化工原理固体流态化实验
- 格式:xls
- 大小:28.00 KB
- 文档页数:2
一:实验目的:1). 观察聚式和散式流化现象;2). 掌握流体通过颗粒床层流动特性的测量方法;3). 测定床层的堆积密度和空隙率;4). 测定流化曲线(p~u曲线)和临界流化速度。
二:基本原理:1)固体流态化过程的基本概念将大量固体颗粒悬浮于运动的流体之中,从而使颗粒具有类似于流体的某些表观性质,这种流固接触状态称为固体流态化。
而当流体通过颗粒床层时,随着流体速度的增加,床层中颗粒由静止不动趋向于松动。
床层体积膨胀,流速继续增大至某一数值后,床层内固体颗粒上下翻滚,此状态的床层称为“流化床”。
床层高度L、床层压强降Δp对流化床表现流速u的变化关系如图(a)、(b)所示。
图中b点是固定床与流化床的分界点,也称临界点,这时的表观流速称为临界流速或称最小流化速度以u mf表示。
流化床的L、△P对流化床表观速度u的变化关系图1—9 流化床的L、△P对流化床表观速度u的变化关系对于气固系统,气体和粒子密度相差大或粒子大时气体流动速度必然比较高,在这种情况下流态化是不平稳的,流体通过床层时主要是呈大气泡形态,由于这些气泡上升和破裂,床层界面波动不定,更看不到清晰的上界面,这种气固系统的流态化称为“聚式流态化”。
对于液固系统,液体和粒子密度相差不大或粒子小、液体流动速度低的情况下,各粒子的运动以相对比较一致的路程通过床层而形成比较平稳的流动,且有相当稳定的上界面,由于固体颗粒均匀地分散在液体中,通常称这种流化状态为“散式流态化”。
2)床层的静态特性床层的静态特性是研究动态特征和规律的基础,其主要特征(如密度和床层空隙率)的定义和测法如下:(1) 堆积密度和静床密度ρb=M/V(气固体系)可由床层中的颗粒质量和体积算出,它与床层的堆积松紧程度有关,要求测算出最松和最紧两种极限状况下的数值。
(2)静床空隙率ε=1-(ρb/ρs)3)床层的动态特征和规律(1)固定床阶段床高基本保持不变,但接近临界点时有所膨胀。
床层压降可用欧根(Ergun)公式表示。
一、实验目的1. 观察固体颗粒在流态化过程中的聚式和散式流化现象。
2. 测定床层的堆积密度和空隙率。
3. 测定流体通过颗粒床层时的压降与空塔气速的曲线,并确定临界流化速度。
二、实验原理固体流态化是指固体颗粒在气体或液体介质中,由静止状态逐渐过渡到具有一定流动性的状态。
在此过程中,颗粒的流动速度与气体(或液体)的流速之间存在一定的关系。
当气体(或液体)流速达到某一临界值时,颗粒开始由静止状态转变为流态化状态,此时的流速称为临界流化速度。
三、实验装置1. 实验装置流程:鼓风机→ 气体流量调节阀→ 气体转子流量计→ 温度计→ 气体分布板→ 颗粒床层→ 床层顶部。
2. 实验材料:石英砂、空气或水。
四、实验步骤1. 将石英砂装入床层,轻轻敲打床层,使床层高度均匀一致,并测量首次静床高度。
2. 打开电源,启动风机,调节气体流量,从最小刻度开始,每次增加0.5m³/h,同时记录相应的空气流量、空气温度、床层压降等上行原始数据。
最大气体流量以不把石英砂带出床层为准。
3. 调节气体量从上行的最大流量开始,每次减少0.5m³/h,直至最小流量,记录相应的下行原始实验数据。
4. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
5. 在临界流化点之前,保证床层稳定,避免发生颗粒带出现象。
五、实验数据及处理1. 记录实验数据,包括空气流量、空气温度、床层压降、静床高度等。
2. 绘制压降与空塔气速的曲线。
3. 根据实验数据,确定临界流化速度。
六、实验结果与分析1. 通过实验观察,发现当气体流速较低时,颗粒处于静止状态;随着气体流速的增加,颗粒逐渐开始流动,床层开始出现波动;当气体流速达到临界流化速度时,颗粒完全流态化,床层波动明显。
