河北省正定县第一中学2014-2015学年高二数学10月29日周考训练
- 格式:doc
- 大小:79.50 KB
- 文档页数:2
高二数学周测AAAAA :丁岩 印数:780(理) 时间:20180425一、选择题1.设复数z 满足1,1z i z+=-i 为虚数单位,则z = ( )A .1B .22.观察下列各式:234749,7343,72401,===···则20137的末两位数字为( )A .01B .43C .07D .493.五种不同的商品在货架上排成一排,其中,a b 两种必须排在一起,而,c d 两种不能排在一起,则不同的排法共有 ( )A .12种B .20种C .24种D .48种4.设m 为正整数,()2m x y +展开式的二项式系数的最大值为()21,m a x y ++展开式的二项式系数的最大值为b 。
若137a b =,则实数m = ( )A .5B .6C .7D .85.若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 ( )A .-40B .-20C .20D .406.已知随机变量X 服从正态分布N ()3,1,且()240.6826P X ≤≤=,则P (X >4)= ( )A .0.1588B .0.1587C .0.1586D .0.15857.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 ( )A .18B .38C .58D .788.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 ( )A .100B .200C .300D .400二、填空题9.某个部件由三个电子元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布()21000,50N ,且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为__________________。
河北省正定中学2014—2015学年度下学期第三次月考高二数学试题一、选择题: 1.复数( )A .B .C .D .2.已知命题:对任意,总有,:“”是“”的充分不必要条件,则下列命题为真命题的是( ) A . B . C . D .3.如图所示,程序框图的输出结果是( ) A . B . C . D . 4.直线与曲线在第一象限内围成的封闭图形的面积为( ) A . B . C. D .5.设抛物线的焦点为,准线为,为抛物线上一点, ,为垂足,若直线斜率为,那么( ) A . B . C . D .6.已知等比数列的第项是二项式展开式的常数项,则( )A .B .C .D . 7.如图1,已知正方体ABCD -A 1B 1C l D 1的棱长为a ,动点M 、N 、Q 分别在线段上.当三棱锥Q-BMN 的俯视图如图2所示时,三棱锥Q-BMN 的正视图面积等于( )A. B.C. D. 8.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,则甲、乙、丙三人训练成绩的方差、、的大小关系是( ) A. B. C D.9.曲线在点处的切线的斜率为( ) A . B . C . D . 10.要分配甲、乙、丙、丁、戊名同学去参加三项不同的教学活动,其中活动一和活动二各要人,活动三要人,每人只能参加一项活动,且甲,乙两人不能参加同一活动,则不同的分配方法有( )种A .B .C .D .11.过曲线()222210,0x y a b a b-=>>的左焦点作曲线的切线,切点为,延长交曲线于点,其中、有一个共同的焦点,若,则曲线的离心率为( )A .B .C .D .甲丙乙12.设函数()()()[)11,,212,2,2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数的零点的个数为( )A .B .C .D .二、填空题:则的值为14.设不等式组1,0,20y x y x y ≤⎧⎪+≥⎨⎪--≤⎩表示的平面区域为D ,在区域D 内随机取一点M ,则点M 落在圆内的概率为___________.15.设为实常数,是定义在上的奇函数,当时, ,若对一切成立,则的取值范围为 .16. 在实数集中,我们定义的大小关系“”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“”:已知和, ,当且仅当“”或“且”.定义两点的“”与“”运算如下:1212(,)M N x x y y ⊕=++. 则下面四个命题:①已知和,则;②已知和,若,则,且; ③已知,,则;④已知,则对任意的点,都有; ⑤已知,则对任意的点,都有.其中真命题的序号为 (把真命题的序号全部写出). 三、解答题:17.(本小题满分12分) 在中,的对边分别是, 已知C b B c A a cos cos cos 3+=. (1)求的值;(2)若332cos cos ,1=+=C B a ,求边的值. 18.(本小题满分12分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(1) 求这次铅球测试成绩合格的人数;(2) 用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格...的人数,求的分布列及数学期望;19. (本小题满分12分) 将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且AE =.(Ⅰ)求DE 与平面BEC 所成角的正弦值;(Ⅱ)直线BE 上是否存在一点M ,使得CM ∥平面ADE ,若存在,确定点M 的位置,若不存在,请说明理由.20. (本小题满分12分)已知椭圆22221(0)x y a b a b+=>>的离心率为,定点,椭圆短轴的端点是,,且.(Ⅰ)求椭圆的方程;(Ⅱ)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使内切圆圆心的纵坐标为定值?若存在,求出点的坐标;若不存在,说明理由.21.(本小题满分12分)已知函数.(Ⅰ)若函数在上是增函数,求正实数的取值范围;(Ⅱ)若,且,设()()(1)ln F x f x k x =+-,求函数在上的最大值和最小值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分。
河北省正定县第一中学2014-2015学年高一数学10月30日周考训练————————————————————————————————作者:————————————————————————————————日期:河北省正定县第一中学2014-2015学年高一数学10月30日周考训练 一.选择题(每小题5分) 1.下列等式36a 3=2a ;3-2=6-22;-342=4-34×2中一定成立的有( A ) A .0个 B .1个 C .2个 D .3个2. log 29×log 34= ( D )A.14B.12C .2D .4 3. 已知幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫8,12,则f ⎝ ⎛⎭⎪⎫164的值为 ( B ) A .3 B .4 C.13 D.144.函数y =a |x |(a >1)的图象是 ( B ).5. 设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是 ( B )A .log a b ·log c b =log c aB .log a b ·log c a =log c bC .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a c6. 设232555322(),(),()555a b c ===,则a ,b ,c 的大小关系是 ( A ) A .a >c >b B .a >b >c C .c >a >bD .b >c >a 7. 设a =log 54,b =(log 53)2,c =log 45,则( D ) A .a <c <bB .b <c <aC .a <b <cD .b <a <c 8. 设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是 ( D ) A . B . C .A .-2B .-12 C.12 D .2二.填空题(每小题5分)11. .已知23a =49 (a >0),则32log a =__3______. 12. 已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是___④_____.①a <0,b <0,c <0; ②a <0,b ≥0,c >0; ③2-a <2c; ④2a +2c<2.13.函数f (x )=1-2log 6x 的定义域为_________.(0,6] 14.不等式4222-+x x ≤12的解集为 15.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)= .( 2 )16.函数f (x )=12log (x 2-2x -3)的单调递增区间是__________.(-∞,-1) 三.解答题(每题10分)17.