第一讲空间几何体
- 格式:wps
- 大小:722.49 KB
- 文档页数:6
第1课空间几何体【考点阐释】1、棱柱、棱锥、棱台的几何特征,它们的形成特点及平移的概念,简单作图方法。
2、圆柱、圆锥、圆台、球及简单几何体的几何特征,它们的形成特点和画法。
3、简单儿何体的形状,善于将复杂的儿何体转化为简单的儿何体。
解决棱台的有关问题时,注意联系棱锥的性质;在画棱柱、棱锥、棱台时,注意做到实虚分明。
4、识别一些复杂几何体的组成情况,注意球与球而,多而体与旋转体的区别。
了解处理旋转体的有关问题一般作出轴截而,然后在轴截面中去寻找各元素的关系。
1、投影,中心投影和平行投影的相关概念,并注意区分中心投影和平行投影。
5、简单组合图形三视图的画法,由三视图想象实物模型,并画模型草图。
6、用斜二测画法画直观图,掌握作图规则,了解平面图形的直观图与空间图形直观图的区别与联系。
7、掌握简单儿何体的三视图、直观图之间的相互转化,了解正投影主要用于绘制三视图,中心投影主要用于绘画,斜投影主要用来作几何体的直观图。
【高考体验】一、课前热身(1)填表底而形状侧面形状对角面形状平行底面的截面与底面关系三棱柱四棱柱五棱柱(2)在RtAABC中,ZC=90°, a = 3,b = 4,则以直角边或斜边所在直线为轴可得旋转体,所得旋转体的体积的最小值是o(3)用斜二测画法画边长为4的正三角形的直观图,则该直观图的面积为o(4)有一•根长为6cm,底而半径为0.5cm的圆柱型铁管,用一•段铁丝在铁管上缠绕4 圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的长度最少为cm。
(5)半径为4的球面上有A, B, C, D四点,且AB, AC, AD两两垂直,则\ABC.\ACD.\ADB面积之和的最大值为。
(6)已知正三棱锥V-ABC的主视图、俯视图如图所示,其中VA = 4,AC = 2jL 则该三棱锥的左视图的面积为主视图俯视图第(6)题二、回归教材1.棱柱(1)一般地,由一个平面多边形沿某一方向形成的空间儿何体叫做棱柱。
可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
第1讲 空间几何体考情解读 (1)考查空间几何体表面积、体积的计算.(2)考查空间几何体的侧面展开图及简单的组合体问题.1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系2.球半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做球面,球面成的几何体叫做球体. 同一个平面截一个球,截面是圆面. 3.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上,下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆);④V 球=43πR 3(R 为球的半径).热点一 几何体的表面积和体积例1 (1)如右图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为________.(2)如图,斜三棱柱ABC —A ′B ′C ′中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA ′与底面相邻两边AB 与AC 都成45°角,求此斜三棱柱的表面积.思维启迪 (1)利用V (x )解析式观察对照;(2)作辅助线. (1)答案 ①解析 ①当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连结FI ,图1 图2由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI .∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x , FI =GH =2AH =22x ,∴五边形EFGHI 的面积S =FG ×GH +12FI ×EF 2-(12FI )2=22x -32x 2,∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x 3-2x 2+26,其图象不可能是一条线段,③④不对. ②当12≤x <1时,过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC 底面FGC 上的高h =22(1-x ), ∴V (x )=13×12CG ·CF ·h =23(1-x )3,∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间(12,1)上单调递增,∴V ′(x )<0,x ∈(12,1),∴函数V (x )=23(1-x )3在区间(12,1)上单调递减,且递减的速率越来越小,故②不对. 故由图象形状,可知V (x )的图象大致为①.(2)解 如图,过A ′作A ′D ⊥平面ABC 于D ,过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,连结A ′E ,A ′F ,AD . 则由∠A ′AE =∠A ′AF , AA ′=AA ′,得Rt △A ′AE ≌Rt △A ′AF ,∴A ′E =A ′F ,∴DE =DF ,∴AD 平分∠BAC , 又∵AB =AC ,∴BC ⊥AD ,∴BC ⊥AA ′,而AA ′∥BB ′,∴BC ⊥BB ′, ∴四边形BCC ′B ′是矩形,∴斜三棱柱的侧面积为2×a ×b sin 45°+ab =(2+1)ab . 又∵斜三棱柱的底面积为2×34a 2=32a 2, ∴斜三棱柱的表面积为(2+1)ab +32a 2. 思维升华 (1)解几何体的表面积、体积,关键是确定几何体的相关数据;(2)求不规则几何体的体积,常用“割补”的思想.如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连结EF ,FB ,DE ,则几何体EFC 1-DBC 的体积为________.答案 66解析 如图,连结DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1-DBC 的体积为66. 热点二 多面体与球例2 如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为________.思维启迪 要求出球的体积就要求出球的半径,需要根据已知数据和空间位置关系确定球心的位置,由于△BCD 是直角三角形,根据直角三角形的性质:斜边的中点到三角形各个顶点的距离相等,只要再证明这个点到点A 的距离等于这个点到B ,C ,D 的距离即可确定球心,进而求出球的半径,根据体积公式求解即可. 答案32π 解析 如图,取BD 的中点E ,BC 的中点O , 连结AE ,OD ,EO ,AO .由题意,知AB =AD , 所以AE ⊥BD .由于平面ABD ⊥平面BCD , AE ⊥BD ,所以AE ⊥平面BCD .因为AB =AD =CD =1,BD =2, 所以AE =22,EO =12. 