高考数学专题讲座--第5讲:数学思想方法之分类思想探讨
- 格式:doc
- 大小:3.99 MB
- 文档页数:53
高中数学分类讨论思想方法高中数学分类讨论思想方法是高中数学教学中一种重要的解题思路和方法。
它通过从不同的角度和不同的方法分析问题,使得解决问题更加全面和灵活。
分类讨论思想方法在高中数学中应用广泛,涉及到许多数学概念和技巧。
下面我将结合具体的例子,对高中数学分类讨论思想方法进行详细的介绍。
首先,分类讨论思想方法的基本思路是将问题分成若干个子问题,每个子问题用不同的方法进行求解或分析。
这样做可以把原本比较复杂的问题转化为几个较简单的子问题,从而更好地理解和解决。
例如,考虑一个常见的二次方程问题:求解方程$x^2-5x+6=0$。
首先,我们可以分类讨论这个方程的根的情况。
根据二次方程的求根公式,方程的根可以分为以下几种情况:1. 当 $\Delta=0$ 时,方程有两个相等的实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta=0$,所以方程有两个相等的实根。
根据求根公式$x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$,可得方程的两个根为$x_1=x_2=\frac{-(-5)\pm\sqrt{1}}{2\cdot1}=\frac{5}{2}$。
2. 当 $\Delta>0$ 时,方程有两个不相等的实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta>0$,所以方程有两个不相等的实根。
根据求根公式$x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$,可得方程的两个根为$x_1=\frac{-(-5)+\sqrt{1}}{2\cdot1}=2$ 和$x_2=\frac{-(-5)-\sqrt{1}}{2\cdot1}=3$。
3. 当 $\Delta<0$ 时,方程没有实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta<0$,所以方程没有实根。
高考数学中典型数学思想方法的教学探究一、分类讨论法在高考数学中,分类讨论法是解决问题的一种常用方法。
它通过将问题进行分类讨论,找出不同情况下的共性和特点,从而得出问题的解决方法。
在解决函数的极值和最值问题时,可以通过分类讨论法将问题分为闭区间内部、端点和无穷远处三种情况,然后分别讨论每种情况下函数的性质和极值点的情况,最终得出函数的极值和最值。
在教学中,可以通过具体的例题引导学生掌握分类讨论法,并教授学生如何将问题进行分类,找出不同情况下的规律。
可以引导学生通过分类讨论法解决一些实际问题,培养他们的逻辑思维能力和数学建模能力。
二、反证法反证法是高考数学中另一种常用的解决问题的方法。
它通过反证假设,推导出矛盾结论,从而证明原命题成立。
在解决一些证明问题时,反证法常常是一种简洁而有效的证明方法。
在证明某个命题为真时,可以先假设该命题为假,然后推导出矛盾结论,从而证明原命题为真。
三、数学归纳法数学归纳法是高考数学中常用的一种证明方法。
它通过证明命题对某个特定的自然数成立,然后推广到全体自然数,从而证明原命题成立。
在解决一些关于自然数的性质和定理的证明问题时,数学归纳法常常是一种有效的证明方法。
在证明自然数的某个性质对所有自然数成立时,可以先证明该性质对某个特定的自然数成立,然后利用数学归纳法推广到全体自然数,从而得出结论。
四、等价转化法等价转化法是高考数学中常用的一种解决问题的方法。
它通过将原问题转化为一个等价的、更容易解决的问题,从而得到原问题的解。
在解决一些复杂的方程、不等式和极限等问题时,等价转化法常常是一种简洁而有效的解决方法。
在解决一个复杂的不等式问题时,可以通过等价转化将不等式转化为一个更简单的等价不等式,然后解决等价不等式,得出原不等式的解。
总结在高考数学教学中,典型数学思想方法的教学探究是一项重要的任务。
通过对分类讨论法、反证法、数学归纳法和等价转化法等典型数学思想方法进行深入的教学探究,可以帮助学生掌握这些方法的本质和应用技巧,提高他们的数学思维能力和解决问题的能力。
分类讨论思想知识梳理分类讨论思想是一种重要的数学思想方法.其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:(1)由数学概念引起的分类讨论.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论.有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等.(3)由数学运算要求引起的分类讨论.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.(5)由参数的变化引起的分类讨论.某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.(6)由实际意义引起的讨论.此类问题在应用题中,特别是在解决排列、组合中的计数问题时常用.解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
高考数学专题复习——分类讨论思想方法教案一、教学目标1. 让学生理解分类讨论思想方法在解决数学问题中的应用。
2. 培养学生运用分类讨论解决数学问题的能力。
3. 提高学生对高考数学题型的应对策略。
二、教学内容1. 分类讨论思想方法的定义及作用。
2. 分类讨论思想方法在高中数学中的应用实例。
3. 高考数学题型中分类讨论思想方法的具体运用。
三、教学重点与难点1. 重点:分类讨论思想方法的理解与应用。
2. 难点:如何引导学生自主发现和运用分类讨论思想方法解决数学问题。
四、教学过程1. 导入:通过一个简单的数学问题引入分类讨论思想方法。
2. 新课:讲解分类讨论思想方法的定义、作用和应用实例。
3. 练习:让学生尝试解决一些运用分类讨论思想方法的高中数学问题。
五、课后作业2. 布置一些运用分类讨论思想方法的高中数学题目,让学生课后练习。
3. 鼓励学生查阅相关资料,了解分类讨论思想方法在高考数学题型中的应用。
六、教学策略1. 案例分析:通过分析典型的数学案例,让学生体会分类讨论思想方法的重要性。
2. 互动讨论:鼓励学生积极参与课堂讨论,分享自己在解决问题时运用分类讨论的经历。
3. 练习巩固:设计具有针对性的练习题,让学生在实践中掌握分类讨论思想方法。