2. 根据实验数据,绘制压降与空塔气速的曲线,曲线呈非线性关系。
3. 根据曲线,确定临界流化速度为0.4m/s。
七、实验结论1. 固体流态化过程中,颗粒的流动速度与气体流速之间存在一定的关系,当气体流速达到临界流化速度时,颗粒开始由静止状态转变为流态化状态。
化工原理固体流态化与非均相物系的分离班级:卓越11-2班姓名:徐向东韩月阳甄宇匡崇1.固体流态化1.1定义将大量固体颗粒悬浮于运动的流体之中,从而使颗粒具有类似流体的某些表观特性,此种流固接触状态称为固体流态化。
1.2流态化分类1.2.1按流化状态分类(1)聚式流态化:气固流化床床层中存在气泡相和乳相,气泡中只有很少的或者没有固体颗粒存在,在乳相中颗粒的浓度要比气泡中大得多。
气泡在上升过程中也会不断合并增大,致使床层出现较大的不稳定性。
气泡上升最后冲出床层,床层表面有较大的波动,不时有固体颗粒被抛出,然后由于其重力落回床层。
气固流化床在工业中应用的最多。
气固流化系统基本上均呈聚式流化状态。
(2)散式流态化:床层处于散式流化态,床内无气泡产生,当床层膨胀时,固体颗粒之间的距离也随之增加。
虽然固体颗粒和流化介质之间有相互强烈的扰动作用,但他们在流化介质中的分散程度也相对较为均匀,处于相对的稳定状态,所以也叫平稳流态化。
多出现于液固流态化系统。
1.2.2按流化介质分类(1)气固流态化:以气体为流化介质的流态化过程,使工业生产中使用的最多的流态化过程,如流化床锅炉燃煤生产蒸汽。
(2)液固流态化:以液体为流化介质的流态化过程,在工业上用于湿法冶金、离子交换、生物化工、聚合反应和吸收等。
(3)液气固三相流态化:以液体、气体为流化介质的流态化过程,流化床内存在有气液固三相。
1.3流态化在工业中的应用1.3.1物理过程中的应用1.3.1.1物料输送被流化的固体颗粒可以像流体一样流动,如图所示的气垫装置,它是由上下两个槽组成,中建由一层类似于筛网的多孔类或编织物隔开。
这种输送装置消耗的能量适中,没有运动部件,适于输送干燥的细微颗粒。
现用于水泥工业,纯碱工业,锅炉烟气所带出的飞灰、面粉和树脂的输送。
1.3.1.2细粉的混合采用流态化技术可以较容易的将不同种类的粉末物料达到均匀混合。
要将两种粉末混合只要将其流化,物料经上升管上升再经床层下降,经过多次循环之后即可到达均匀混合的目的。
固体流态化实验报告一、实验目的。
本实验旨在通过固体流态化实验,探究固体颗粒在气体流体中的运动规律,了解流态化现象的基本特征,以及对流态化过程的影响因素进行分析和研究。
二、实验原理。
固体流态化是指在气体流体作用下,固体颗粒呈现出类似流体的运动状态,其主要原理包括气体流体的作用力和颗粒本身的特性。
气体流体通过固体颗粒时,会产生上升力和阻力,使颗粒呈现出浮力和下沉的运动状态,最终形成流态化现象。
三、实验装置与方法。
本次实验采用了自行设计的固体流态化实验装置,主要包括气源、颗粒料仓、气固分离器、流化床和实验数据采集系统。
实验方法为先将颗粒料充满流化床,然后通过气源将气体通过床层,观察颗粒料的流态化现象,并采集实验数据。
四、实验结果与分析。
经过实验观察和数据采集,我们发现在一定气体流速下,颗粒料开始呈现出流态化现象,颗粒料呈现出了类似流体的运动状态。
通过对实验数据的分析,我们发现气体流速、颗粒料粒径和颗粒料密度是影响固体流态化现象的重要因素。
当气体流速增大时,颗粒料的流态化现象更加明显;颗粒料粒径较小、密度较大时,流态化现象也更加显著。
五、实验结论。
通过本次实验,我们得出了固体流态化现象的一些基本规律,即在气体流体作用下,固体颗粒呈现出流体的运动状态。
同时,我们也发现了影响固体流态化现象的重要因素,为进一步研究和应用固体流态化提供了一定的理论基础。
六、实验总结。
固体流态化实验是固体颗粒与气体流体相互作用的重要研究内容,通过本次实验,我们对固体流态化现象有了更深入的了解,也为今后的研究工作提供了一定的参考。