所以OA =32. 在Rt △BDC 中,OB =OC =OD =12BC =32,所以四面体ABCD 的外接球的球心为O ,半径为32. 所以该球的体积V =43π(32)3=32π.思维升华 多面体与球接、切问题求解策略(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为___________________________________________________________________. 答案 73πa 2解析 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,设O ,O 1分别为下、上底面中心,且球心O 2为O 1O 的中点, 又AD =32a ,AO =33a ,OO 2=a 2,设球的半径为R ,则R 2=AO 22=13a 2+14a 2=712a 2. 所以S 球=4πR 2=4π×712a 2=73πa 2.热点三 几何体中的最值问题例3 (1)如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm ,高为5 cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________cm.(2)已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为________________________________________________________________________.思维启迪 (1)几何体表面上两点间路线的最小值问题通常利用表面展开图.(2)将体积表示为未知棱的长度x 的函数. 答案 (1)13 (2)1解析 (1)将三棱柱沿AA 1剪开,可得一矩形,其长为6 cm ,宽为5 cm ,其最短路线为两相等线段之和,其长度等于2(52)2+62=13(cm).(2)如图所示,在四面体S -ABC 中,SB =SC =BC =AB =AC =2. 设SA =x ,点S 到面ABC 的距离为h ,则S △ABC =34×22= 3. V S -ABC =13×S △ABC ×h =33h .所以当h 取得最大值时,四面体的体积最大.取BC 的中点D ,连结SD ,则SD ⊥BC ,且SD =3,显然当SD ⊥平面ABC 时,h 取得最大值 3. 此时V S -ABC =33×3=1. 思维升华 (1)几何体表面的展开图是解决问题的有效方法,对柱体来说运用起来更方便.(2)函数方法是解决立体几何最值的基本方法,关键是选择影响目标的一个变量.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是________.答案 23c a 2-c 2-1解析 ∵AB +BD =AC +CD =2a >2c =AD , ∴B 、C 都在以AD 的中点O 为中心, 以A 、D 为焦点的两个椭圆上,∴B 、C 两点在椭圆两短轴端点时,到AD 距离最大,均为a 2-c 2,此时△BOC 为等腰三角形,且AD ⊥OC ,AD ⊥OB , ∴AD ⊥平面OBC .取BC 的中点E ,显然OE ⊥BC , OE max =a 2-c 2-1,∴(S △BOC )max =12×2×a 2-c 2-1=a 2-c 2-1.∴V D -ABC =V D -OBC +V A -OBC =13·OD ·S △OBC +13·OA ·S △OBC =13(OD +OA )S △OBC =13×2c a 2-c 2-1=23c a 2-c 2-1.1.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分是“侧面积还是表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和. 2.在体积计算中都离不开空间几何体的“高”这个几何量(球除外),因此体积计算中的关键一环就是求出这个量.在计算这个几何量时要注意多面体中的“特征图”和旋转体中的轴截面.3.一些不规则的几何体,求其体积多采用分割或补形的方法,从而转化为规则的几何体,而补形又分为对称补形(即某些不规则的几何体,若存在对称性,则可考虑用对称的方法进行补形)、还原补形(即还台为锥)和联系补形(某些空间几何体虽然也是规则几何体,不过几何量不易求解,可根据其所具有的特征,联系其他常见几何体,作为这个规则几何体的一部分来求解). 4.长方体的外接球(1)长、宽、高分别为a 、b 、c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R ;(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .真题感悟1.(2013·课标全国Ⅱ)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________. 答案 24π解析 设正四棱锥的高为h ,则13×(3)2h =322,解得高h =322.则底面正方形的对角线长为2×3=6,所以OA =⎝⎛⎭⎫3222+⎝⎛⎭⎫622=6, 所以球的表面积为4π(6)2=24π.2.(2014·江苏)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2, 即r 1h 1=r 2h 2,所以V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32.押题精练1.如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.答案3解析 将直三棱柱沿侧棱A 1A 剪开,得平面图形如图所示,A ′C 1为定长,当A ,M ,C 1共线时AM +MC 1最短,此时AM =2,MC 1=2 2.又在原图形中AC 1=14,易知∠AMC 1=120°, ∴S △AMC 1=12×2×22×sin 120°= 3.2.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为________. 答案 6π解析如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的体对角线长. 据题意⎩⎪⎨⎪⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎪⎨⎪⎧AB =2,AC =1,AD =3,∴长方体的体对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62. ∴三棱锥外接球的体积为V =43π·(62)3=6π.(推荐时间:50分钟)一、填空题1.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积VB 1-BCO =________.答案 23解析 VB 1-BCO =13S △BCO ·h =13×12×2×2×2=23.2.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm ,则圆锥的母线长为________cm. 