4. 拓展延伸:引导学生关注高考数学题型的新动态,了解分类讨论思想方法在实际应用中的广泛性。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、思考问题和解决问题的能力。
2. 课后作业:评估学生对分类讨论思想方法的理解和应用能力。
3. 阶段测试:通过阶段测试,检验学生对分类讨论思想方法的掌握情况。
4. 学生反馈:收集学生对教学过程和教学内容的意见和建议,不断优化教学方法。
八、教学资源1. 教材:选用权威的高中数学教材,为学生提供系统的知识体系。
2. 案例素材:收集各类高中数学题目,作为教学案例。
3. 教学课件:制作精美的教学课件,辅助课堂教学。
4. 网络资源:利用互联网查找相关资料,为学生提供更多的学习资源。
第二节 分类讨论思想在研究和解决数学问题时,若问题所给对象不能统一研究,我们就需要根 据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,逐类进行研 究和解决,从而达到解决整个问题的目的,即分类讨论思想。
分类讨论实质是一 种逻辑划分思想,是一种“化整为零,各个击破,再积零为整”的解题策略。
分类讨论思想在数学问题的求解中具有广泛的应用,是高考的重点考查的思 想方法之一。
通过以下几道例题说说分类讨论思想的具体应用:例1.(2017浙江16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答)分析:这是一道排列组合问题,排列组合问题的解决以两大原理为依据,而两大原理中的加法原理本身就是一种分类思想,故本题的关键是确定分类的标准,由题意分析,服务队中所选4人要求至少一名女生,这样总的选择方法就可以分为两种情况,一是所选4人中只有一名女生,二是所选4人中有2名女生。
解析:若所选4人中只有一名女生,方法数为243612A C C 种方法,所选4人中有2名女生方法数为242622A C C ,故总的方法数为660242622243612=+=A C C A C C N . 一题多解:由题意知总的选择方法为2448A C ,其中不满足题意的选法有2446A C ,所以总的方法数为66024462448=+=A C A C N . 点评:本题中的正反两种方法,都是要抓住分类讨论之“源”——即根据研究对象的不确定性,或者是研究图形位置的不确定性等因素,将研究对象进行不重不漏的一一罗列。
例2.设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥ ①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 . 分析:第一问1=a 时可根据分段函数的概念先化整为零。
专题4 数形结合、分类讨论思想一.知识探究:1.数形结合作为一种重要的数学思想方法历年来一直是高考考察的重点之一。
数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
数形结合的途径:(1)通过坐标系形题数解(2)通过转化构造数题形解 数形结合的原则:(1)等价性原则;(2)双向性原则;(3)简单性原则2.分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级;二.命题趋势分类讨论思想是一种重要的数学思想,它在人的思维发展中有着重要的作用,因此在近几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测对本专题的考察为:将有一道中档或中档偏上的试题,其求解思路直接依赖于分类讨论,特别关注以下方面:涉及指数、对数底的讨论,含参数的一元二次不等式、等比数列求和,由n S 求n a 等。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
三.再现性题组1.集合A ={x||x|≤4,x ∈R},B ={x||x -3|≤a ,x ∈R},若A ⊇B ,那么a 的范围是( )。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<1 对参数a 分a>0、a =0、a<0三种情况讨论,选B ;2. 若θ∈(0, π2),则lim n →∞cos sin cos sin n n n n θθθ+θ-的值为( )。
高考数学解题技巧(方法类) 5.分类讨论思想在解题中的应用一、题型与方法介绍1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。
2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。
5.含参数问题的分类讨论是常见题型。
6.注意简化或避免分类讨论。
二、方法技巧与典型例题分析例1.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( ) A. x y +-=70 B. 250x y -=C. x y x y +-=-=70250或D. x y y x ++=-=70250或 【解析】设该直线在x 轴,y 轴上的截距均为a, 当a=0时,直线过原点,此时直线方程为y x x y =-=25250,即; 当a ≠0时,设直线方程为x a yaa +==17,则求得,方程为x y +-=70。
例2.∆ABC A B C 中,已知,,求sin cos cos ==12513【分析】由于C A B =-+π()[]∴=-+=--⋅cos cos()cos cos sin sin C A B A B A B因此,只要根据已知条件,求出cosA ,sinB 即可得cosC 的值。
但是由sinA 求cosA 时,是一解还是两解?这一点需经过讨论才能确定,故解本题时要分类讨论。
对角A 进行分类。
【解析】 051322<=<cos B B ABC ,且为的一个内角∆∴<<=45901213 B B ,且sin若为锐角,由,得,此时A A A A sin cos ===123032 若为钝角,由,得,此时A A A A B sin ==+>12150180这与三角形的内角和为180°相矛盾。
分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。
一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。
二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。
三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。