计算下列各式的值(1).22110.5332234[(3)(5)(0.008)(0.02)(0.32)]89----+÷⨯÷0.062 50.25; 原式=22113324849100042625[()()()50]()27981010000-+÷⨯÷ =⎝ ⎛⎭⎪⎫49-73+25×152×4210÷12 =⎝ ⎛⎭⎪⎫-179+2×2=29. (2)2(lg 2)2+lg 2·lg 5+lg 22-lg 2+1原式=lg 2(2lg 2+lg 5)+lg 22-2lg 2+1=lg 2(lg 2+lg 5)+|lg 2-1|=lg 2·lg(2×5)+1-lg 2=1.18.若函数y =lg(3-4x +x 2)的定义域为M .当x ∈M 时,求f (x )=2x +2-3×4x的最值 及相应的x 的值.解 ∵y =lg(3-4x +x 2),∴3-4x +x 2>0,解得x <1或x >3,∴M ={x |x <1,或x >3}, f (x )=2x +2-3×4x =4×2x -3×(2x )2.令2x=t ,∵x <1或x >3,∴t >8或0<t <2. ∴f (t )=4t -3t 2=-3⎝ ⎛⎭⎪⎫t -232+43(t >8或0<t <2). 由二次函数性质可知:当0<t <2时,f (t )∈⎝⎛⎦⎥⎤-4,43, 当t >8时,f (x )∈(-∞,-160),当2x =t =23,即x =log 223时,f (x )max =43.综上可知:当x =log 223时,f (x )取到最大值为43,无最小值.19.已知f (x )=log a 1+x 1-x(a >0,a ≠1). (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 的取值范围.解 (1)∵f (x )=log a 1+x 1-x ,需有1+x 1-x>0, 即(1+x )(1-x )>0,即(x +1)(x -1)<0,∴-1<x <1.∴函数f (x )的定义域为(-1,1).(2)f (x )为奇函数,证明如下:∵f (-x )=log a 1-x 1+x =log a ⎝ ⎛⎭⎪⎫1+x 1-x -1 =-log a 1+x 1-x=-f (x ),∴f (x )为奇函数. (3)log a 1+x 1-x>0 (a >0,a ≠1), ①当0<a <1时,可得0<1+x 1-x<1, 解得-1<x <0.又-1<x <1,则当0<a <1时,f (x )>0的x 的取值范围为(-1,0).②当a >1时,可得1+x 1-x>1,解得0<x <1. 即当a >1时,f (x )>0的x 的取值范围为(0,1).综上,使f (x )>0的x 的取值范围是:a >1时,x ∈(0,1);0<a <1时,x ∈(-1,0).20.已知函数f (x )=21(0)21(1)x c cx x c c x -+<<⎧⎪⎨⎪+≤<⎩满足f (c 2)=98. (1)求常数c 的值;(2)解不等式f (x )>28+1. 解 (1)依题意0<c <1,∴c 2<c ,∵f (c 2)=98,∴c 3+1=98,c =12.(2)由(1)得f (x )=⎩⎪⎨⎪⎧ 12x +1 0<x <122-4x +1 12≤x <1,由f (x )>28+1得 当0<x <12时,12x +1>28+1,∴24<x <12, 当12≤x <1时,2-4x +1>28+1,∴12≤x <58. 综上可知,24<x <58, ∴f (x )>28+1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |24<x <58.。
高二第二学期期末考试 试题 试卷Ⅰ1.设集合,,则=A. B. C. D. ,命题,则 A.命题是假命题B.命题是真命题 C.命题是真命题D.命题是假命题 3. 设复数(是虚数单位),则=A. B. C. D. 、分数在内的人数分别为 A. B. C. D. 5某程序框图如右图所示,该程序运行后输出的为 B. C. D. 6.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是A.2?B.?C.?D.3 展开式中只有第六项的二项式系数最大,则展开式中的常数项是 A.180 B.120 C.90 D.45 9. 设数集,,且都是集合的子集,如果把叫做集合的“长度”,那么集合的“长度”的最小值是 A. B. C. D. 10. 在中,三个内角所对的边为,若,则() A. B. C.4 D. 11.设,分别为双曲线的左,右焦点,为双曲线的左顶点,以为直径的圆交双曲线某条渐近线于,两点,且满足,则该双曲线的离心率为( ) A. B. C. D. 12.已知函数的两个极值点分别为,且,点表示的平面区域内存在点满足,则实数的取值范围是( ) A. B. C. D. 试卷Ⅱ(共 90 分) 二、填空题(本题共4个小题,每题5分,共计20分.请把答案写在答题纸上) 13.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时, 甲说:丙没有考满分; 乙说:是我考的; 丙说:甲说真话. 事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是的边长4,,若在菱形内任取一点,则该点到菱形的四个顶点的距离均大于1的概率为. 15.已知点在渐近线方程为的双曲线上,其中,分别为其左、右焦点.若的面积为16且,则的值为. 16.若,函数有相同的最小值,则. 与,若且对任意正整数n满足,数列的前n项和 (1)求数列与的通项公式; (2)求数列的前n项和 18、(本小题满分12分) 某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如下,规定考试成绩内为优秀。
高二第二学期第一次月考 数 学 试 题 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.的实部与虚部相等,则实数() A.C.D. 2.为等差数列,公差,为其前项和,若,则( ) A. B.C. D. R,R,给出下列结论:①命题“”是真命题;②命题“”是假命题;③命题“”是真命题④命题“”是假命题, 其中正确的是( )A.②④B.②③C.③④D.①②③ 4.某几何的三视图如图所示,它的体积为 A. B. C. D. 5.用数学归纳法证明的过程中,第二步假设当时等式成立,则当时应得到() A.B. C.D. .已知双曲线()的右焦点与抛物线的焦点相同,则此双曲线的离心率为A. B. C.D. A. B. C. D. 8.由直线与曲线所围成的封闭图形的面积是( ) A. B. C. D. 9.如右图所示的程序框图,输出的结果的值为( ) A.0B.1C.D. 10.从10名大学生村官中选3个人担任乡长助理,则甲、丙至少有1人入选,而乙没有入选的不同选法的种数为() A.85 B.56 C.49 D.28 11.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第行有个数且两端的数均为,每个数是它下一行左右相邻两数的和,如, ,,…,则第7行第4个数(从左往右数)为() ……………………………… A. B. C. D. 12.定义在上的奇函数,当时,则关于的函数()的所有零点之和为( )A.1-B.C.D.二、填空题:本大题共4小题,每小题5分. 13.圆上的动点到直线的最短距离为 . 14.的展开式中的常数项等于 . 15.已知中,对应的边长分别为,且,,则中,沿折叠,使平面,则三棱锥外接球的表面积为等差数列中,(1)求的通项公式;(2)设已知为的三个内角,其所对的边分别为且. (1)求角的值; (2)若,求的面积. .在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率; (2)该顾客获得的奖品总价值元的概率分布列.20.如图,在四棱锥中,底面是矩形,平面,,,分别是的中点. (1)证明:平面; (2)求平面与平面夹角的大小. 已知过点的动直线与抛物线:相交于两点.当直线的斜率是时,(1)求抛物线的方程; (2)设线段的中垂线在轴上的截距为,求的取值范围. . (1)求的单调区间; (2)设,若对任意,均存在,使得<,求的取值范围. 17.【答案】(Ⅰ)设等差数列的公差为d,则因为,所以.解得,. 所以的通项公式为.(Ⅱ), 所以. 解(1)由2cos2 +cos A=0,得1+cos A+cos A=0,即cos A=-, 0<A<π,A=. (2)由余弦定理得,a2=b2+c2-2bccos A,A=, 则a2=(b+c)2-bc,又a=2,b+c=4,有12=42-bc,则bc=4, 故S△ABC=bcsin A=. 19.解析(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率 P===. (2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且 P(X=0)==,P(X=10)==, P(X=20)==,P(X=50)==,P(X=60)==. 所以X的分布列为: X010205060P 20.(1)证明 如图,以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系. AP=AB=2,BC=AD=2,四边形ABCD是矩形, A,B,C,D,P的坐标为A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2). 又E,F分别是AD,PC的中点,E(0,,0),F(1,,1). =(2,2,-2),=(-1,,1),=(1,0,1). ·=-2+4-2=0,·=2+0-2=0. ⊥, ∴PC⊥BF,PCEF.又BF∩EF=F, PC⊥平面BEF. (2)解 由(1)知平面BEF的一个法向量n1==(2,2,-2),平面BAP的一个法向量n2==(0,2,0), n1·n2=8. 设平面BEF与平面BAP的夹角为θ, 则cos θ=|cos〈n1,n2〉|===, θ=45°.平面BEF与平面BAP的夹角为45°.21.解 (1)设B(x1,y1),C(x2,y2),当直线l的斜率是时,l的方程为y=(x+4),即x=2y-4. 由得2y2-(8+p)y+8=0, 又=4,y2=4y1, 由及p>0得:y1=1,y2=4,p=2,得抛物线G的方程为x2=4y. (2)设l:y=k(x+4),BC的中点坐标为(x0,y0), 由得x2-4kx-16k=0, ∴x0==2k,y0=k(x0+4)=2k2+4k. 线段BC的中垂线方程为y-2k2-4k=-(x-2k), 线段BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2, 对于方程,由Δ=16k2+64k>0得k>0或k<-4.b∈(2,+∞). 3 6 5 5 3 6 5 5 侧视图 俯视图 正视图。