答案403解析 作出圆锥的轴截面如图,设SA =y ,O ′A ′=x ,利用平行线截线段成比例,得SA ′∶SA =O ′A ′∶OA , 即(y -10)∶y =x ∶4x ,解得y =403.所以圆锥的母线长为403.3.如图,用半径为2的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的容积是________.答案3π3解析 卷出的圆锥筒的母线是原半圆的半径,圆锥筒的底面周长是原半圆的弧长,所以可求得圆锥底面的半径为1,高为3,则其容积大小为3π3. 4.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm ,高为5 cm ,一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm.答案 13解析 将三棱柱沿侧棱AA 1展开得如下平面(两周):因为正三棱柱底面边长为2 cm ,高为5 cm ,所以AA 1=5 cm ,AA ″=12 cm ,由勾股定理可得A 1A ″=13 cm ,即最短路线为13 cm.5.(2013·湖北)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 天池盆中水的形状是以上底半径10寸,下底半径6寸,高9寸的圆台, ∴平均降雨量=13×9×π(102+10×6+62)π×142=3.6.(2014·大纲全国)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为____. 答案81π4解析 如图,设球心为O ,半径为r , 则Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.7.如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.答案 1∶24解析 V 1=12VA 1-ADE =18VA 1-ABC =124V 2,∴V 1∶V 2=1∶24.8.如图,侧棱长为23的正三棱锥V -ABC 中,∠AVB =∠BVC =∠CVA =40°,过A 作截面△AEF ,则截面△AEF 的周长的最小值为____________.答案 6解析 沿着侧棱VA 把正三棱锥V -ABC 展开在一个平面内,如图.则AA ′即为截面△AEF 周长的最小值,且∠AVA ′=3×40°=120°. 在△VAA ′中,由余弦定理可得AA ′=6,故答案为6.9.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为______.答案 16解析 VD 1-EDF =VF -DD 1E =13S △D 1DE ·AB=13×12×1×1×1=16. 10.已知矩形ABCD 的面积为8,当矩形周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D -ABC 的外接球的表面积等于________. 答案 16π解析 设矩形的两邻边长度分别为a ,b ,则ab =8,此时2a +2b ≥4ab =82,当且仅当a =b =22时等号成立,此时四边形ABCD 为正方形,其中心到四个顶点的距离相等,均为2,无论怎样折叠,其四个顶点都在一个半径为2的球面上,这个球的表面积是4π×22=16π. 二、解答题11.如图,在四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求四棱锥P -ABCD 的体积.(1)证明 因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE .又因为△P AB 是等边三角形,E 是线段AB 的中点, 所以PE ⊥AB .因为AD ∩AB =A ,所以PE ⊥平面ABCD . 又CD ⊂平面ABCD ,所以PE ⊥CD . (2)解 由(1)知PE ⊥平面ABCD , 所以PE 是四棱锥P -ABCD 的高. 由DA =AB =2,BC =12AD ,可得BC =1.因为△P AB 是等边三角形, 所以可求得PE = 3.所以V P -ABCD =13S 四边形ABCD ·PE =13×12×(1+2)×2×3= 3.12.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°. (1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.(1)证明 ∵EF ∥BC 且BC ⊥AB ,∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE .又BE ∩PE =E , ∴EF ⊥平面PBE ,又PB ⊂平面PBE , ∴EF ⊥PB .(2)解 设BE =x ,PE =y ,则x +y =4. ∴S △PEB =12BE ·PE ·sin ∠PEB=14xy ≤14⎝ ⎛⎭⎪⎫x +y 22=1.当且仅当x =y =2时,S △PEB 的面积最大. 此时,BE =PE =2. 由(1)知EF ⊥平面PBE , ∴平面PBE ⊥平面EFCB ,在平面PBE 中,作PO ⊥BE 于O ,则PO ⊥平面EFCB . 即PO 为四棱锥P —EFCB 的高. 又PO =PE ·sin 30°=2×12=1.S EFCB =12×(2+4)×2=6.∴V P —BCFE =13×6×1=2.。
第1讲空间几何体1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.空间几何体的三视图(1)三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影形成的平面图形.(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.(3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.看不到的线画虚线.3.直观图的斜二测画法空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 4. 空间几何体的两组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆);④V 球=43πR 3.考点一 三视图与直观图的转化例1(1)已知三棱柱的正视图与俯视图如图,那么该三棱锥的侧视图可能为()(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()(1) 一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()(2) 某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()考点二几何体的表面积及体积例2(1)某四面体的三视图如图所示,该四面体四个面的面积中最大的是()A.8 B.6 2 C.10 D.8 2(2) 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________ cm3.