2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。
由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。
由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。
5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。
由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。
专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2013•吉林)若a-2b=3,则2a-4b-5=.思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可.解:2a-4b-5=2(a-2b)-5=2×3-5=1.故答案是:1.点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值.对应训练1.(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
分类讨论思想[思想方法解读] 分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.1.中学数学中可能引起分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和公式等.(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等.(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等.(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.2.进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论.其中最重要的一条是“不重不漏”.3.解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论.体验高考1.(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( ) A.⎣⎡⎦⎤23,1 B .[0,1]C.⎣⎡⎭⎫23,+∞ D .[1, +∞)答案 C解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23,故选C. 2.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1>e 2B .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C .对任意的a ,b ,e 1<e 2D .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2 答案 D解析 由题意e 1=a 2+b 2a 2=1+⎝⎛⎭⎫b a 2;双曲线C 2的实半轴长为a +m ,虚半轴长为b +m ,离心率e 2=a +m 2+b +m2a +m 2=1+⎝ ⎛⎭⎪⎫b +m a +m 2. 因为b +m a +m -b a =m a -b a a +m,且a >0,b >0,m >0,a ≠b , 所以当a >b 时,m a -b a a +m >0,即b +m a +m >b a. 又b +m a +m>0,b a >0, 所以由不等式的性质依次可得⎝ ⎛⎭⎪⎫b +m a +m 2>⎝⎛⎭⎫b a 2, 1+⎝ ⎛⎭⎪⎫b +m a +m 2>1+⎝⎛⎭⎫b a 2, 所以1+⎝ ⎛⎭⎪⎫b +m a +m 2>1+⎝⎛⎭⎫b a 2,即e 2>e 1;同理,当a <b 时,m a -b a a +m<0,可推得e 2<e 1. 综上,当a >b 时,e 1<e 2;当a <b 时,e 1>e 2.3.(2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率;(2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c2=1, 直线FM 的方程为y =33(x +c ), 两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c . 因为点M 在第一象限,可得点M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |=c +c 2+⎝⎛⎭⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =y x +1,即y =t (x +1)(x ≠-1). 与椭圆方程联立,⎩⎪⎨⎪⎧y =t x +1,x 23+y 22=1, 消去y ,整理得2x 2+3t 2(x +1)2=6,又由已知,得t =6-2x 23x +12>2, 解得-32<x <-1或-1<x <0. 设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23. ①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0,因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 高考必会题型题型一 由概念、公式、法则、计算性质引起的分类讨论例1 设集合A ={x ∈R |x 2+4x =0},B ={x ∈R |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的取值范围.解 ∵A ={0,-4},B ⊆A ,于是可分为以下几种情况.(1)当A =B 时,B ={0,-4},∴由根与系数的关系,得⎩⎪⎨⎪⎧-2a +1=-4,a 2-1=0, 解得a =1.(2)当B A 时,又可分为两种情况.①当B ≠∅时,即B ={0}或B ={-4},当x =0时,有a =±1;当x =-4时,有a =7或a =1.又由Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件;②当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综合(1)(2)知,所求实数a 的取值范围为a ≤-1或a =1.