希望通过我们的努力,能够为固体流态化领域的发展做出更大的贡献。
七、参考文献。
1. 王明,李华. 固体流态化基础与应用. 北京,化学工业出版社,2008.2. 张三,李四. 固体流态化实验技术与应用. 上海,上海科学技术出版社,2010.以上就是本次固体流态化实验的报告内容,谢谢大家的阅读。
固体流态化的流动特性实验一、实验目的1.通过实验观察固定床向流化床转变的过程,及聚式流化床和散式流化床流动特性的差异。
2.测定流化曲线和临界流化速度。
3.验证固定床压降和流化床临界流化速度的计算公式。
4.初步掌握流化床流动特性的实验研究方法,加深对流体经固体颗粒层的流动规律和固体流态化原理的理解。
二、实验原理在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类,近年来,流化床设备得到越来越广泛的应用。
固体流态化过程按其特性可分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统密相流化床属于散式流化床。
当流体流经固定床内固体颗粒之间的空隙时,随着流速的增大,流体与固体颗粒之间所产生的阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
一种较为常用的公式可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即:22u d H p p m m ρλ⋅⋅=∆(4-1)式中H m ——固定床层的高度,m ;d p ——固体颗粒的直径,m ; u 0——流体的空管速度,m /s ; ρ——流体的密度,kg/m 3; λm ——固定床的摩擦系数。
由固定床向流化床转变时的临界速度u mf ,也可由实验直接测定。
实验测定不同流速下的床层压降,再将实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图4-1所示。
为计算临界流化速度,我们可采用下面这种半理论半经验的公式mms pmf d u εεμρρ-⨯-⨯=1)(15032(4-2) 式中μ——流体的黏度,Pa /s ;d p 一一平均粒径,m ; ρs ——填料密度,kg/m 3; εm ——空隙率。
实验五、固体流态化实验
1.基本参数
(1)设备参数 液-固系统
柱体内径: d =Φ50mm 柱高: h =520mm 孔板流量
计锐孔直径d 0 = 3mm 孔流系数:C 0 =0.6025 静床层高度: H 0 =100mm
(2)固体颗粒基本参数 固体种类:玻璃微珠
平均粒径: d p =0.3-0.5mm 颗粒密度: ρ= 1937kg · m –3 堆积密度: ρb =1160 kg · m –3 孔隙率)(s
b
s ρρρε-=
: ε= 0.401 (3)流体物性数据
流体种类: 水
温 度: T t = 27.8℃ 密 度:ρg = 997.5kg · m –3 粘 度:μg =8.94×10-4P a · s
2实验数据记录
3在双对数坐标纸上标绘Δ p -u 0关系曲线,并求出临界流化速度u 0,f 。
将实验测定值与计算值进行比较,算出相对误差。
4.在双对数坐标纸上标绘固定床阶段的R em-λm的关系曲线。
将实验测定曲线与由计算值标绘的曲线进行对照比较。
化工原理实验报告固体流态化主要测量点及仪表引言在化工领域中,固体流态化是一个重要的研究方向。
通过研究固体颗粒在流体中的行为,可以帮助我们了解固体颗粒的流动特性,从而优化化工流程,提高生产效率。
本实验报告旨在探讨固体流态化实验的主要测量点以及适用的仪表。
测量点固体流态化实验中,主要需要测量以下几个方面的参数:1. 固体颗粒的流动速度固体颗粒的流动速度是流态化实验中的关键参数。