(1) 一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π(2) 一个几何体的三视图如图所示,则该几何体的表面积为________.考点三多面体与球例3如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体ABCD,使平面ABD⊥平面BCD,若四面体ABCD的顶点在同一个球面上,则该球的体积为()A.32πB.3π C.23πD.2π(1)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是()A.12πB.24πC.32πD.48π(2)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.4.长方体的外接球(1)长、宽、高分别为a、b、c的长方体的体对角线长等于外接球的直径,即a2+b2+c2=2R;(2)棱长为a的正方体的体对角线长等于外接球的直径,即3a=2R.1.从一个正方体中截去部分几何体,得到一个以原正方体的部分顶点为顶点的凸多面体,其三视图如图,则该几何体体积的值为()A.5 2 B.6 2C.9 D.102.在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ABD的面积分别为22,32,62,则三棱锥A-BCD的外接球体积为()A.6πB.26πC.36πD.46π(推荐时间:60分钟)一、选择题1.一梯形的直观图是一个如右图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为()A.2 B. 2C.2 2 D.42.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于()A.32B.1 C.2+12 D. 23.某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π4.一个几何体的三视图如图所示,则这个几何体的体积为()A.3(8+π)6 B.3(8+2π)6 C.3(6+π)6 D.3(9+2π)65.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 5 B.30+6 5C.56+12 5 D.60+12 56.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,该几何体的体积为()A.33π B.36π C.32π D.3π7.已知正方形ABCD的边长为22,将△ABC沿对角线AC折起,使平面ABC⊥平面ACD,得到如右图所示的三棱锥B-ACD.若O为AC边的中点,M,N分别为线段DC,BO上的动点(不包括端点),且BN=CM.设BN=x,则三棱锥N-AMC的体积y=f(x)的函数图象大致是()二、填空题8.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.9.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F -ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.10.已知矩形ABCD的面积为8,当矩形周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球的表面积等于________.11.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.三、解答题12. 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P —ABCD 的正视 图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ; (3)求三棱锥D —PBC 的体积.13.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°. (1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.。
第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。
第一章 空间几何体(一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a正四面体的问题可将它补成一个边长为a 22的正方体问题。
(2)三个三棱锥,并用字母表示.解析:可制作纸片,把展开图折成正方体.答案:C第一讲空间几何体考点1空间几何体的结构 例1、画出一个三棱台,再把它分成: (1) 一个三棱柱和另一个多面体; 解:练习1、如图所示的是一个正方体的展开图,每一个面内都标注了字母,则展开前与B 相对的是字 母. 练习2、下图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥 而得.现用一个竖直的平面去截这个几何体,则所截得的图形可能是解析:当截面过底面直径时,截面如图(1);当截面不过底面直径时,截面如图(5). 答案:⑴(5) 练习3、圆柱的轴截面(经过圆柱的轴所作的截面)是边长为5 cm 的正方形ABCD,求圆柱侧面上从A 到 C 的最短距离.解:如图(1),正方形ABCD 是圆柱的轴截面,且其边长为5 cm,设圆柱的底面圆半径为r,贝I] r=| cm..••底面圆的周长为1 = 27rr=57t(cm).将圆柱沿母线AD 剪开后平放在一个平面内,如图(2),则从A 到C 的最短距离即为(2)中AC 的长.) 5兀由于 AB=5= 2 , BC = AD = 5, AC= ^^^^+25 =|^7r2+4(cm).即圆柱侧面上从A 到C 的最短距离为*兀2+4 cm.考点2空间几何体的三视图例2、一个棱锥的三视图如图,则该棱锥的全面积(单位:顷2)为ks5u① ②(A) 48+12扼 (B) 48+24扼 (C) 36+12扼 (D) 36+24^2 解析:选A.练习4、将正三棱柱截去三个角(如图1所示A, B, C 分别是AGHI 三边的中点)得到几何体按图2所示 方向的侧视图(或称左视图)为(A )练习5、用一些棱长为1cm 的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图则这个几 何体的体积最大是 7 c m .练习6、某高速公路收费站入口处的安全标识墩如图4所示。
墩的上半部分是正四棱锥P-EFGH ,下 半部分是R 方体ABCD-EFGH o 图5、图6分别是该标识墩的正(主)视图和俯视图。
第1讲 空间几何体高考《考试大纲》的要求:① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲:例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( )A .6π B .3πC .32πD .65π例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( )A .π2B .π23C .π332D .π21例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。
