本技能方法,考查了运算求解能力,转化与化归能力,属于难题.21.已知函数.(1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围;(2)求证:时,.【答案】(1);(2)证明见解析.【解析】【分析】(1)求得f(x)的导数,可得切线斜率和切点,以及切线方程,可令y=0,求得横坐标x,由题意可得x >0,解不等式可得所求范围;(2)求得f′(x)=﹣e x+a.设g(x)=f′(x)=﹣e x+a.判断g(x)递减,由函数零点存在定理可得g(x)存在零点x0,求得f(x)≤f(x0),求得a,结合分析法和不等式的性质、函数的单调性,即可得证.【详解】解:(1)函数f(x)=lnx﹣e x+a的导数为f′(x)=﹣e x+a.曲线f(x)在点(1,f(1))处的切线斜率为1﹣e1+a,切点为(1,﹣e1+a),可得切线方程为y+e1+a=(1﹣e1+a)(x﹣1),可令y=0可得x=,由题意可得>0,可得e1+a<1,解得a<﹣1;(2)证明:f′(x)=﹣e x+a.设g(x)=f′(x)=﹣e x+a.可得g′(x)=﹣(+e x+a),当x>0时,g′(x)<0,g(x)递减;由a>1﹣,e x+a>e x.若e x>,g(x)<﹣e x<0,当0<x<1时,e x+a<e1+a.若e1+a<,即x<e﹣1﹣a,故当0<x<e﹣1﹣a时,g(x)>0,即g(x)=f′(x)有零点x0,当0<x<x0时,f′(x)>0,f(x)递增;当x>x0时,f′(x)<0,f(x)递减,可得f(x)≤f(x0),又f(x0)=lnx0﹣e x0+a,又e x0+a=,可得f(x0)=lnx0﹣,在x0>0递增,又a=ln﹣x0=﹣(lnx0+x0),a>1﹣⇔﹣(lnx0+x0)>1﹣=﹣(ln+),所以lnx0+x0<ln+,由于lnx0+x0递增,可得0<x0<,故f(x)≤f(x0)<f()=﹣1﹣e.【点睛】本题考查导数的运用:求切线方程和单调性、极值和最值,考查分类讨论和构造函数法,考查函数零点存在定理的运用,考查变形能力和推理能力,属于难题.22.在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.【答案】(1);(2).【解析】【分析】(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【点睛】本题考查了简单曲线的极坐标方程,属中档题.23.已知函数.(1)若,解不等式;(2)对任意满足的正实数,若总存在实数,使得成立,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先利用1的代换求最小值,再根据绝对值三角不等式求的最小值,最后解不等式可得实数的取值范围.试题解析:(1)当时,由得,则;当时,恒成立;当时,由得,则.综上,不等式的解集为(2)由题意,由绝对值不等式得,当且仅当时取等号,故的最小值为.由题意得,解得.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
河北省衡水中学2019届高三开学二调考试数学理★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,则“且”成立的充要条件是()A. B. C. D.【答案】D【解析】试题分析:“且”是由集合中去掉属于集合的元素剩下的元素所组成,即且=,选D.考点:集合的定义,充要条件.2.曲线在处的切线倾斜角是()A. B. C. D.【答案】D【解析】对函数求导则,则,则倾斜角为.故本题答案选.3.下列命题中的假命题是()A. B.C. D.【答案】C【解析】【分析】利用指数函数的性质判断A,B的正误;对数函数的性质判断D的正误;【详解】当x∈(0,+∞)时,3x>2x成立,A为真;设f(x)=e x-1-x,∵∀x∈(0,+∞),∴f′(x)=e x-1>0,∴函数f(x)在x∈(0,+∞)上是增函数,∴∀x∈(0,+∞),有f(x)>f(0)=0,即e x>1+x,B为真;D.显然为真,故选C.【点睛】本题考查命题的真假判断与应用,理解命题的概念是判断命题真假的关键,突出导数的考察,属于中档题.4.设函数,若,则实数a的值为()A. B. C. 或 D.【答案】B【解析】分析:根据分段函数分成两个方程组求解,最后求两者并集.详解:因为,所以所以选B.点睛:求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.5.设、,已知,,且(,),则的最大值是()A. 1B. 2C.D.【答案】A【解析】,,当且仅当时取等号,故选A.6.