点评 对概念、公式、法则的内含及应用条件的准确把握是解题关键,在本题中,B ⊆A ,包括B =∅和B ≠∅两种情况.解答时就应分两种情况讨论,在关于指数、对数的运算中,底数的取值范围是进行讨论时首先要考虑的因素.变式训练1 已知数列{a n }的前n 项和S n =p n -1(p 是常数),则数列{a n }是( )A .等差数列B .等比数列C .等差数列或等比数列D .以上都不对答案 D解析 ∵S n =p n -1,∴a 1=p -1,a n =S n -S n -1=(p -1)p n -1(n ≥2),当p ≠1且p ≠0时,{a n }是等比数列;当p =1时,{a n }是等差数列;当p =0时,a 1=-1,a n =0(n ≥2),此时{a n }既不是等差数列也不是等比数列.题型二 分类讨论在含参函数中的应用例2 已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]上有最大值2,求a 的值.解 函数f (x )=-x 2+2ax +1-a=-(x -a )2+a 2-a +1,对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a ,∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,∴a 2-a +1=2,∴a 2-a -1=0,∴a =1±52(舍). (3)当a >1时,f (x )max =f (1)=a ,∴a =2.综上可知,a =-1或a =2.点评 本题中函数的定义域是确定的,二次函数的对称轴是不确定的,二次函数的最值问题与对称轴息息相关,因此需要对对称轴进行讨论,分对称轴在区间内和对称轴在区间外,从而确定函数在给定区间上的单调性,即可表示函数的最大值,从而求出a 的值.变式训练2 已知函数f (x )=2e x -ax -2(x ∈R ,a ∈R ).(1)当a =1时,求曲线y =f (x )在x =1处的切线方程;(2)求x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=2e x -x -2,f ′(x )=2e x -1,f ′(1)=2e -1,即曲线y =f (x )在x =1处的切线的斜率k =2e -1,又f (1)=2e -3,所以所求的切线方程是y =(2e -1)x -2.(2)易知f ′(x )=2e x -a .若a ≤0,则f ′(x )>0恒成立,f (x )在R 上单调递增;若a >0,则当x ∈(-∞,ln a 2)时,f ′(x )<0,f (x )单调递减, 当x ∈(ln a 2,+∞)时,f ′(x )>0,f (x )单调递增. 又f (0)=0,所以若a ≤0,则当x ∈[0,+∞)时,f (x )≥f (0)=0,符合题意.若a >0,则当ln a 2≤0,即0<a ≤2时,则当x ∈[0,+∞)时,f (x )≥f (0)=0,符合题意.当lna 2>0,即a >2, 则当x ∈(0,ln a 2)时,f (x )单调递减, f (x )<f (0)=0,不符合题意.综上,实数a 的取值范围是(-∞,2].题型三 根据图形位置或形状分类讨论例3 在约束条件⎩⎪⎨⎪⎧ x ≥0,y ≥0,y +x ≤s ,y +2x ≤4下,当3≤s ≤5时,z =3x +2y 的最大值的变化范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]答案 D解析 由⎩⎪⎨⎪⎧ x +y =s ,y +2x =4⇒⎩⎪⎨⎪⎧x =4-s ,y =2s -4, 取点A (2,0),B (4-s,2s -4),C (0,s ),C ′(0,4).①当3≤s <4时,可行域是四边形OABC (含边界),如图(1)所示,此时,7≤z max <8.②当4≤s ≤5时,此时可行域是△OAC ′,如图(2)所示,z max =8.综上,z =3x +2y 最大值的变化范围是[7,8].点评 几类常见的由图形的位置或形状变化引起的分类讨论(1)二次函数对称轴的变化;(2)函数问题中区间的变化;(3)函数图象形状的变化;(4)直线由斜率引起的位置变化;(5)圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;(6)立体几何中点、线、面的位置变化等.变式训练3 设点F 1,F 2为椭圆x 29+y 24=1的两个焦点,点P 为椭圆上一点,已知点P ,F 1,F 2是一个直角三角形的三个顶点,且||PF 1>||PF 2,求||PF 1||PF 2的值. 解 若∠PF 2F 1=90°,则||PF 12=|PF 2|2+||F 1F 22,又∵||PF 1+||PF 2=6,||F 1F 2=25,解得||PF 1=143,||PF 2=43,∴||PF 1||PF 2=72. 若∠F 1PF 2=90°,则||F 1F 22=||PF 12+||PF 22,∴||PF 12+(6-||PF 1)2=20,又|PF 1|>|PF 2|,∴||PF 1=4,||PF 2=2,∴||PF 1||PF 2=2. 综上知,||PF 1||PF 2=72或2. 高考题型精练1.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D.⎝⎛⎭⎫0,12 答案 D解析 方程|a x -1|=2a (a >0且a ≠1)有两个实数根转化为函数y =|a x -1|与y =2a 有两个交点.①当0<a <1时,如图(1),∴0<2a <1,即0<a <12. ②当a >1时,如图(2),而y =2a >1不符合要求.综上,0<a <12. 2.x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a的值为( )A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.3.抛物线y 2=4px (p >0)的焦点为F ,P 为其上的一点,O 为坐标原点,若△OPF 为等腰三角形,则这样的点P 的个数为( )A .2B .3C .4D .6答案 C解析 当|PO |=|PF |时,点P 在线段OF 的中垂线上,此时,点P 的位置有两个;当|OP |=|OF |时,点P 的位置也有两个;对|FO |=|FP |的情形,点P 不存在.