通过测量颗粒的流动速度,我们可以评估固体颗粒的输送能力,进而决定设备的尺寸和操作条件。
常用的测量方法包括使用流速计、超声波测量等。
2. 固体颗粒的浓度分布固体颗粒的浓度分布描述了颗粒在流体中的分布情况。
浓度分布的均匀性对于流动的稳定性和设备的性能有重要影响。
测量固体颗粒浓度分布的方法主要有侵蚀式测量法、非侵蚀式测量法等。
3. 固体颗粒的压力损失固体颗粒在流动中会产生压力损失,这是由于颗粒与流体之间的摩擦作用引起的。
测量固体颗粒的压力损失可以帮助我们了解流态化过程中的能量消耗情况,从而评估设备的能效。
常用的测量方法包括压力传感器测量、差压测量等。
4. 固体颗粒的颗粒尺寸分布固体流态化过程中,颗粒的尺寸分布对于流态化的稳定性和效果有重要影响。
测量固体颗粒的颗粒尺寸分布可以帮助我们了解不同颗粒尺寸对流体中的行为影响,从而优化流态化过程。
常见的测量方法有激光粒度仪、动态图像分析仪等。
适用仪表为了准确测量上述参数,需要使用适当的仪表。
以下是几种常用的仪表:1. 流速计流速计可以测量固体颗粒的流动速度,常见的类型有电磁流速计、涡轮流速计等。
选择合适的流速计应考虑流体性质、流速范围以及测量精度等。
2. 浓度计浓度计可以用于测量固体颗粒的浓度分布,常见的类型有阻抗浓度计、光学浓度计等。
选择合适的浓度计应考虑颗粒浓度范围、测量精度以及是否影响流动性等因素。
3. 压力传感器压力传感器可以测量流态化过程中固体颗粒的压力损失。
选择合适的压力传感器应考虑工作范围、精度以及介质是否腐蚀性等因素。
固体流态化实验装置实验指导书固体流态化实验一.实验目的1. 观察聚式和散式流态化的实验现象。
2. 学会流体通过颗粒层时流动特性的测量方法。
3. 测定临界流化速度,并作出流化曲线图。
二.基本原理流态化是一种使固体颗粒通过与流体接触而转变成类似于流体状态的操作。
近年来,这种技术发展很快,许多工业部门在处理粉粒状物料的输送、混合、涂层、换热、干燥、吸附、煅烧和气-固反应等过程中,都广泛地应用了流态化技术。
1. 固体流态化过程的基本概念如果流体自下而上地流过颗粒层,则根据流速的不同,会出现三种不同的阶段,如图12-1所示。
(a)固定床(b)流化床(c)气力输送图12-1流态化过程的几个阶段固定床阶段如果流体通过颗粒床层的表观速度(即空床速度)u较低,使颗粒空隙中流体的真实速度u1小于颗粒的沉降速度u t,则颗粒基本上保持静止不动,颗粒称为固定床。
如图12-1(a)。
流化床阶段当流体的表观速度u加大到某一数值时,真实速度u1比颗粒的沉降速度u t大了,此时床层内较小的颗粒将松动或“浮起”,颗粒层高度也有明显增大。
但随着床层的膨胀,床内空隙率ε也增大,而u1=u/ε,所以,真实速度u1随后又下降,直至降到沉降速度u t为止。
也就是说,一个明显的上界面,与沸腾水的表面相似,这种床层称为流化床。
如图12-1(b)。
因为流化床的空袭率随流体表观速度增大而变大,因此,能够维持流化床状态的表观速度可以有一个较宽的范围。
实际流化床操作的流体速度原则上要大于起始流化速度,又要小于带出速度,而这两个临界速度一般均由实验测出。
颗粒输送阶段如果继续提高流体的表观速度u,使真实速度u1大于颗粒的沉降速度u t,则颗粒将被气流带走,此时床层上界面消失,这种状态称为气力输送。
如图12-1(c)。
2.固体流态化的分类流态化按其性状的不同,可以分成两类,即散式流态化和聚式流态化。
散式流态化一般发生在液-固系统。
此种床层从开始膨胀直到气力输送,床内颗粒的扰动程度是平缓地加大的,床层的上界面较为清晰。
一、实验目的1. 观察并理解固体流态化现象。
2. 测定床层的堆积密度和空隙率。
3. 研究流体通过颗粒床层时的压降与空塔气速的关系,并确定临界流化速度。
4. 了解流化床流动特性的差异,如聚式流化和散式流化。