已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.【答案】B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选7.定义在R上的偶函数f(x)满足f(x+1)=-f(x),当x∈[0,1]时,f(x)=-2x+1,设函数,则函数f(x)与g(x)的图象交点个数为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据f(x)的周期和对称性得出函数图象,根据图象和对称轴得出交点的个数.【详解】:∵f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),∴f(x)的周期为2.∴f(1-x)=f(x-1)=f(x+1),故f(x)的图象关于直线x=1对称.又的图象关于直线x=1对称,作出f(x)的函数图象如图所示:由图象可知两函数图象在(-1,3)上共有4个交点,故选B.【点睛】本题考查了函数图象变换,属于中档题.8.已知f(x)是定义在上的单调函数,且对任意的x∈都有,则方程的一个根所在的区间是()A. (0,1)B. (1,2)C. (2,3)D. (3,4)【答案】D【解析】【分析】由题意,可知f(x)-x3是定值令t=f(x)-x3,得出f(x)=x3+t,再由f(t)=t3+t=2求出t的值即可得出f(x)的表达式,求出函数的导数,即可求出f(x)-f′(x)=2的解所在的区间选出正确选项【详解】由题意,可知f(x)-x3是定值,不妨令t=f(x)-x3,则f(x)=x3+t又f(t)=t3+t=2,整理得(t-1)(t2+t+2)=0,解得t=1所以有f(x)=x3+1所以f(x)-f′(x)=x3+1-3x2=2,令F(x)=x3-3x2-1可得F(3)=-1<0,F(4)=8>0,即F(x)=x3-3x2-1零点在区间(3,4)内所以f(x)-f′(x)=2的解所在的区间是(3,4)故选:D.【点睛】本题考查导数运算法则,函数的零点,解题的关键是判断出f(x)-x3是定值,本题考查了转化的思想,将方程的根转化为函数的零点来进行研究,降低了解题的难度9.若函数在区间内有两个不同的零点,则实数的取值范围为()A. B. C. D.【答案】D【解析】当时,在定义域上没有零点,故排除两个选项.当时,,令,解得,故函数在上递减,在上递增,而,,所以在区间上至多有一个零点,不符合题意,排除选项.故选D.【点睛】本小题主要考查利用导数求解有关函数零点的问题.由于本题是选择题,故可以采用特殊值的解法来求解.首先观察题目所给的函数,这是一个由指数函数和对数函数组合而成的函数,关键点在于对数函数部分,再观察选项,发现可以利用这两个数进行排除,分别令,利用导数来验证函数在给定区间上是否有两个不同零点来排除选项.10.已知函数,,若对任意的,,都有成立,则实数的取值范围是A. B. C. D.【答案】A【解析】令,则,所以在单调递减,单调递增,所以,则,所以,令,则,,则在区间上,,则单调递减,又,所以在单调递增,单调递减,所以,所以,故选A。
2019届河北省衡水中学高三小二调试题 数学理第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|1},{|1},A x x B x x =>-=≥则“x ∈A 且x B∉”成立的充要条件是( )A.-1<x ≤1B.x ≤1C.x>-1D.-1<x<1 2.曲线3()23f x x =-+在x=1处的切线倾斜角是( ) A.16π B.13π C.56π D.23π 3.下列命题中的假命题是( )A.0,32x x x ∀>>B.(0,),1x x e x ∀∈+∞>+C.000(0,),sin x x x ∃∈+∞<D.00,lg 0x R x ∃∈<4.设函数21223,0,()1log ,0,x x f x x x -⎧+≤=⎨->⎩若f(a)=4,则实数a 的值为( ) A.12 B.18 C.12或18 D.1165.设m,n ∈R ,已知log 2,log 2a b m n ==,且1,1)a b a b +=>>,则m nmn+的最大值是( )A.1B.2C.2D.126.已知f(x)是定义在[-2b,1+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≤f(2x)的解集为( ) A.2[1,]3- B.1[1,]3- C.[-1,1] D.1[,1]37.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),当x ∈[0,1]时,f(x)=-2x+1,设函数|1|1()()(13)2x g x x -=-<<,则函数f(x)与g(x)的图象交点个数为( )A.3B.4C.5D.68.