(二)基础训练:1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075东经0120,则甲、乙两地球面距离为( )(A(B) 6R π(C)56R π(D) 23R π①正方形 ②圆锥 ③三棱台 ④正四棱锥C3.若一个底面边长为2的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .4. 已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为___________,球心到平面ABC 的距离为________ 5.如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD.(三)巩固练习:1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是( )(A )π3 (B )π33 (C )π6 (D )π92、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π3.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( ) A.34 B.45 C.35 D.-35 4.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为( )(A )31 (B )33 (C )32 (D)36 5.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为()A .3 B .13π C.23π D .36.已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于________7.请您设计一个帐篷。
第1讲空间几何体及其表面积与体积知识梳理1.多面体的结构特征(1)棱柱:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;棱柱两个底面是全等多边形,且对应边互相平行,侧面都是平行四边形.(2)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥;棱锥底面是多边形,侧面是有一个公共顶点的三角形.(3)棱台:棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.2.旋转体的结构特征(1)将矩形、直角三角形、直角梯形分别绕它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台;这条直线叫做轴,垂直于轴的边旋转而成的圆面叫做底面.不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.(2)球:半圆绕着它的直径所在的直线旋转一周所成的曲面叫做球面,球面围成的几何体叫做球体,简称球.3.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh续表4.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(5)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(6)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的结构特征【例1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的直四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为________.解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④正确.答案①②③规律方法解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【训练1】设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的. 答案 ①④考点二 几何体的表面积与体积【例2】 如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°, △ADP ∽△BAD . (1)求线段PD 的长;(2)若PC =11R ,求三棱锥P -ABC 的体积. 解 (1)∵BD 是圆的直径,∴∠BAD =90°, 又∵△ADP ∽△BAD ,∴AD BA =DP AD , ∠PDA =∠BAD =90°, DP =AD 2BA =(BD sin 60°)2BD sin 30°=4R 2×342R ×12=3R . ∴DP 的长为3R .(2)在Rt △BCD 中,BC =CD =BD cos 45°=2R , ∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∴PD ⊥CD , 又∠PDA =90°,AD ∩CD =D ,∴PD ⊥底面ABCD , 则S △ABC =12AB ·BC sin(60°+45°) =12R ·2R ⎝ ⎛⎭⎪⎫32×22+12×22=3+14R 2.所以三棱锥P -ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.规律方法 求几何体的体积问题,可以多角度、全方位地考虑问题,常采用的方法有“换底法”、“分割法”、“补体法”等,尤其是“等积转化”的数学思想方法应高度重视.【训练2】 (2014·苏州模拟)一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积. 解(1)设O 1、O 分别为正三棱台ABC -A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32, 因O 1D 1=36×3=32,OD =36×6=3,则DE =OD -O 1D 1=3-32=32.在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3(cm). (2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732(cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2).故三棱台斜高为 3 cm ,侧面积为2732 cm 2,表面积为9934 cm 2.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·新课标全国Ⅱ卷)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.