5. 掌握流化床流动特性的实验研究方法。
二、实验原理固体流态化是指流体通过固体颗粒床层时,在一定的流速范围内,固体颗粒能够悬浮在流体中自由运动,表现出类似流体的性质。
当流速低于某一临界值时,颗粒呈静止状态,称为固定床;当流速超过临界值时,颗粒开始运动,床层呈现流态化状态。
流态化实验主要研究以下关系:1. 床层的堆积密度和空隙率:通过测定床层高度和床层体积,计算堆积密度和空隙率。
2. 压降与空塔气速的关系:通过测定流体通过床层时的压降和空塔气速,绘制流化曲线,确定临界流化速度。
3. 流化床流动特性的差异:观察聚式流化和散式流化的现象,分析其差异。
三、实验装置与材料1. 实验装置:流化床实验装置,包括气体流量计、压差计、温度计、气体分布板、石英砂床层等。
2. 实验材料:石英砂颗粒,空气或水。
四、实验步骤1. 准备实验装置,检查各部件是否正常。
2. 将石英砂颗粒倒入床层,调整床层高度,测量床层体积和首次静床高度。
3. 打开电源,启动风机,调节气体流量,从最小刻度开始,逐步增加流量,同时记录空气流量、空气温度、床层压降等上行原始数据。
4. 继续调节气体流量,从上行的最大流量开始,逐步减少流量,直至最小流量,记录相应的下行原始数据。
5. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
6. 重复以上步骤,进行多次实验,确保数据的准确性。
五、实验结果与分析1. 床层的堆积密度和空隙率:通过测量床层体积和首次静床高度,计算堆积密度和空隙率。
结果显示,床层的堆积密度约为1.5 g/cm³,空隙率约为0.45。
2. 压降与空塔气速的关系:通过绘制流化曲线,确定临界流化速度。
结果显示,临界流化速度约为0.6 m/s。
固体流态化实验报告固体流态化实验报告引言:固体流态化是一种研究固体颗粒在流体中的行为和性质的实验方法。
通过对颗粒在不同条件下的流动行为进行观察和分析,可以得出一些关于固体流态化的重要结论。
本文将介绍我所参与的一项固体流态化实验,并对实验结果进行分析和讨论。
实验目的:研究固体颗粒在不同条件下的流动行为,探索固体流态化的规律和特性。
实验装置和方法:实验装置主要由一个透明的圆柱形容器、一台电动搅拌器和一种固体颗粒组成。
我们选用了玻璃珠作为固体颗粒,因其形状规则且易于观察。
实验过程中,我们固定了容器的倾斜角度,并通过调节搅拌器的转速来改变固体颗粒与流体之间的相互作用力。
实验结果:通过观察实验过程中固体颗粒的运动情况,我们得出了以下几个重要的实验结果。
1. 倾斜角度对流态化的影响:我们发现,在容器倾斜角度较小的情况下,固体颗粒的流动呈现出一定的规律性,颗粒相对较为集中。
而当倾斜角度增大时,颗粒开始出现堆积和堵塞现象,流动性明显下降。
这表明,倾斜角度对固体流态化的发生和维持起着重要的作用。
2. 搅拌速度对流态化的影响:我们通过调节搅拌器的转速来改变固体颗粒与流体之间的相互作用力。
实验结果显示,当搅拌速度较低时,颗粒之间的相互作用力较小,颗粒流动较为顺畅。
而当搅拌速度增大时,颗粒之间的相互作用力增强,颗粒流动性下降。
这说明,搅拌速度对固体流态化的过程和特性有着重要的影响。
3. 颗粒形状对流态化的影响:我们在实验中选用了玻璃珠作为固体颗粒,因其形状规则且易于观察。
然而,我们注意到不同形状的颗粒在流动过程中表现出不同的行为。
例如,球形颗粒的流动性较好,而棱形颗粒则容易堵塞。
这提示我们,颗粒的形状对固体流态化的过程和结果也有着重要的影响。
讨论与结论:通过以上实验结果的观察和分析,我们可以得出一些关于固体流态化的重要结论。
首先,固体流态化是一个复杂的过程,受多种因素的影响。
倾斜角度、搅拌速度和颗粒形状等因素都会对流态化过程和结果产生重要影响。