已知f(x)是定义在(0,)+∞上的单调函数,且对任意的x ∈(0,)+∞都有3(())2f f x x -=,则方程()()2f x f x '-=的一个根所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.若函数1()2(0)x x f x e x a a -=+->在区间(0,2)内有两个不同的零点,则实数a 的取值范围为( )A.22)e B.(0,2] C.22(2,2]e + D.3424(2,2)e +10.已知函数32()ln ,()5,a f x x x g x x x x =+=--若对任意的121,[,2]2x x ∈,都有12()()2f x g x -≥成立,则实数a 的取值范围是( )A.[1,)+∞B.(0,)+∞C.(,0)-∞D.(,1]-∞-11.2()f x x bx c =++,若方程f(x)=x 无实根,则方程f(f(x))=x( ) A.有四个相异实根 B.有两个相异实根 C.有一个实根 D.无实数根12.已知函数11()x x f x e e --=+,则满足1(1)f x e e --<+的x 的取值范围是( ) A.1<x<3 B.0<x<2 C.0<x<e D.1<x<e第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知命题2:,1p x R x m ∀∈+>;命题:()(3)x q f x m =-是增函数.若“p q ∧”为假命题且“p q ∨”为真命题,则实数m 的取值范围为 .14.12)x dx =⎰.15. 若直角坐标平面内不同两点P,Q 满足条件:①P,Q 都在函数y=f(x)的图象上;②P,Q 关于原点对称,则称(P,Q )是函数y=f(x)的一个“伙伴点组”(点组(P,Q )与(Q,P)可看成同一个“伙伴点组”).已知2(1),0,()1,0k x x f x x x +<⎧=⎨+≥⎩有两个“伙伴点组”,则实数k 的取值范围是 .16.已知k>0,b>0,且kx+b ≥ln(x+2)对任意的x>-2恒成立,则bk的最小值为 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分) 已知函数(12)(4)()3x a x f x x-+=是奇函数.(1)求实数a 的值; (2)若函数f(x)在区间11[,](1)m n m n>>上的值域为[n-2,m-2],求m,n 的值.已知函数3()23f x x x =-.(1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t 的取值范围.19.(本小题满分12分) 已知函数1()ln f x a x x=+,其中a ∈R. (1)若函数f(x)在x=1处取得极值,求实数a 的值;(2)在(1)的结论下,若关于x 的不等式2*2(2)2(1)()32x t x t f x t N x x +++++>∈++,当x ≥1时恒成立,求t 的值.20.(本小题满分12分)已知函数21()2(1)ln ,()2f x a x axg x x x =+-=-. (1)若函数f(x)在定义域内为单调函数,求实数a 的取值范围;(2)证明:若-1<a<7,则对于任意1212,(1,),x x x x ∈+∞≠,有1212()()1()()f x f xg x g x ->--.21.(本小题满分12分)已知函数2()2ln ()f x x x mx m R =+-∈.(1)若f(x)在其定义域内单调递增,求实数m 的取值范围; (2)若1752m <<,且f(x)有两个极值点1212,()x x x x <,求12()()f x f x -的取值范围.设函数2()(32)x x f x x a e e =+-+,其中a ∈R. (1)讨论函数f(x)极值点的个数,并说明理由; (2)若0,()0x f x ∀>≥成立,求a 的取值范围.高三小二调(理数) 参考答案及解析一、选题题1-5 DDCBA 6-10 BBDDA 11-12 DA 二、填空题 13.[1,2) 14. 14π+ 15.(2)++∞ 16.1三、解答题17. 解:(1)函数f(x)的定义域为{|0,}x x x R ≠∈,(12)(4)842()3333x a x a x a f x x x -+-==-+,所以4(2)()()03a f x f x --+==恒成立,所以a=2.