(2)(2013·辽宁卷改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解. 解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)132规律方法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,沿棱柱表面使CP+P A1最小,则最小值为________.解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823.(2)由题意知,A 1P 在几何体内部,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +P A 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +P A 1的最小值为73.答案 (1)823 (2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长为6=3个这样的几何体,才能拼成的正方体的体积V=6×6×6=216,故需要21672一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16. [答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法. 【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则2a=2,a=2,侧面积为3×12×a2=3,底面积为34×22=3,表面积为3+ 3.答案3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________. 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π 6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32.由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案 38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23. 答案 23 二、解答题 9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB , 因为AC =BC ,所以CD ⊥AB .因为PD ∩CD =D ,所以AB ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥AB . (2)解 设C 到平面APB 的距离为h ,则由题意,得AP =PB =AB =AC 2+BC 2=22, 所以PC =AP 2-AC 2=2.因为CD =12AB =2,PD =32PB =6, 所以PC 2+CD 2=PD 2,所以PC ⊥CD .由(1)得AB ⊥平面PCD ,于是由V C -APB =V A -PDC +V B -PDC , 得13·h ·S △APB =13AB ·S △PDC ,所以h =AB ·S △PDCS △APB=22×12×2×234×(22)2=233.故点C 到平面APB 的距离为233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为 V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、填空题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V S -ABC =13×34×(3)2×4= 3. 答案 32.(2014·南京模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.解析 如图,当AM +MC 1最小时,BM =1,所以AM 2=2,C 1M 2=8,AC 21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=-12,所以sin ∠AMC 1=32,S △AMC 1=12×2×22×32= 3. 答案 33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。
专题三 立 体 几 何第一讲 空间几何体规律与方法一、三视图与组合体1.关于三视图的应用,要善于观察,善于想象,三视图之间联系的规律是:正俯长对正,正侧高平齐,府侧宽相等。
2.应熟悉旋转体的侧面展开图和轴截面(过旋转轴的截面)的形状。
3.要特别关注三棱锥体积的计算方法,注意灵活选择底面。
4.有关球的组合体问题,作图是难点,此时可不作球的直观图.分析要注意定位、定量:球的位置由球心确定,球的大小由半径确定,还要注意有关(特别是球心及接点、切点)截面图形的特点. 二、求空间距离和空间角的方法 1.距离问题 (1)点面距①直接作出(用面面垂直的性质) ②体积方法;③转移法:(如图甲)12d d =;(如图乙)21||||d BC d AC =. (2)线面距、面面距线面距、面面距转化为点面距来求解. ※2.空间角的求法(1)线线角问题:平移法(有时需要移到几何体外,即“补体”) (2)线面角问题 如图:sin ||dAB α=,故线面有问题就是点到平面距离问题,即线面角问题⇔点面距问题,可以用求点面距的方法求线面角. (3)二面角问题①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半面内作棱垂线,得出平面角,用定义法时,要认真观察图形的特征. ②射影法:利用面积射影公式cos S S θ=射原,其中S 原为原斜面图形面积,S 射为该图形的射面积,θ为平面角的大小,此方法的优点是不必在图中作(找)出平面角.三、平行关系的转化两平面平行问题常常转化为直线与平面平行,而直线与平面平行又转化为直线与直线平行,所以要注意转化思想的应用,以下为三种平行关系的转化示意图.四、垂直关系的转化与平行关系之间的转化类似,垂直关系的转化示意图如下 .类型1 空间几何体的结构例1 下列结论不正确的是___________(填序号).①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 ④圆锥的顶点与底面圆周上的任意一点的连线都是母线变式训练1 如果四棱锥的四条侧棱都相等,就称它为“等腰围四棱锥”,四条侧棱称为它的腰.以下四个命题中为真命题的是_________(填序号) ①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补 ③等腰四棱锥的底面四边形必存在外接圆 ④等腰四棱锥的各顶点必在同一球面上类型2 三视图和直观图例 2 某空间几何体的三视如图所示,则该几何体的体积是__________. 分析 由所给的三视图,得到对应的几何体模型,再计算几何体的体积.变式训练2 一个正三棱住的三视图如图所示,求这个三棱柱的表面积和体积.