河北省正定中学2014—2015学年度上学期第二次月考高二数学理试题一、选择题:(本大题共12小题,每题5分,共60分)1.已知命题p :,sin x ≤1,则( ). A .¬p :,sin x 0≥1 B .¬p :,sin x 0>1 C . ¬p :,sin x ≥1 D .¬p :,sin x >12.甲:A1,A2是互斥事件;乙:A1,A2是对立事件,那么甲是乙的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3.已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A.①③ B.①④ C.②③ D.②④4.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6B.8C.12D.185.用辗转相除法求840和1764的最大公约数是( ) A .84 B .12 C .168 D .252 6. 执行如图所示的程序框图,输出的T=( ).A .12B .30C .20D .427.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A . B . C . D .8. 已知椭圆C :的左、右焦点为、,离心率为,过的直线交C 于A 、B 两点,若的周长为,则C 的方程为 ( ) A . B . C . D .9.在面积为S 的△ABC 的边上AB 上任取一点P ,则△PBC 的面积大于S4的概率是( ).A.14B.12C. 23D. 3410.设是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( )C. 11.已知一个几何体的主视图及左视图均是边长为的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为 ( )A .B .C .D .12.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为( )A .B .C .D . 二、填空题:(本大题共4小题,每题5分,共20分)13.在平面直角坐标系xOy 中,直线被圆截得的弦长为 . 14.下列命题中_________为真命题. ①“A ∩B =A ”成立的必要条件是“AB ”; ②“若x 2+y 2=0,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题; ④“圆内接四边形对角互补”的逆否命题.15.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生. 16. 已知椭圆C :,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则 . 三、解答题:(本大题共6小题,共70分)17.(本题10分)在中,3,sin 2sin a b C A ===(Ⅰ)求的值。
2014-2015学年河北省石家庄市正定一中高三(上)周测数学试卷(4)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共9小题,共27.0分)1.下列四类函数中,有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f (y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数【答案】C【解析】解:根据题意,要求找到符合“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的函数;分析选项可得,A、B、D不符合f(x+y)=f(x)f(y),只有C中,对于指数函数有:a x+y=a x•a y,成立;故选C.根据题意,要求找到符合“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f (y)”的函数;分析选项可得答案.本题考查指数函数的运算性质,注意与对数函数、幂函数的区分.2.函数的值域是()A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)【答案】C【解析】解:∵4x>0,∴<,.故选C.本题可以由4x的范围入手,逐步扩充出的范围.指数函数y=a x(a>0且a≠1)的值域为(0,+∞).3.设a=0.32,b=20.3,c=log20.3,则a,b,c的大小关系为()A.c<a<bB.c<b<aC.a<b<cD.a<c<b【答案】A【解析】解:∵0<a=0.32<0.30=1,b=20.3>20=1,c=log20.3<log21=0,∴c<a<b.故选A.由0<a=0.32<0.30=1,b=20.3>20=1,c=log20.3<log21=0,知c<a<b.本题考查对数值和指数值大小的比较,是基础题.解题时要认真审题,仔细解答.4.如果log x<log y<0,那么()A.y<x<1B.x<y<1C.1<x<yD.1<y<x【答案】D【解析】解:不等式<<可化为:<<又∵函数的底数0<<1故函数为减函数∴x>y>1故选D本题所给的不等式是一个对数不等式,我们要先将不等式的三项均化为同底根据对数函数的单调性,即可得到答案.本题考查的知识点是对数函数的单调性与特殊点,其中根据对数函数的性质将对数不等式转化为一个整式不等式是解答本题的关键.5.设2a=5b=m,且,则m=()A. B.10 C.20 D.100【答案】A【解析】解:,∴m2=10,又∵m>0,∴.故选A直接化简,用m代替方程中的a、b,然后求解即可.本题考查指数式和对数式的互化,对数的运算性质,是基础题.6.函数f(x)=ln(x2+1)的图象大致是()A. B. C. D.【答案】A【解析】解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.7.已知点,在幂函数f(x)的图象上,则f(x)是()C.定义域内的减函数D.定义域内的增函数【答案】A【解析】解:设幂函数为f(x)=xα,∵点,在幂函数f(x)的图象上,∴f()=(),即,∴,即α=-1,∴f(x)=为奇函数,故选:A.根据幂函数的定义,利用待定系数法求出幂函数的不等式,然后根据幂函数的性质进行判断.本题主要考查幂函数的定义和性质,利用待定系数法是解决本题的关键,比较基础.8.设函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D【解析】解:当x≤1时,21-x≤2的可变形为1-x≤1,x≥0,∴0≤x≤1.当x>1时,1-log2x≤2的可变形为x≥,∴x≥1,故答案为[0,+∞).故选D.分类讨论:①当x≤1时;②当x>1时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可.本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.9.已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=-lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:<<<,整理得线性规划表达式为:<<<,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=-x+z,即求函数的截距最值.根据导数定义,⇒<⇒函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=-lgb,再化简整理即可求解;或采用线性规划问题处理也可以.本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,根据条件a>0,b>0,且a≠b可以利用重要不等式(a2+b2≥2ab,当且仅当a=b时取等号)列出关系式(a+b)2>4ab=4,进而解决问题.二、填空题(本大题共3小题,共9.0分)10.()+log3+log3= ______ .【答案】【解析】解:()+log3+log3==.故答案为:.直接利用分数指数幂的运算法则,对数的运算法则求解即可.