(4分) (2)由题(1)得28()33x f x x =-, 所以228()033f x x '=--<,所以f(x)在区间(0,)+∞上为单调减函数.因为11[,]x m n ∈,所以128()2,33128()2,33f m m m mf n n nn ⎧=-=-⎪⎪⎨⎪=-=-⎪⎩所以m ,n 是方程2680x x -+=的两根, 又因为m>n>1,所以m=4且n=2.(10分)18.解:(1)由()323f x x x =-得()2'63f x x =-.令()'0f x =,得x =或x =.因为()210f -=-,f ⎛= ⎝⎭f =⎝⎭()11f =-,所以() f x 在区间[]2,1-上的最大值为2f ⎛⎫-= ⎪⎪⎝⎭(4分) (2)设过点()1,P t 的直线与曲线()y f x =相切于点()00,x y ,则300023y x x =-,且切线斜率为2063k x =-, 所以切线方程为()()200063y y x x x -=--,因此()()2000631t y x x -=--.整理得32004630x x t -++=.设()32463g x x x t =-++,则“过点()1,P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”.(7分)()()2'1212121g x x x x x =-=-. ()g x 与()'g x 的变化情况如下:所以, ()03g t =+是()g x 的极大值, ()11g t =+是()g x 的极小值. 当()003g t =+≤,即3t ≤-时,此时()g x 在区间(],1-∞和()1,+∞上分别至多有1个零点, 所以()g x 至多有2个零点. 当()110g t =+≥,即1t ≥-时,此时()g x 在区间(),0-∞和[)0,+∞上分别至多有1个零点, 所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时, 因为()170g t -=-<,()2110g t =+>,所以()g x 分别在区间[)1,0-,[)0,1和[)1,2上恰有1个零点. 由于()g x 在区间(),0-∞和()1,+∞上单调,所以()g x 分别在区间(),0-∞和[)1,+∞上恰有1个零点.综上可知,当过点()1,P t 存在3条直线与曲线()y f x =相切时, t 的取值范围是(3,1)--.(12分) 19.解:(1)2211()a ax f x x x x-'=-+=, 当x=1时,()0f x '=,解得a=1. 经验证a=1满足条件.(4分)(2)当a=1时,22(2)21(1)3221x t x t x t f x x x x x ++++++>=+++++,整理得t<(x+2)ln(x+1)-x. 令h(x)=(x+2)ln(x+1)-x , 则21()ln(1)1ln(1)0(1),11x h x x x x x x +'=++-=++>≥++ 所以min ()3ln 21h x =-,即t<3ln2-1∈(0,2).又因为,t N *∈ 所以t=1.(12分)20.解:(1)函数()()2+1ln f x a x ax =-的定义域为(0,)+∞,()()2+12+1()a ax a f x a x x-+'=-=,令()()2+1m x ax a =-+, 因为函数()y f x =在定义域内为单调函数,说明()0f x '≥或()0f x '≤恒成立, 即()()2+1m x ax a =-+的符号大于等于零或小于等于零恒成立,当0a =时,()20m x =>,()0f x '>,()y f x =在定义域内为单调增函数; 当0a >时,()()2+1m x ax a =-+为减函数,只需()(0)2+10m a =≤,即1a ≤-,不符合要求; 当0a <时,()()2+1m x ax a =-+为增函数,只需()(0)2+10m a =≥即可,即1a ≥-,解得10a -≤<, 此时()y f x =在定义域内为单调增函数. 综上所述[1,0]a ∈-.(5分) (2)22111()(1)222g x x x x =-=--在区间(1,)+∞单调递增, 不妨设121x x >>,则12()()g x g x >,则1212()()1()()f x f x g x g x ->--等价于1212()()(()())f x f xg x g x ->--,等价于1122()()()+()f x g x f x g x +>,(8分)设()21()()+()2+1ln (1)2n x f x g x x a x a x ==+-+,法一:则22(1)()(1)(1)2a n x x a a x +'=+-+≥+=-, 由于17a -<<,故()0n x '>,即()n x 在(1,)+∞上单调递增,从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证!