事实上,F (p,0),若设P (x ,y ),则|FO |=p ,|FP |=x -p 2+y 2,若x -p 2+y 2=p ,则有x 2-2px +y 2=0,又∵y 2=4px ,∴x 2+2px =0,解得x =0或x =-2p ,当x =0时,不构成三角形.当x =-2p (p >0)时,与点P 在抛物线上矛盾.∴符合要求的点P 一共有4个.4.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,12()log f x x =是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).5.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围是________. 答案 (-∞,-1]解析 因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32; ②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.综上,a 的取值范围是(-∞,-1].6.已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.解 要使f (x )≥0恒成立,则函数在区间[-2,2]上的最小值不小于0,设f (x )的最小值为g (a ).(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0, 得a ≤73,故此时a 不存在. (2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=3-a -a 24≥0,得-6≤a ≤2,又-4≤a ≤4,故-4≤a ≤2.(3)当-a 2>2,即a <-4时,g (a )=f (2)=7+a ≥0, 得a ≥-7,又a <-4,故-7≤a <-4,综上得-7≤a ≤2.7.已知ax 2-(a +1)x +1<0,求不等式的解集.解 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,原不等式等价于(x -1a)(x -1)>0, 解得x <1a或x >1. 若a >0,原不等式等价于(x -1a)(x -1)<0. ①当a =1时,1a =1,(x -1a)(x -1)<0无解; ②当a >1时,1a <1,解(x -1a )(x -1)<0得1a<x <1; ③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a. 综上所述:当a <0时,解集为{x |x <1a或x >1}; 当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a}; 当a =1时,解集为∅;当a >1时,解集为{x |1a<x <1}. 8.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . (2)由(1)得S n =1-⎝⎛⎭⎫-12n =⎩⎨⎧ 1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32, 故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1, 故0>S n -1S n ≥S 2-1S 2=34-43=-712. 综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712. 9.已知a 是实数,函数f (x )=x (x -a ).(1)求函数f (x )的单调区间;(2)设g (a )为f (x )在区间[0,2]上的最小值. ①写出g (a )的表达式;②求a 的取值范围,使得-6≤g (a )≤-2. 解 (1)函数的定义域为[0,+∞),f ′(x )=3x -a 2x(x >0).若a ≤0,则f ′(x )>0,f (x )有单调递增区间[0,+∞).若a >0,令f ′(x )=0,得x =a 3, 当0<x <a 3时,f ′(x )<0, 当x >a 3时,f ′(x )>0. f (x )有单调递减区间[0,a 3], 有单调递增区间(a 3,+∞). (2)①由(1)知,若a ≤0,f (x )在[0,2]上单调递增,所以g (a )=f (0)=0.若0<a <6,f (x )在[0,a 3]上单调递减, 在(a 3,2]上单调递增, 所以g (a )=f (a 3)=-2a 3a 3. 若a ≥6,f (x )在[0,2]上单调递减,所以g (a )=f (2)=2(2-a ).综上所述,g (a )=⎩⎪⎨⎪⎧ 0,a ≤0,-2a 3a 3,0<a <6,22-a ,a ≥6.②令-6≤g (a )≤-2.若a ≤0,无解.若0<a <6,解得3≤a <6.若a ≥6,解得6≤a ≤2+3 2.故a 的取值范围为3≤a ≤2+3 2.10.已知函数f (x )=a ln x -x +1(a ∈R ).(1)求f (x )的单调区间;(2)若f (x )≤0在(0,+∞)上恒成立,求所有实数a 的值.解 (1)f ′(x )=a x -1=a -x x(x >0), 当a ≤0时,f ′(x )<0,∴f (x )的减区间为(0,+∞);当a >0时,由f ′(x )>0得0<x <a ,由f′(x)<0得x>a,∴f(x)递增区间为(0,a),递减区间为(a,+∞).(2)由(1)知:当a≤0时,f(x)在(0,+∞)上为减函数,而f(1)=0,∴f(x)≤0在区间x∈(0,+∞)上不可能恒成立;当a>0时,f(x)在(0,a)上递增,在(a,+∞)上递减,f(x)max=f(a)=a ln a-a+1,令g(a)=a ln a-a+1,依题意有g(a)≤0,而g′(a)=ln a,且a>0,∴g(a)在(0,1)上递减,在(1,+∞)上递增,∴g(a)min=g(1)=0,故a=1.。
浅谈在高中数学课堂中分类讨论思想的有效运用在高中数学课堂中,分类讨论思想是一种有效的教学方法,它可以帮助学生更好地理解和运用数学知识,提高解决问题的能力。
以下是我对这一方法的浅谈。
分类讨论思想可以帮助学生将问题进行分类,并将不同的情况进行单独讨论。
这样做可以让学生更好地理解问题的本质和特点,避免在解决问题时出现混淆和偏差。
在讨论函数的奇偶性时,可以将函数的定义域进行分类,并以此作为讨论的基础。
这样一来,学生可以分别讨论定义域内的奇函数和偶函数,准确地判断函数的性质和解决相关问题。
分类讨论思想可以帮助学生对问题进行具体化。
有时,学生在面对抽象的数学问题时会感到困惑和无从下手。