本题考查分数指数幂的运算法则,对数的运算法则,考查计算能力.11.若指数函数y=a x在[-1,1]上的最大值和最小值的差为1,则实数a= ______ .【答案】或【解析】解:当a>1时,y=a x在[-1,1]上单调递增,∴当x=-1时,y取到最小值a-1,当x=1时,y取到最大值a,∴a-a-1=1,当0<a<1时,y=a x在[-1,1]上单调递减,∴当x=-1时,y取到最大值a-1,当x=1时,y取到最小值a,∴a-1-a=1,解得a=;故答案为:或.分a>1和0<a<1两种情况分别讨论y=a x在[-1,1]上的最大值和最小值,结合题意求解即可.本题考查了指数函数y=a x的单调性,当a>1时,y=a x在R上单调递增,当0<a<1时,y=a x在R上单调递减,同时考查了分类讨论数学思想及学生的运算能力.12.关于函数,有下列命题①其图象关于y轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;③f(x)的最小值是lg2;④f(x)在区间(-1,0)、(2,+∞)上是增函数;⑤f(x)无最大值,也无最小值其中所有正确结论的序号是______ .【答案】①③④【解析】解:①定义域为R,又满足f(-x)=f(x),所以函数y=f(x)的图象关于y轴对称,正确.②令t=(x>0),在(0,1]上是减函数,在[1,+∞)上是增函数,不正确.③t=≥2,又是偶函数,所以函数f(x)的最小值是lg2,正确.④当-1<x<0或x>1时函数t=是增函数,根据复合函数知,f(x)是增函数,正确.⑤由③知,不正确.故答案为:①③④①判断函数是否为偶函数即可.②将复合函数转化为两个基本函数,令t=(x>0),易知在(0,1]上是减函数,在[1,+∞)上是增函数.③因为t=≥2(x>0),再由偶函数,可知正确.④当-1<x<0或x>1时函数t=是增函数,再根据复合函数判断.⑤用③来判断.本小题主要考查对数函数的单调性与特殊点、对数函数的值域与最值等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.13.已知f(x)=log3x,x∈[1,9],求函数y=f(x2)+f2(x)的值域.【答案】解:∵f(x)=log3x,x∈[1,9],∴1≤x2≤9,1≤x≤9,∴1≤x≤3,∴0≤log3x≤1,∴y=f(x2)+f2(x)=2log3x+log23x=(log3x+1)2-1,∴0≤(log3x+1)2-1≤3.故函数y=f(x2)+f2(x)的值域为[0,3].【解析】由f(x)=log3x,x∈[1,9],求函数y=f(x2)+f2(x)的定义域,再求函数的值域.本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.同时要注意函数的定义域.14.已知f(x)=log a(a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x取值范围.【答案】解:(1)由对数函数的定义知>.如果>>,则-1<x<1;如果<<,则不等式组无解.故f(x)的定义域为(-1,1)(2)∵,∴f(x)为奇函数.(3)(ⅰ)对a>1,log a>等价于>,①1)时有f(x)>0.(ⅱ)对0<a<1,log a>等价于0<<.②而从(1)知1-x>0,故②等价于-1<x<0.故对0<a<1,当x∈(-1,0)时有f(x)>0.【解析】(1)求对数函数的定义域,只要真数大于0即可,转化为解分式不等式.(2)利用奇偶性的定义,看f(-x)和f(x)的关系,注意到和互为倒数,其对数值互为相反数;也可计算f(-x)+f(x)=0得到.(3)由对数函数的图象可知,要使f(x)>0,需分a>0和a<0两种境况讨论.本题考查对数函数的性质:定义域、奇偶性、单调性等知识,难度一般.。
河北省石家庄市正定中学2014-2015学年高二上学期期中数学试卷一、选择题(本题共12个小题,每题只有一个正确答案,每题5分,共60分.请把答案涂在答题卡上)1.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=72.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<03.(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差4.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为40,60),80,1001,9﹣3,﹣2)0.100.50(2,3合计50 1.00(Ⅰ)将上面表格中缺少的数据填在相应位置;(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)220,40),60,80),,若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.60考点:频率分布直方图.专题:概率与统计.分析:由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.解答:解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故选:B.点评:本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.5.(5分)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数考点:极差、方差与标准差.专题:概率与统计.分析:根据抽样方法可知,这种抽样方法是一种简单随机抽样.根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数;方差公式:s2=求解即可.解答:解:根据抽样方法可知,这种抽样方法是一种简单随机抽样.五名男生这组数据的平均数=(86+94+88+92+90)÷5=90,方差=×=8.五名女生这组数据的平均数=(88+93+93+88+93)÷5=91,方差=×=6.故这五名男生成绩的方差大于这五名女生成绩的方差.故选:C.点评:本题考查了抽样方法、平均数以及方差的求法,要想求方差,必须先求出这组数据的平均数,然后再根据方差公式求解.6.(5分)将389化成四进位制数的末位是()A.1B.2C.3D.0考点:进位制;排序问题与算法的多样性.专题:计算题.分析:根据算法的规则,将389变为四进位制数,即可知末位数是几,对比四个选项,选出正确选项即可.解答:解:将389化成四进位制数的运算过程如图,所得的四进位制数是12011(4)其末位是1故选A点评:本题考查排序问题与算法的多样性,解题的关键是掌握进位制换算的方法﹣﹣除K取余法.7.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q) B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q考点:四种命题间的逆否关系.专题:简易逻辑.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.8.(5分)已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13 D.15考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:计算题;压轴题.分析:由题意可得:椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.解答:解:依题意可得,椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5﹣1﹣2=7,故选B.点评:本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.9.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1B.C.2D.3考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程与抛物线y2=2px(p>0)的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,△AOB的面积为,列出方程,由此方程求出p的值.解答:解:∵双曲线,∴双曲线的渐近线方程是y=±x又抛物线y2=2px(p>0)的准线方程是x=﹣,故A,B两点的纵坐标分别是y=±,双曲线的离心率为2,所以,∴则,A,B两点的纵坐标分别是y=±=,又,△AOB的面积为,x轴是角AOB的角平分线∴,得p=2.故选C.点评:本题考查圆锥曲线的共同特征,解题的关键是求出双曲线的渐近线方程,解出A,B两点的坐标,列出三角形的面积与离心率的关系也是本题的解题关键,有一定的运算量,做题时要严谨,防运算出错.10.(5分)“a≤0”是“函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用;简易逻辑.分析:对a分类讨论,利用二次函数的图象与单调性、充要条件即可判断出.解答:解:当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.当a<0时,,结合二次函数图象可知函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增.