(12分) 法二:22(1)(1)2(1)()(1)=a x a x a n x x a x x +-+++'=+-+,令2()(1)2(1)p x x a x a =-+++,22(1)8(1)67(7)(1)0a a a a a a ∆=+-+=--=-+<,即2()(1)2(1)0p x x a x a =-+++>在17a -<<时恒成立, 说明()0n x '>,即()n x 在(1,)+∞上单调递增,从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证!(12分) 21. 解:(1)()f x 的定义域为()0,+∞, ()f x 在定义域内单调递增,()2'20f x x m x =+-≥,即22m x x≤+在()0,+∞上恒成立, 由224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞. (4分) (2)由(1)知()2222'2x mx f x x m x x -+=+-=,当1752m <<时()f x 有两个极值点,此时1212120,1,012mx x x x x x +=>=∴<<<.因为1111725,2m x x ⎛⎫⎛⎫=+∈⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211,x x =于是()()()()22121112222ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+,令()2214ln h x x x x =-+,则()()22321'0x h x x --=<,所以()h x 在11,42⎛⎫⎪⎝⎭上单调递减, ()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即()()()1211141ln2161ln24216f x f x ⎛⎫--<-<--⎪⎝⎭,故()()12f x f x -的取值范围为152554ln2,8ln2416⎛⎫--⎪⎝⎭.(12分)22. 解:(1)2()231x x f x ae ae '=-+,设0xe t =>,则2()()231f xg t at at '==-+, 当a=0时,()10f x '=>,函数f(x)在R 上为增函数,无极值点. 当a>0时,298a a ∆=-, 若809a <≤时,0∆≤, ()0f x '≥,函数f(x)在R 上为增函数,无极值点. 若89a >时,0∆>,设2()231g t at at =-+的两个不相等的正实数根为12,t t ,且12t t <, 则212()2312()()x x x xf x ae ae a e t e t '=-+=--,所以当1(,ln ),()0x t f x '∈-∞>,f(x)单调递增;当12(ln ,ln ),()0x t t f x '∈<,f(x)单调递减;当2(ln ,),()0x t f x '∈+∞>,f(x)单调递增.因此此时函数f(x)有两个极值点. 同理当a<0时,2()231g t at at =-+的两个不相等的实数根12,t t ,且120t t <<,当2(ln ,),()0x t f x '∈+∞<,f(x)单调递减,当2(,ln ),()0x t f x '∈-∞>,f(x)单调递增, 所以函数f(x)只有一个极值点. 综上可知,当809a ≤≤时f (x)无极值点;当a<0时f(x)有一个极值点;当89a >时,f(x)有两个极值点.(6分)(2)对于0,1x x e t ∀>=>, 由(1)知当809a ≤≤时函数f(x)在R 上为增函数,由f(0)=0,所以f(x)≥0成立. 若89a >,设2()231g t at at =-+的两个不相等的正实数根为12,t t , 12t t <且1212131,22t t t t a =<+=,∴1234t t <<.则若0,()0x f x ∀>≥成立,则要求21t <, 即g(1)=2a-3a+1≥0,解得a ≤1.此时f(x)在(0,)+∞为增函数,0,()0x f x ∀>≥成立. 若当a<0时,222()(32)(32)(31)2x x x x x x x f x x a e e e a e e ae a e a =+-+≤+-+=--+,又21,()(31)20x t e t at a t a ϕ=>=--+≥显然不恒成立. 综上所述,a 的取值范围是0≤a ≤1.(12分)。