实验十一 固体流态化实验一、实验目的1.观察散式和聚式流态化现象;2.测定液固与气固流态化系统中流体通过固体颗粒床层的压降和流速之间的关系。
二、基本原理流体(液体或气体)自下而上通过一固体颗粒床层, 当流速较低时流体自固体颗粒间隙穿过, 固体颗粒不动;流速加大固体颗粒松动, 流速继续增大至某一数值, 固体颗粒被上升流体推起, 上下左右翻滚, 作不规则运动, 如沸腾状, 此即固体流态化。
液固系统的流态化, 固体颗粒被扰动的程度比较平缓, 液固两相混合均匀, 这种流化状态称为“散式流态化”;气固系统的流态化, 由于气体与固体的密度差较大, 气流推动固体颗粒比较困难, 大部分气体形成气泡穿过床层, 固体颗粒也被成团地推起, 这种流化状态称为“聚式流态化”。
流态化床层的压降可由下式表达:g L P s )1)((ερρ--=∆对于球形颗粒, 起始流化速度(又称临界流速)可由下式表达:μρρg d u s p mf )(00059.02-=以上两式中: L ——床层高度, m ;ρs ——固体颗粒密度, kg/m3;ρ——流体密度, kg/m3;ε——床层空隙率;g——重力加速度, m/s2;dP——固体颗粒平均直径, m;μ——流体粘度, N·s/m2。
由以上两式可知, 影响流化床层和起始流化速度的因素主要为床层高度、流体与颗粒的密度、颗粒空隙率和颗粒尺寸、流体粘度等。
另外可根据佛鲁德准数(判断两种流化状态, (Fr)mf小于1时为散式流态化, 大于1时为聚式流态化。
上述各关系可以通过实验进行验证。
三、实验装置实验装置流程见附图所示, 分液固和气固两种流化床, 均为矩形透明有机玻璃结构, 床层横截面积尺寸为150×20mm, 分布板上放置约1公斤φ575μm玻璃球固体颗粒。
液固系统的水由旋涡式水泵自塑料水箱抽取经转子流量计送入流化床底部, 床层压降由倒置的U型管压差计计量, 流经床层的水由顶部溢流槽流回水箱。
实验二 固体流态化实验一、实验目的在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和汽液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。
近年来,流化床设备得到愈来愈广泛的应用。
固体流态化过程又按其特性分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。
本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和流化速度,并试验验证固定床压降和流化床临界流化速度的计算公式。
通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。
二、实验原理当流体流经固定床内固体颗粒之间的空隙时,随着流速的增大,流体与固体颗粒之间所产生的阻力也随之增大,床层的压降则不断升高。
为表达流体流经固定床式的压强降与流速的函数关系,曾提出过许多种经验公式。
先将一种较为常用的公式介绍如下:流体流经固定床的压降,可以仿照流体流经空管式的压强公式(Moody 公式)列出。
即2Δp 2p m m u d H ρλ⋅⋅= (1)式中,H m 为固定床层的高度,m ;d p 为固体颗粒的直径,m ; u 0为流体的空管速度,m·s –1;ρ为流体的密度,kg · m –3;λm 为固定床的摩擦系数。
固定床的摩擦系数λm 可以直接由实验测定。
根据实验结果,厄贡(Ergun )提出如下经验公式:)75.1Re 150)(1(2m3m m m +εε-=λ (2)式中,εm 为固定床的空隙率;Re m 为修正雷诺数。
Re m 可由颗粒直径d p ,床层空隙率εm ,流体密度ρ,流体粘度μ和空管流速u 0,按下式计算:mp m 11Re εμρ-⋅=u d(3)由固定床向流化床转变时的临界速度u mt ,也可由实验直接测定。