若a>0,则函数f(x)=|(ax﹣1)x|,其图象如图1,91,92(2x+1)+1﹣3,﹣2)0.100.50(2,3合计50 1.00(Ⅰ)将上面表格中缺少的数据填在相应位置;(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3内的概率为0.5+0.2=0.7;(Ⅲ)这批产品中的合格品的件数为.解答:解:(Ⅰ)根据题意,50×0.10=5,8÷50=0.16,50×0.50=25,10÷50=0.2,50﹣5﹣8﹣25﹣10=2,2÷50=0.4,故可填表格:分组频数频率﹣2,﹣1)8 0.16(1,2 10 0.2(3,4内的概率为0.5+0.2=0.7;(Ⅲ)这批产品中的合格品的件数为.点评:本题考查统计知识,考查学生的计算能力,属于基础题.18.(12分)设p:实数x满足x2﹣4ax+3a2<0(a<0),q:实数x满足x2﹣x﹣6≤0或x2+2x﹣8>0,且q是p的必要不充分条件,求a的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:探究型.分析:结合一元二次不等式的解法,利用充分条件和必要条件的定义进行判断.解答:解:由x2﹣4ax+3a2<0(a<0),得3a<x<a,即p:3a<x<a.由x2﹣x﹣6≤0得﹣2≤x≤3,由x2+2x﹣8>0得x>2或x<﹣4.即q:x≥﹣2或x<﹣4.因为q是p的必要不充分条件,所以a≤﹣4或﹣2≤3a,解得a≤﹣4或a≥﹣,因为a<0,所以a≤﹣4或<0.即a的取值范围a≤﹣4或<0.点评:本题主要考查充分条件和必要条件的应用,利用一元二次不等式的解法先化简p,q是解决本题的关键.19.(12分)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O=.(1)证明:A′O⊥平面BCDE;(2)求二面角A′﹣CD﹣B的平面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角;空间向量及应用;立体几何.分析:(1)连接OD,OE.在等腰直角三角形ABC中,∠B=∠C=45°,,AD=AE=,CO=BO=3.分别在△COD与△OBE中,利用余弦定理可得OD,OE.利用勾股定理的逆定理可证明∠A′OD=∠A′OE=90°,再利用线面垂直的判定定理即可证明;(2)方法一:过点O作OF⊥CD的延长线于F,连接A′F.利用(1)可知:A′O⊥平面BCDE,根据三垂线定理得A′F⊥CD,所以∠A′FO为二面角A′﹣CD﹣B的平面角.在直角△OCF中,求出OF即可;方法二:取DE中点H,则OH⊥OB.以O为坐标原点,OH、OB、OA′分别为x、y、z轴建立空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.解答:(1)证明:连接OD,OE.因为在等腰直角三角形ABC中,∠B=∠C=45°,,CO=BO=3.在△COD中,,同理得.因为,.所以A′O2+OD2=A′D2,A′O2+OE2=A′E2.所以∠A′OD=∠A′OE=90°所以A′O⊥OD,A′O⊥OE,OD∩OE=O.所以A′O⊥平面BCDE.(2)方法一:过点O作OF⊥CD的延长线于F,连接A′F因为A′O⊥平面BCDE.根据三垂线定理,有A′F⊥CD.所以∠A′FO为二面角A′﹣CD﹣B的平面角.在Rt△COF中,.在Rt△A′OF中,=.所以.所以二面角A′﹣CD﹣B的平面角的余弦值为.方法二:取DE中点H,则OH⊥OB.以O为坐标原点,OH、OB、OA′分别为x、y、z轴建立空间直角坐标系.则O(0,0,0),A′(0,0,),C(0,﹣3,0),D(1,﹣2,0)=(0,0,)是平面BCDE的一个法向量.设平面A′CD的法向量为n=(x,y,z),.所以,令x=1,则y=﹣1,.所以是平面A′CD的一个法向量设二面角A′﹣CD﹣B的平面角为θ,且所以所以二面角A′﹣CD﹣B的平面角的余弦值为hslx3y3h点评:本题综合考查了等腰直角三角形的性质、余弦定理、线面垂直的判定与性质定理、三垂线定哩、二面角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2(1)若△F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.考点:直线与圆锥曲线的关系;平面向量数量积的运算;直线的一般式方程;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由△F1B1B2为等边三角形可得a=2b,又c=1,集合a2=b2+c2可求a2,b2,则椭圆C 的方程可求;(2)由给出的椭圆C的短轴长为2,结合c=1求出椭圆方程,分过点F2的直线l的斜率存在和不存在讨论,当斜率存在时,把直线方程和椭圆方程联立,由根与系数关系写出两个交点的横坐标的和,把转化为数量积等于0,代入坐标后可求直线的斜率,则直线l的方程可求.解答:解:(1)设椭圆C的方程为.根据题意知,解得,故椭圆C的方程为.(2)由2b=2,得b=1,所以a2=b2+c2=2,得椭圆C的方程为.当直线l的斜率不存在时,其方程为x=1,不符合题意;当直线l的斜率存在时,设直线l的方程为y=k(x﹣1).由,得(2k2+1)x2﹣4k2x+2(k2﹣1)=0.设P(x1,y1),Q(x2,y2),则,因为,所以,即===,解得,即k=.故直线l的方程为或.点评:本题考查了椭圆的标准方程,考查了数量积的坐标运算,考查了直线和圆锥曲线的关系,考查了分类讨论的数学思想方法和数学转化思想方法,训练了根与系数关系,属有一定难度题目.21.(12分)如图,已知椭圆C0:,动圆C1:.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;(Ⅱ)设动圆C2:与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD 与矩形A′B′C′D′的面积相等,证明:为定值.考点:圆锥曲线的综合.专题:综合题;压轴题.分析:(Ⅰ)设出线A1A的方程、直线A2B的方程,求得交点满足的方程,利用A在椭圆C0上,化简即可得到M轭轨迹方程;(Ⅱ)根据矩形ABCD与矩形A'B'C'D'的面积相等,可得A,A′坐标之间的关系,利用A,A′均在椭圆上,即可证得=a2+b2为定值.解答:(Ⅰ)解:设A(x1,y1),B(x2,y2),∵A1(﹣a,0),A2(a,0),则直线A1A的方程为①直线A2B的方程为y=﹣(x﹣a)②由①×②可得:③∵A(x1,y1)在椭圆C0上,∴∴代入③可得:∴;(Ⅱ)证明:设A′(x3,y3),∵矩形ABCD与矩形A'B'C'D'的面积相等∴4|x1||y1|=4|x3||y3|∴=∵A,A′均在椭圆上,∴=∴=∴∵t1≠t2,∴x1≠x3.∴∵,∴∴=a2+b2为定值.点评:本题考查轨迹方程,考查定值问题的证明,解题的关键是设出直线方程,求出交点的坐标,属于中档题.22.(12分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.解答:解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.∴三角形ABD的面积S△==,令4+k2=t>4,则k2=t﹣4,f(t)===,∴S△=,当且仅,即,当时取等号,故所求直线l1的方程为.点评:本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力.。
2014-2015学年河北省石家庄市正定中学高二(上)期末数学试卷(文科)一.选择题(本大题共12个小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)设集合M={x|x2+2x﹣15<0},N={x|x2+6x﹣7≥0},则M∩N=()A.(﹣5,1]B.[1,3)C.[﹣7,3)D.(﹣5,3)2.(5分)已知i是虚数单位,m和n都是实数,且m(1+i)=7+ni,则()A.﹣1B.1C.﹣i D.i3.(5分)已知研究x与y之间关系的一组数据如表所示,则y对x的回归直线方程=bx+a必过点()x0123y1357A.(2,2)B.(,0)C.(1,2)D.(,4)4.(5分)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6B.12C.24D.365.(5分)“实数m=﹣”是“直线l1:x+2my﹣1=0和直线l2:(3m+1)x﹣my﹣1=0”相互平行的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.(5分)已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A.B.C.D.7.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16B.8C.D.48.(5分)执行如图所示的程序框图,若输入x=10,则输出y的值为()A.B.4C.1D.9.(5分)若直线mx+ny=4和圆x2+y2=4没有公共点,则过点(m,n)的直线与椭圆的公共点个数为()A.至多一个B.0个C.1个D.2个10.(5分)设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.411.(5分)过椭圆C:+=1(a>b>0)的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若<k<,则椭圆离心率的取值范围是()A.B.C.D.12.