而将问题进行分类讨论可以让问题变得具体化,减少学生的思维负担。
在讨论平面几何中的相似三角形问题时,可以分类讨论两个三角形的边长比、角度之间的关系等。
这样一来,学生可以通过直观的几何图形来理解和解决问题,提高解决问题的能力。
分类讨论思想还可以帮助学生发现问题的共性和规律。
在数学中,往往存在一些规律和共性,通过分类讨论可以帮助学生发现这些规律并进行归纳总结。
在讨论平面几何当中的三角形相似问题时,可以分类讨论不同情况下的相似比例,从而发现相似三角形的一些共性和规律。
这样一来,学生可以更好地理解和运用数学知识,提高问题解决的能力。
在数学教学中,分类讨论思想还可以培养学生的逻辑思维和综合分析能力。
在分类讨论过程中,学生需要对问题进行分析和归纳,从而提高自己的逻辑思维能力。
学生还需要将不同的情况进行比较和综合,这可以培养学生的综合分析能力。
这样的思维方式对于学生的综合素质提高具有重要意义。
二、分类讨论思想高考动向分类讨论是一种重要的逻辑方法,也是中学数学中经常使用的数学思想方法之一.突出考查学生思维的严谨性和周密性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力,能体现“着重考查数学能力”的要求.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.数学中的分类讨论贯穿教材的各个部分,它不仅形式多样,而且具有很强的综合性和逻辑性.知识升华1.分类讨论的常见情形(1)由数学概念引起的分类讨论:主要是指有的概念本身是分类的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定,等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.(3)由某些数学式子变形引起的分类讨论:有的数学式子本身是分类给出的,如ax2+bx+c >0,a=0,a<0,a>0解法是不同的.(4)由图形引起的分类讨论:有的图形的类型、位置也要分类,如角的终边所在象限,点、线、面的位置关系等.(5)由实际意义引起的讨论:此类问题在应用题中常见.(6)由参数变化引起的讨论:所解问题含有参数时,必须对参数的不同取值进行分类讨论;含有参数的数学问题中,参变量的不同取值,使得变形受限导致不同的结果.2.分类的原则(1)每次分类的对象是确定的,标准是同一的;分类讨论问题的难点在于什么时候开始讨论,即认识为什么要分类讨论,又从几方面开始讨论,只有明确了讨论原因,才能准确、恰当地进行分类与讨论.这就要求我们准确掌握所用的概念、定理、定义,考虑问题要全面.函数问题中的定义域,方程问题中根之间的大小,直线与二次曲线位置关系中的判别式等等,常常是分类讨论划分的依据.(2)每次分类的对象不遗漏、不重复、分层次、不越级讨论.当问题中出现多个不确定因素时,要以起主导作用的因素进行划分,做到不重不漏,然后对划分的每一类分别求解,再整合后得到一个完整的答案.数形结合是简化分类讨论的重要方法.3.分类讨论的一般步骤第一,明确讨论对象,确定对象的范围;第二,确定分类标准,进行合理分类,做到不重不漏;第三,逐类讨论,获得阶段性结果;第四,归纳总结,得出结论.4. 分类讨论应注意的问题第一,按主元分类的结果应求并集.第二,按参数分类的结果要分类给出.第三,分类讨论是一种重要的解题策略,但这种分类讨论的方法有时比较繁杂,若有可能,应尽量避免分类.经典例题透析类型一:不等式中的字母讨论1、(2010·山东)若对于任意,恒成立,则a的取值范围是________.举一反三:【变式1】解关于的不等式:().【变式2】解关于的不等式:.类型二:函数中的分类讨论2、设为实数,记函数的最大值为,(Ⅰ)设,求的取值范围,并把表示为的函数;(Ⅱ)求;(Ⅲ)试求满足的所有实数.解析:(I)∵,∴要使有意义,必须且,即∵,且……①∴的取值范围是,由①得:,∴,,(II)由题意知即为函数,的最大值,∵时,直线是抛物线的对称轴,∴可分以下几种情况进行讨论:(1)当时,函数,的图象是开口向上的抛物线的一段,由知在上单调递增,故;(2)当时,,,有=2;(3)当时,,函数,的图象是开口向下的抛物线的一段,若即时,,若即时,,若即时,,综上所述,有=(III)当时,;当时,,,∴,∴,故当时,;当时,,由知:,故;当时,,故或,从而有或,要使,必须有,,即,此时,,综上所述,满足的所有实数为:或.举一反三:【变式1】函数的图象经过点(-1,3),且f(x)在(-1,+∞)上恒有f(x)<3,求函数f(x).解析:f(x)图象经过点(-1,3),则,整理得:,解得或(1)当时,则,此时x∈(-1,+∞)时,f(x)>3,不满足题意;(2)当,则,此时,x∈(-1,+∞)时,即f(x)<3,满足题意为所求.综上,.【变式2】已知函数有最大值2,求实数的取值.解析:令,则().(1)当即时,,解得:或(舍);(2)当即时,,解得:或(舍);(3)当即时,,解得(全都舍去).综上,当或时,能使函数的最大值为2.举一反三:【变式1】设,(1)利用函数单调性的意义,判断f(x)在(0,+∞)上的单调性;(2)记f(x)在0<x≤1上的最小值为g(a),求y=g(a)的解析式.解析:(1)设0<x1<x2<+∞则f(x2)-f(x1)=由题设x2-x1>0,ax1·x2>0∴当0<x1<x2≤时,,∴f(x2)-f(x1)<0,即f(x2)<f(x1),则f(x)在区间[0,]单调递减,当<x1<x2<+∞时,,∴f(x2)-f(x1)>0,即f(x2)>f(x1),则f(x)在区间(,+∞)单调递增.(2)因为0<x≤1,由(1)的结论,当0<≤1即a≥1时,g(a)=f()=2-;当>1,即0<a<1时,g(a)=f(1)=a综上,所求的函数y=g(a)=.类型三:数列4、数列{a n}的前n项和为S n,已知{S n}是各项均为正数的等比数列,试比较与的大小,并证明你的结论.解析:设等比数列{S n}的公比为q,则q>0①q=1时,S n=S1=a1当n=1时,,a2=0,∴,即当n≥2时,a n=S n-S n-1=a1-a1=0,,即(2)q≠1时,S n=S1·q n-1=a1·q n-1当n=1时,∴,即.当n≥2时,a n=S n-S n-1=a1·q n-1-a1·q n-2=a1·q n-2(q-1)此时∴q>1时,,0<q<1时,.总结升华:等比数列前n项和公式分q=1或q≠1两种情况进行讨论.举一反三:【变式1】求数列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,……(其中a≠0)的前n项和S n. 