线线 直直 线面 垂直 面面垂直 −−−−−→←−−−−−线面垂直的判定线面垂直的性质−−−−−→←−−−−−面面垂直的判定面面垂直的性质例3 .在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则()a b +的最大值为( )A. 变式训练3 已知ABC ∆的直观图A B C '''是边长为a 的正三角形,求原三角形ABC 的面积.类型3 空间几何体的基本量例 4 正四棱台1AC 的高是17cm ,两底面的边长分别是4cm 和16 cm ,求这个棱台的侧长和斜高.变式训练4 圆台的一个底面周长是一个底面周长的3倍,轴截面的面积等于2392cm ,母线与轴的夹角是45,求这个圆台的高、母线长和两底面半径.类型4 空间几何体的表面积与体积例 5 将一个正方体截取四个角后,得到一个四面体,则这个四面体的体积是原正方体体积的______.变式训练5 如图所示,在直角梯形ABEF 中(图中数字表示线段的长度),将直角梯形DCEF 沿CD 折起,使平面DCEF ⊥平面ABCD .连接部分线段后围成一个空间几何体,如图所示.(1)求证://BE 平面ADF ; (2)求三棱维F BCE -的体积.类型5 多面体与旋转体的“切”、“接”例 6 在棱长为2的正方体1111ABCD A BC D -中,E 、F 分别为棱AB 和1CC 的中点,则线段EF 被正方体的内切球球面截在球内的线段长为_____________.变式训练6(1) 一个六棱柱的底面是正六边形,其侧棱垂直底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为______________.(2)已知正三棱锥S-ABC 内接于半径为6的球,过侧棱SA 及球心O 的平面截三棱锥及球面所得截面如图,则此三棱锥的侧面积为_________.类型6 空间几何体的展开、折叠问题例 7 如图1,矩形ABCD 中,4,3AB BC ==,沿对角线,AC 把矩形折成二面角D AC B --(如图2),并且D 点在平面ABC 内的射影恰好落在AB 上. (1)求证:AD ⊥平面DBC ;(2)求二面角D AC B --的正弦值.变式训练7 已知四边形ABCD 是等腰梯形,3,1,45AB DC BAD ==∠=,DE AB ⊥如图所示,现将ADE ∆沿DE 折起,使得AE EB ⊥,连结AC ,AB ,设M 是AB 的中点. (1)求证:BC ⊥平面AEC ;(2)判断直线EM 是否平行平面ACD ,并说明理由.类型七 立体几何中的轨迹问题例 8 (1)如图,正方体1111ABCD A BC D -中,P 为平面11A ABB 内一动点,且点P 到1A A 和BC 的距离相等,则P 的轨迹是下图中的( )(2)如图,四棱锥P ABCD -的氏面为正方形,侧面PAD 为等边三角形,且侧面PAD ⊥底面ABCD ,点M 在底面内运动,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( )变式训练8 (1)已知正方体ABCD-A 1B 1C 1D 1的棱长为2,长度为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方形ABCD 内运动,则MN 中点P 的轨迹面积是( ) A.4π B. π C. 2π D.2π(2)若正四面体S-ABC 的底面ABC ∆内有一动点P 分别到平面SAB ,平面SBC ,平面SAC 的距离成等差数列,则点P 的轨迹是( )A. 一条线段B.一个点C.一段圆弧D.抛物线的一段11.一个空间几何体的三视图如图所示,则该几何体的表面体积为()A. 48B.32+C.48+D.80解:由三视图可知该几何体是底面为等腰梯形的直棱柱(正方体削去两个三棱柱)。
第1讲 空间几何体1. 四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2. 空间几何体的三视图(1)三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影形成的平面图形.(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.(3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.看不到的线画虚线. 3. 直观图的斜二测画法空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 4. 空间几何体的两组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式:①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆);④V 球=43πR 3.考点一 三视图与直观图的转化例1 (1)已知三棱柱的正视图与俯视图如图,那么该三棱锥的侧视图可能为( )(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )(1) 一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(2) 某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )考点二几何体的表面积及体积例2(1)某四面体的三视图如图所示,该四面体四个面的面积中最大的是()A.8 B.6 2 C.10 D.8 2(2) 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________ cm3.(1) 一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π(2) 一个几何体的三视图如图所示,则该几何体的表面积为________.考点三 多面体与球例3 如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.32π B .3πC.23π D .2π(1)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是( )A .12πB .24πC .32πD .48π(2)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.4. 长方体的外接球(1)长、宽、高分别为a 、b 、c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R ;(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .1. 从一个正方体中截去部分几何体,得到一个以原正方体的部分顶点为顶点的凸多面体,其三视图如图,则该几何体体积的值为( )A .5 2B .6 2C .9D .102. 在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为( )A.6πB .26πC .36πD .46π(推荐时间:60分钟)一、选择题1. 