(5分)若定义在R上的函数y=f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,1]时,f(x)=x2,函数g(x)=则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为()A.6B.7C.8D.9二.填空题:(本大题共4小题,每题5分,共20分)13.(5分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.14.(5分)在[﹣6,9]内任取一个实数m,设f(x)=﹣x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于.15.(5分)已知函数f(x)=sinx﹣xcosx,若存在x∈(0,π),使得f′(x)>λx 成立,则实数λ的取值范围是.16.(5分)(1)“数列{a n}为等比数列”是“数列{a n a n+1}为等比数列”的充分不必要条件.(2)“a=2”是“函数f(x)=|x﹣a|在区间[2,+∞)上为增函数”的充要条件.(3)已知命题p1:∃x∈R,使得x2+x+1<0;p2:∀x∈[1,2],使得x2﹣1≥0.则p1∧p2是真命题.(4)设a,b,c分别是△ABC的内角A,B,C的对边,若a=1,b=.则A=30°是B=60°的必要不充分条件.其中真命题的序号是(写出所有真命题的序号)三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知{a n}为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.(1)求数列{a n}的通项公式:(2)设b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12分)在三角形ABC中,sin2CcosC+cosC=cos2CsinC+.(1)求角C的大小;(2)若AB=2,且sinBcosA=sin2A,求△ABC的面积.19.(12分)某工厂生产A,B两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x,y看不清,统计员只记得x<y,且A,B两种元件的检测数据的平均值相等,方差也相等.(1)求表格中x与y的值;(2)从被检测的5件B种元件中任取2件,求2件都为正品的概率.20.(12分)如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.(Ⅰ)求证:平面PDC⊥平面PAD;(Ⅱ)在BC边上是否存在一点M,使得D点到平面PAM的距离为2,若存在,求BM的值,若不存在,请说明理由.21.(12分)已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=﹣2于点M,N.(Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O为原点,求证:∠MON为定值.22.(12分)设a∈R,函数f(x)=ax3﹣3x2.(1)若函数f(x)的图象在x=﹣1处的切线与直线y=3x平行,求a的值;(2)若a=1,求函数f(x)的极值与单调区间;(3)若函数f(x)=ax3﹣3x2的图象与直线y=﹣2有三个公共点,求a的取值范围.2014-2015学年河北省石家庄市正定中学高二(上)期末数学试卷(文科)参考答案与试题解析一.选择题(本大题共12个小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)设集合M={x|x2+2x﹣15<0},N={x|x2+6x﹣7≥0},则M∩N=()A.(﹣5,1]B.[1,3)C.[﹣7,3)D.(﹣5,3)【解答】解:由M中不等式变形得:(x﹣3)(x+5)<0,解得:﹣5<x<3,即M=(﹣5,3),由N中不等式变形得:(x﹣1)(x+7)≥0,解得:x≤﹣7或x≥1,即N=(﹣∞,﹣7]∪[1,+∞),则M∩N=[1,3),故选:B.2.(5分)已知i是虚数单位,m和n都是实数,且m(1+i)=7+ni,则()A.﹣1B.1C.﹣i D.i【解答】解:由m(1+i)=7+ni,得m+mi=7+ni,即m=n=7,∴=.故选:D.3.(5分)已知研究x与y之间关系的一组数据如表所示,则y对x的回归直线方程=bx+a必过点()A.(2,2)B.(,0)C.(1,2)D.(,4)【解答】解:∵=1.5,=4,∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点得到,线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选:D.4.(5分)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6B.12C.24D.36【解答】解:由已知的三视图可得该棱锥是以俯视图为底面的四棱锥其底面长和宽分别为3,4,棱锥的高是3故棱锥的体积V=Sh=×3×4×3=12故选:B.5.(5分)“实数m=﹣”是“直线l1:x+2my﹣1=0和直线l2:(3m+1)x﹣my﹣1=0”相互平行的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【解答】解:当m=0时,两直线分别为x=1和x=1,此时两直线重合,故m≠0,若两直线平行,则等价为,即m=﹣,则“实数m=﹣”是“直线l1:x+2my﹣1=0和直线l2:(3m+1)x﹣my﹣1=0”相互平行的充要条件,故选:A.6.(5分)已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A.B.C.D.【解答】解:抛物线y2=4x的焦点F(1,0),双曲线的方程为故选:D.7.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16B.8C.D.4【解答】解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为,∴a4•a14=(2)2=8,∴a7•a11=8,∵a7>0,a11>0,∴2a 7+a11≥2=2=8.故选:B.8.(5分)执行如图所示的程序框图,若输入x=10,则输出y的值为()A.B.4C.1D.【解答】解:当输入的x值为10时,y=x﹣1=4,此时|y﹣x|=6,不满足退出循环的条件,继续执行循环,此时x=4,y=1;当x=4,y=1时,|y﹣x|=3,不满足退出循环的条件,继续执行循环,此时x=1,y=;当x=1,y=时,|y﹣x|=,不满足退出循环的条件,继续执行循环,此时x=,y=;当x=,y=时,|y﹣x|=<1,满足退出循环的条件,故输出结果为故选:A.9.(5分)若直线mx+ny=4和圆x2+y2=4没有公共点,则过点(m,n)的直线与椭圆的公共点个数为()A.至多一个B.0个C.1个D.2个【解答】解:因为直线mx+ny=4和圆x2+y2=4没有公共点,所以原点到直线mx+ny﹣4=0的距离d=>2,所以m2+n2<4,所以点P(m,n)是在以原点为圆心,2为半径的圆内的点.∵椭圆的长半轴3,短半轴为2∴圆x2+y2=4内切于椭圆∴点P是椭圆内的点∴过点P(m,n)的一条直线与椭圆的公共点数为2.故选:D.10.(5分)设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.4【解答】解:由z=ax+by(a>0,b>0)得y=,作出可行域如图:∵a>0,b>0,∴直线y=的斜率为负,且截距最大时,z也最大.平移直线y=,由图象可知当y=经过点A时,直线的截距最大,此时z也最大.由,解得,即A(4,6).此时z=4a+6b=12,即=1,则+=(+)()=1+1++≥2+2=4,当且仅当=时取=号,故选:D.11.(5分)过椭圆C:+=1(a>b>0)的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若<k<,则椭圆离心率的取值范围是()A.B.C.D.【解答】解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵,∴,∴,∴,故选:C.12.(5分)若定义在R上的函数y=f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,1]时,f(x)=x2,函数g(x)=则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为()A.6B.7C.8D.9【解答】解:定义在R上的函数y=f(x)满足f(x+1)=﹣f(x),则f(x+2)=f[(x+1)+1]=﹣f(x+1)=﹣[﹣f(x)]=f(x),所以函数y=f(x)是以2周期的函数.在同一坐标系内画出y=f(x),y=g(x)在区间[﹣5,5]上的图象,共有8个交点,所以函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为8个故选:C.二.填空题:(本大题共4小题,每题5分,共20分)13.(5分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出25人.【解答】解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人故答案为:2514.