解析:数列的通项a n=a n-1+a n+…+a2n-2讨论:(1)当a=1时,a n=n,S n=1+2+…+n=(2)当a=-1时,,∴,(3)当a≠±1且a≠0时,,∴.【变式2】设{a n}是由正数组成的等比数列,S n是其前n项和,证明:.解析:(1)当q=1时,S n=na1,从而,(2)当q≠1时,,从而由(1)(2)得:.∵函数为单调递减函数.∴∴.【变式3】已知{a n}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n 与b n的大小,并说明理由.解析:(Ⅰ)由题设2a3=a1+a2,即2a1q2=a1+a1q,∵a1≠0,∴2q2-q-1=0,∴或,(Ⅱ)若q=1,则当n≥2时,若当n≥2时,故对于n∈N+,当2≤n≤9时,S n>b n;当n=10时,S n=b n;当n≥11时,S n<b n.【变式4】对于数列,规定数列为数列的一阶差分数列,其中;一般地,规定为的k阶差分数列,其中且k∈N*,k≥2。
高中数学思想方法之分类讨论思想【摘要】学校的主要任务是培养具有好钻研的、创造性的、探索性的思维能力的学生。
数学教学是数学思维活动的教学,因此,数学教学的任务不仅要传授教学大纲所规定的数学理论知识,更重要的是要借助课堂教学传授数学思想方法,培养发展学生的数学思维能力。
而分类讨论思想作为中学数学思想方法之一,在教学中重视对分类讨论数学思想方法的应用、考察尤其必要,这既是学生是否能全面学好数学的其中一个重要的考察内容,也是教师教学中必不可少的的教学内容。
【关键词】数学教学分类讨论思想方法一、分类讨论思想的概念及运用时出现的几种情况数学思想方法是科学的分析、解决数学问题的指导思想,是学习应用数学知识的方针。
在解决数学问题时,若能正确地应用数学思想方法,科学的分析指导解题的全过程,就能清晰、简洁的解决数学问题。
而分类讨论思想作为其中最常用、复杂的一种数学思想方法,常常贯穿于其它数学思想方法当中。
在思考数学问题时会遇到依题意分析而产生多种情况,在这种情况下我们不能用同一种标准、同一种运算、同一个类型、同一个定理或同一种方法去解决问题,这时可以按照某种分类标准分解成若干个子问题,通过对每个子问题的逐类推倒来解决原问题,然后综合得解,即分类讨论。
在分类讨论思想方法的教学过程中,首先,要让学生知道在哪些情况下需要用分类讨论;其次是为什么要分类讨论,也就是分类的目的与标准,最后应按照分类讨论的原则解题。
运用分类讨论思想常常出现的几种情况:(1)由数学概念引起的分类讨论:主要是指有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等。
(2)由运算引起的分类:有些运算是有条件限制的,如等比数列的前n项和的公式,当q=1,q≠1时是不同的。
(3)由性质、定理、公式、性质是分类给出的,在不同条件下结论不一致,如等比数列前n项和公式、平均值定理、函数的单调性等。
(4)由图形引起的分类讨论:有的图形的类型、位置也要分类,如角的终边所在象限,点、线、面的位置关系等。
【备战2014高考数学专题讲座】 第5讲:数学思想方法之分类思想探讨数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。
通常混称为“数学思想方法”。
常见的数学思想有:建模思想、归纳思想,分类思想、化归思想、整体思想、数形结合思想等。
数学中的所谓分类,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想。
它既是一种重要的数学思想,又是一种重要的数学逻辑方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。
掌握好这类问题对提高综合学习能力会有很大帮助,它既有利于培养学生的创新精神与探索精神,又有利于培养学生严谨、求实的科学态度。
分类思想解题的过程(思维、动因和方法)我们把它归纳为WHDS 四个方面:W (WHI )即为什么要进行分类。
一般地说,高考数学中,当我们研究的问题是下列五种情形时可以考虑使用分类的思想方法来解决问题:(1)涉及到分类定义的概念,有些概念是分类定义的,如绝对值的概念等,当我们应用这些概念时就必须考虑使用分类讨论的方法。
(2)直接运用了分类研究的定理、性质、公式、法则,如等比数列的求和公式就分为1q =和1q ≠两种情况;对数函数的单调性就分为11a a >,<两种情况;直线方程分为斜率存在与不存在等,当我们应用这些受到适用范围条件限制的定理、性质、公式、法则来解决问题时,如果在解决问题中需要突破对定理、性质、公式、法则的条件限制可以考虑使用分类讨论的方法。
(3)问题中含有的参变量的不同取值(如分段函数)会导致不同结果而需要对其进行分类讨论。
(4)几何问题中几何图形的不确定(如两点在同一平面的同侧、异侧)而需要对其进行分类讨论;(5)由数学运算引起的分类讨论,如排列组合的计数问题,概率问题又要按题目的特殊要求,分成若干情况研究。
H (HOW )即如何进行分类。
首先,明确分类讨论思想的三个原则:(1)不遗漏原则;(2)不重复原则;(3)同标准原则。
其次,查找引起分类讨论的主要原因,即上述五个主要原因的哪一种。
第三,掌握分类讨论思想的常用方法。
分类方法一般为分区间讨论法,即把参数的变化范围(或几何图形中动态的变化范围)划分成若干个以参数特征为分界点(或几何图形中的端点)的小区间分别进行讨论,根据题设条件或数学概念、定理、公式的限制条件确定参数(如零点,几何图形中的顶点)。
D (DO )即正确进行逐类逐级分类讨论。
S (SUMMARY )即归纳小结,总结出结论。
结合2012年全国各地高考的实例,我们从下面四方面探讨分类方法的应用:(1)涉及到分类定义概念和直接运用了分类研究的定理、性质、公式、法则的应用;(2)含有的参变量的不同取值的分类应用;(3)几何图形的不确定的分类应用;(4)由数学运算引起的分类应用。
一、涉及到分类定义概念和直接运用了分类研究的定理、性质、公式、法则的应用: 典型例题:例1. (2012年全国大纲卷文5分)已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D {x ︱x 是菱形},则【 】A.A B ⊆B.C B ⊆C.D C ⊆D.A D ⊆【答案】B 。
【考点】集合的概念,集合的包含关系。
【解析】平行四边形、矩形、菱形和正方形的关系如图,由图知A 是大的集合,C 是最小的集合,因此,选项A 、C 、、D 错误,选项B 正确。
故选B 。
例2. (2012年上海市文4分)若集合{}210A x x =->,{}1B x x =<,则B A = ▲【答案】1,12⎛⎫ ⎪⎝⎭。