(5分)在[﹣6,9]内任取一个实数m,设f(x)=﹣x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于.【解答】解:∵f(x)=﹣x2+mx+m的图象与x轴有公共点,∴△=m2+4m>0,∴m<﹣4或m>0,∴在[﹣6,9]内任取一个实数m,函数f(x)的图象与x轴有公共点的概率等于=.故答案为:.15.(5分)已知函数f(x)=sinx﹣xcosx,若存在x∈(0,π),使得f′(x)>λx 成立,则实数λ的取值范围是(﹣∞,1).【解答】解:f(x)=sinx﹣xcosx的导数为f′(x)=cosx﹣(cosx﹣xsinx)=xsinx,因为f′(x)>λx,所以xsinx>λx.当0<x<π时,λ<sinx,当0<x<π时,sinx∈(0,1],当x=时,sinx取得最大值1.即有λ<1.故答案为:(﹣∞,1).16.(5分)(1)“数列{a n}为等比数列”是“数列{a n a n+1}为等比数列”的充分不必要条件.(2)“a=2”是“函数f(x)=|x﹣a|在区间[2,+∞)上为增函数”的充要条件.(3)已知命题p1:∃x∈R,使得x2+x+1<0;p2:∀x∈[1,2],使得x2﹣1≥0.则p1∧p2是真命题.(4)设a,b,c分别是△ABC的内角A,B,C的对边,若a=1,b=.则A=30°是B=60°的必要不充分条件.其中真命题的序号是①④(写出所有真命题的序号)【解答】解:对于(1),数列{a n}为等比数列,设其公比为q,则=q2为定值,数列{a n a n+1}为等比数列,充分性成立;反之,若数列{a n a n+1}为等比数列成立,例如数列1,3,2,6,4,12,8…满足数列{a n a n+1}为等比数列,但数列{a n}不为等比数列,故“数列{a n}为等比数列”是“数列{a n a n+1}为等比数列”的充分不必要条件,故(1)正确;对于(2),例如a=1时,f(x)在区间[2,+∞)为增函数,所以)“a=2”不是“函数f(x)=|x﹣a|在区间[2,+∞)为增函数”的充要条件,故(2)不对;对于(3),由于x2+x+1=(x+)2+>0恒成立,故命题p1:∃x∈R,使得x2+x+1<0为假命题;p2:∀x∈[1,2],使得x2﹣1≥0,为证明题,故p1∧p2是假命题,即(3)错误;对于(4),设a,b,c分别是△ABC的内角A,B,C的对边,若a=1,b=.则A=30°是B=60°的必要不充分条件.因为a=1.b=,若A=30°”成立,由正弦定理=,所以sinB=,所以B=60°或120°,反之,若“B=60°”成立,由正弦定理得=,得sinA=,因为a<b,所以A=30°,所以A=30°”是“B=60°”的必要不充分条件.故(4)对;综上所述,真命题的序号是①④,故答案为:①④.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知{a n}为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.(1)求数列{a n}的通项公式:(2)设b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【解答】解:(1)设在等比数列{a n}中,公比为q,∵a1=1,且a2,a3+a5,a4成等差数列,∴2(a3+a5)=a2+a4,∴2(q2+q4)=q+q3,解得q=,∴a n=.(2)∵,∴b n=(2n﹣1)•a n=(2n﹣1)•()n﹣1,∴,①,②①﹣②,得:﹣(2n﹣1)•=1+2[1﹣()n﹣1]﹣(2n﹣1)•()n=3﹣,∴.18.(12分)在三角形ABC中,sin2CcosC+cosC=cos2CsinC+.(1)求角C的大小;(2)若AB=2,且sinBcosA=sin2A,求△ABC的面积.【解答】解:(1)在三角形ABC中,sin2CcosC+cosC=cos2CsinC+.化简得:sinC=cosC,即sinC+cosC=,得2sin(C+)=,则sin(C+)=.故C+=或(舍),则C=.(6分)(2)因为sinBcosA=sin2A=2sinAcosA,所以cosA=0或sinB=2sinA.当cosA=0时,A=90°,则b=,==;(8分)当sinB=2sinA时,由正弦定理得b=2a.由cosC===,可知a2=.(10分)所以===.(12分)19.(12分)某工厂生产A,B两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据x,y看不清,统计员只记得x<y,且A,B两种元件的检测数据的平均值相等,方差也相等.(1)求表格中x与y的值;(2)从被检测的5件B种元件中任取2件,求2件都为正品的概率.【解答】解:(1)∵=(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),∵=,∴x+y=17…①∵=(1+1+0.25+1+2.25)=1.1,=[4+(x﹣8)2+0.25+0.25+(y﹣8)2],∵=,∴(x﹣8)2+(y﹣8)2=1…②由①②结合x<y得:x=8,y=9.(2)记被检测的5件B种元件为:A,B,C,D,E,其中A,B,C,D为正品,从中选取的两件为(x,y)则共有=10种不同的情况,分别为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),记“抽取2件都为正品”为事件A,则事件A共包含=6种不同的情况,分别为:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),故P(A)==,即2件都为正品的概率为.20.(12分)如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.(Ⅰ)求证:平面PDC⊥平面PAD;(Ⅱ)在BC边上是否存在一点M,使得D点到平面PAM的距离为2,若存在,求BM的值,若不存在,请说明理由.【解答】(Ⅰ)证明:如图,∵ABCD是矩形,∴CD⊥AB,又∵PA⊥底面ABCD,且CD⊂平面ABCD,∴CD⊥PA.又∵PA∩AD=A,∴CD⊥平面PAD,又∵CD⊂平面PDC,∴平面PDC⊥平面PAD;(Ⅱ)解:假设BC边上存在一点M满足题设条件,令BM=x,∵AB=2,BC=4.且PA⊥底面ABCD,PA=2,则在Rt△ABM中,,∵PA⊥底面ABCD,∴,.又∵V P=V D﹣PAM,﹣AMD∴,解得<4.故存在点M,当BM=时,使点D到平面PAM的距离为2.21.(12分)已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=﹣2于点M,N.(Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O为原点,求证:∠MON为定值.【解答】(本小题满分14分)(Ⅰ)解:将E(2,2)代入y2=2px,得p=1,所以抛物线方程为y2=2x,焦点坐标为(,0).…(3分)(Ⅱ)证明:设A(,y1),B(,y2),M(x M,y M),N(x N,y N),因为直线l不经过点E,所以直线l一定有斜率设直线l方程为y=k(x﹣2),与抛物线方程联立得到,消去x,得:ky2﹣2y﹣4k=0,则由韦达定理得:y1y2=﹣4,,…(6分)直线AE的方程为:y﹣2=,即y=,令x=﹣2,得y M=,…(9分)同理可得:,…(10分)又∵,,所以=4+y M y N=4+=4+=4+=0…(13分)所以OM⊥ON,即∠MON为定值…(14分).22.(12分)设a∈R,函数f(x)=ax3﹣3x2.(1)若函数f(x)的图象在x=﹣1处的切线与直线y=3x平行,求a的值;(2)若a=1,求函数f(x)的极值与单调区间;(3)若函数f(x)=ax3﹣3x2的图象与直线y=﹣2有三个公共点,求a的取值范围.【解答】解:f′(x)=3ax2﹣6x=3x(ax﹣2),(1)函数f(x)的图象在x=﹣1处的切线与直线y=3x平行,即有f′(﹣1)=3a+6=3,解得a=﹣1,此时,切点为(﹣1,﹣2),切线方程为y=3x+1,它与已知直线平行,符合题意.故a=﹣1;(2)a=1时,f′(x)=3x(x﹣2),当0<x<2时,f′(x)<0,当x<0,或x>2时,f′(x)>0,所以,f(x)的单调减区间为[0,2],单调增区间为(﹣∞,0)和(2,+∞);当x=2时,f(x)有极小值f(2)=﹣4,当x=0时,f(x)有极大值f(0)=0;(3)当a=0时,f(x)=﹣3x2,它与y=﹣2没有三个公共点,不符合题意,当a>0时,由f′(x)=3ax2﹣6x=3x(ax﹣2)知,f(x)在(﹣∞,0)和(,+∞)上单调递增,在(0,)上单调递减,又f(0)=0,f()=﹣,所以﹣<﹣2,即﹣<a<,又因为a>0,所以0<a<;当a<0时,由f′(x)=3x(ax﹣2)知,f(x)在(﹣∞,)和(0,+∞)上单调递减,在(0,)上单调递增,又f(0)=0,f()=﹣,所以﹣<﹣2,即﹣<a<,又因为a<0,所以﹣<a<0;综上所述,a的取值范围是(﹣,0)∪(0,).第21页(共23页)赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔第22⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = xxxxx第23页(共23页)(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
高二第一学期第四次月考数学试题一、选择题。
1.分析法是从要证明的结论出发,逐步寻求使结论成立的( )A.充分条件B .必要条件C.充要条件D.等价条件2. 如图,抛物线的方程是y =x 2-1,则阴影部分的面积是( ) A.dx x )1(220-⎰ B .dx x )1(220-⎰C. 220(1)x dx ⎰-D.dx x dx x )1()1(221210-⎰--⎰ 3. 命题p :"0">x 是"0"2>x 的必要不充分条件,命题q :ABC ∆中""B A >是"sin sin "B A >的充要条件,则( )A .p 真 q 假B .q p ∧ 为真C . q p ∨ 为假D .p 假q 真4. 计算机执行右面的程序后,输出的结果为( )A .110B .90C .132D .2105.双曲线19422-=-y x 的渐近线方程是 ( ) A .x y 32±= B .x y 23±= C .x y 49±=D .x y 94±=6. 曲线21cos sin sin -+=x x x y 在点⎪⎭⎫⎝⎛0,4πM 处的切线的斜率为( )A .21-B .21C .22-D .227. 当5个整数从小到大排列时,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的和的最大值是( )A. 21B. 22C. 23D. 24 8. 知函数()f x 在1x =处的导数为1,则 0(1)(1)3limx f x f x x→--+=( )EA .3B .23-C . 13D .32-9. 过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为( ) A .22B . 21C . 13D . 3310.如图,正四棱锥P —ABCD 的侧面PAB 为正三角形,E 为PC 中点,则异面直线BE 和PA 所成角的余弦值为( )A .22B .32C .33 D .1211.定义在)2,0(π上的函数)(x f ,)('x f 是它的导函数,且恒有x x f x f tan )()('∙<成立,则( ) A .)3(2)4(3ππf f >B .1sin )6(2)1(πf f <C .)4()6(2ππf f >D .)3()6(3ππf f <12正整数按下表的规律排列则上起第 2005行,左起第2006列的数应为( )A.22005B.22006C.20052006+D.20052006⨯二、填空题。
高二第一学期第一次月考·数学试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}260M x x x =+-<,{}13N x x =≤≤,则M N =( )A .[1,2)B .[1,2]C .(2,3]D .[2,3]2、如图,正六边形ABCDEF 中,BA CD EF ++=( )A .0B .BEC .AD D .CF3、有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4[19.5,23.5) 9 [23.5,27.5) 18[27.5,31.5) 1l [31.5,35.5) 12[35.5.39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的频率约是( )A .16B .13C .12D .234、投掷一枚质地均匀的骰子,向上一面的数字是奇数的概率是( ) A .16 B .13 C .12 D .23 5、设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A .8B .7C .6D .56、设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =( )A.3-B.1- C.1 D.37、若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则c o s ()2βα+=( )A B . D .8、某程序框图如图所示,该程序运行后输出的S 为( )A .2B .12-C .3-D .139、直线3y kx =+与圆()()22324x y -+-=相交于,M N 两点,若MN ≥k 的取值范围是( ) A.3[,0]4- B.3(,][0,)4-∞-+∞C.[33- D.2[,0]3- 10、某公司生产甲、乙两种桶装产品。
2014—2015学年度第一学期高二年级期中考试数学试卷说明:1.考试时间120分钟,满分150分。
2.将卷Ⅰ答案用2B铅笔涂在答题卡上,卷Ⅱ用蓝黑钢笔或圆珠笔答在答题纸上。
试卷Ⅰ(共 60 分)一、选择题(本题共12个小题,每题只有一个正确答案,每题5分,共60分。
请把答案涂在答题卡上)1.某程序框图如图所示,若该程序运行后输出的值是,则()A.B.C.D.2.命题“对任意,都有”的否定为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88, 88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是() A.众数B.平均数C.中位数 D.标准差4.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为 [20,40),[40,60),若低于60分的人数是15人,则该班的学生人数是[60,80),[80,100),( )A.B.C.D.5.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数6.把389化为四进制数的末位是()A.1B.2C.3D.07 .在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨8.已知为椭圆上的一个点, ,分别为圆和圆上的点,则的最小值为 ( )A .5B .7C .13D .159.已知双曲线的两条渐近线与抛物线的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =( )A .1B .C .2D .3 10. 是“函数在区间内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,与过原点的直线相交于两点,连接. 若410,8,cos 5AB BF ABF ==∠=,则的离心率为 ( ) A. B. C. D. 12.已知直线与抛物线相交于两点,为的焦点,若,则 ( )A . B. C. D.试卷Ⅱ(共 90 分)二、填空题(本题共4个小题,每题5分,共计20分.请把答案写在答题纸上)13. 盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示).14.设是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,是上一点,若且的最小内角为,则的离心率为___.15.已知直线,椭圆.在以椭圆C 的焦点为焦点并与直线有公共点的所有椭圆中,长轴最短的椭圆标准方程为 .16. 已知实数∈[1,9],执行如右图所示的流程图,则输出的不小于55的概率为________.三、解答题(本题共6个小题 共计70分。
河北省正定县第一中学2014-2015学年高二数学10月29日周考训
练
1.圆C1 : x2+y2+2x+8y-8=0与圆C2 : x2+y2-4x+4y-2=0的位置关系是( ).A.相交B.外切C.内切D.相离
2.两圆x2+y2-4x+2y+1=0与x2+y2+4x-4y-1=0的公共切线有( ).A.1条B.2条C.3条D.4条
3.若直线3x-4y+12=0与两坐标轴的交点为A,B,则以线段AB为直径的圆的一般方程为____________________.
4.直线x=0被圆x2+y2―6x―2y―15=0所截得的弦长为_________.
5.求下列各圆的标准方程:
(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);
(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).
(3)圆心在直线5x―3y―8=0上的圆与两坐标轴相切
高二数学小测(八)
1.若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程是( ).A.(x-2)2+(y+1)2=1 B.(x-2)2+(y-1)2=1
C.(x-1)2+(y+2)2=1 D.(x+1)2+(y-2)2=1
2.一圆过圆x2+y2-2x=0与直线x+2y-3=0的交点,且圆心在y轴上,则这个圆的方程是( ).
A.x2+y2+4y-6=0 B.x2+y2+4x-6=0
C.x2+y2-2y=0 D.x2+y2+4y+6=0
3.已知直线x=a与圆(x-1)2+y2=1相切,则a的值是_________.
4.已知P是直线3x+4y+8=0上的动点,PA,PB是圆(x-1)2+(y-1)2=1的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为.
5.已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.
(1)求直线PA,PB的方程;
(2)求过P点的圆的切线长;
(3)求直线AB的方程.。