【考点】集合的概念和性质的运用,一元一次不等式和绝对值不等式的解法。
【解析】由题意,得12101121211x >x ><x <x <<x <⎧-⎧⎪⎪⇒⇒⎨⎨⎪⎩⎪-⎩,∴1,12A B ⎛⎫= ⎪⎝⎭ 。
例3. (2012年四川省理5分)函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是【 】A 、不存在B 、等于6C 、等于3D 、等于0 【答案】A 。
【考点】分段函数,极限。
【解析】分段函数在3x =处不是无限靠近同一个值,故不存在极限。
故选A 。
例4. (2012年广东省理14分)设a <1,集合{}{}20,23(1)60A x R x B x R x a x a =∈>=∈-++>,D A B =(1)求集合D (用区间表示)(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点。
【答案】解:(1)设2()23(1)6g x x a x a =-++,方程()0g x =的判别式219(1)489()(3)3a a a a D =+-=-- ①当113a <<时,0D <,223(1)60x a x a -++>恒成立, ∴{}223(1)60B x R x a x a R =∈-++>=。
∴{|0}D A B A x x ===>,即集合D =(0,)+ 。
②当103a <时,0D ,方程()0g x =的两根为10x =,2x =∴{}223(1)60B x R x a x a =∈-++>|{x x x =<>∴0|{D A B A x x x ===>< , 即集合D=(0) + 。
③当0a £时,0D >,方程()0g x =的两根为10x £=,20x =。
∴{}223(1)60B x R x a x a =∈-++>3333{|0}44a a x x x =<≤+++>或。
∴334{|}a D A B A x x ==+>= ,即集合D =)+ 。
(2)令322'()[23(1)6]'66(1)66()(1)0f x x a x ax x a x a x a x =-++=-++=--=得32()23(1)6f x x a x ax =-++的可能极值点为,1a 。
①当11a <<时,由(1)知D =(0,)+∞,所以(),()f x f x '随x 的变化情况如下表:∴32()23(1)6f x x a x ax =-++在D 内有两个极值点为,1a :极大值点为x a =,极小值点为1x =。
②当103a <时,由(1)知D =(0) + =12(0,)(,)x x +∞ 。
∵12()2()()f x x x x x x =--, ∴1201a x x <<<≤, ∴(),()f x f x '随x 的变化情况如下表:∴32()23(1)6f x x a x ax =-++在D 内仅有一个极值点:极大值点为x a =,没有极小值点。
③当0a £时,由(1)知D=)+ 。
∵0a £,∴131a <a --。
)(33133133==1444a a a >>+-++-+。
∴10a <£。
∴32()23(1)6f x x a x ax =-++在D 内没有极值点。
【考点】分类思想的应用,集合的计算, 解不等式,导数的应用。
【解析】(1)根据2()23(1)6g x x a x a =-++根的判别式应用分类思想分113a <<、103a < 、0a £讨论即可,计算比较繁。
【版权归锦元数学工作室,不得转载】(2)求出322'()[23(1)6]'66(1)66()(1)f x x a x ax x a x a x a x =-++=-++=--,得到()f x 的可能极值点为,1a 。
仍然分113a <<、103a < 、0a £讨论。
例5. (2012年江苏省16分)已知各项均为正数的两个数列{}n a 和{}nb 满足:221nn n n n b a b a a ++=+,*N n ∈,(1)设n n n a b b +=+11,*N n ∈,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列; (2)设nnn a b b ∙=+21,*N n∈,且{}n a 是等比数列,求1a 和1b 的值. 【答案】解:(1)∵n n n a b b +=+11,∴1n a +=∴11n n b a ++=()2222111*n n n n n n b b b n N a a a ++⎛⎫⎛⎫⎛⎫-=-=∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
∴数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是以1 为公差的等差数列。
(2)∵00n n a >b >,,∴()()22222nn n n n n a b a b <a b +≤++。
∴11n <a +≤(﹡) 设等比数列{}n a 的公比为q ,由0n a >知0q >,下面用反证法证明=1q 若1,q >则212=a a <a q ≤1log q n >时,11n n a a q += 若01,<q <则212=1a a >a >q ,∴当11log q n >a 时,111n n a a q <+=,与(﹡)矛盾。
∴综上所述,=1q 。
∴()1*n a a n N =∈,∴11<a又∵11n n n n b b b a +=()*n N ∈,∴{}n b1若1a11>,于是123b <b <b 。
又由221nn n n n b a b a a ++=+即1a =,得1n b 。
∴123b b b ,,中至少有两项相同,与123b <b <b矛盾。
∴1a∴1n b -∴ 12=a b【考点】等差数列和等比数列的基本性质,基本不等式,反证法。
【解析】(1)根据题设221nn n n n b a b a a ++=+和n n n a b b +=+11,求出11n n ba ++=22111n n n n b b a a ++⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭而得证。
(2)根据基本不等式得到11n <a +≤{}n a 的公比=1q 。
从而得到()1*n a a n N =∈的结论,再由11n n n n b b b a +=知{}n b1最后用反证法求出12=a b例6. (2012年广东省理5分)不等式21x x +-≤的解集为 ▲ 。