一梯形的直观图是一个如右图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为( )A .2 B. 2 C .2 2D .42. 已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32B .1C.2+12D. 23. 某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π4. 一个几何体的三视图如图所示,则这个几何体的体积为( )A.3(8+π)6B.3(8+2π)6C.3(6+π)6D.3(9+2π)6 5. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+12 56. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,该几何体的体积为( )A.33π B.36π C.32π D.3π7.已知正方形ABCD的边长为22,将△ABC沿对角线AC折起,使平面ABC⊥平面ACD,得到如右图所示的三棱锥B-ACD.若O为AC边的中点,M,N分别为线段DC,BO上的动点(不包括端点),且BN=CM.设BN=x,则三棱锥N-AMC的体积y=f(x)的函数图象大致是()二、填空题8.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.9.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F -ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.10.已知矩形ABCD的面积为8,当矩形周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球的表面积等于________.11.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.三、解答题12. 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P —ABCD 的正视 图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ; (3)求三棱锥D —PBC 的体积.13.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°. (1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.。
第一讲空间几何体
一、多面体的结构特征
1.棱柱的侧棱都互相平行,上下底面是全等的多边形.
2.棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.
3.棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.
(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形.侧棱垂直于底面,侧面是矩形.
(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥,特别地,各棱均相等的正三棱锥叫正四面体.反之,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.
二、旋转体
1、形成
几何
体
旋转图形旋转轴
圆柱矩形任一边所在的直线
圆锥直角三角
形
任一直角边所在的直
线
圆台直角梯形垂直于底边的腰所在
的直线
球半圆直径所在的直线2、旋转体的表(侧)面积
名称侧面积表面积圆柱(底面半径2πrl 2πr(l+r)
r ,母线长l ) 圆锥(底面半径
r ,母线长l ) πrl πr (l +r )
圆台(上、下底面
半径r ,母线长l )
π(r 1+r 2)l π(r 1+r 2)l +π(r 2
1+r 22)
球(半径为R )
4πR 2 3、 空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1).V 柱体=Sh .
(2).V 锥体=1
3Sh .
(3).V 台体=1
3h (S +SS ′+S ′).
(4).V 球=4
3πR 3(球半径是R ).
求几何体体积的两种重要方法
1.割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决. 2.等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.
三、空间几何体的三视图 1.三视图的名称
几何体的三视图包括:正视图、侧视图、俯视图. 2.三视图的画法
①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.
②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.
四、空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其规则是
1.原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.
2.原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中长度为原来的一半.
按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:
S 直观图=2
4S 原图形,S 原图形=22S 直观图.
基础自测
1.(2013·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )
A.3
2 B .1 C.2+12 D. 2 【解析】 由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2. 【答案】 D
2.(2013·陕西高考)某几何体的三视图如图7-2-2所示,则其表面积为________.
图7-2-2
【解析】 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面
面积与截面面积的和,即1
2×4π+π=3π.
【答案】 3π 3.(2013·辽宁高考)某几何体的三视图如图7-2-3所示,则该几何体的体积是________.
图7-2-3
【解析】 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为 16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为 16π-16.
考点一 空间几何体的三视图
例 (2013·四川高考)一个几何体的三视图如图7-1-4所示,则该几何体的直观图可以是( )
图7-1-4
【解析】由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,可得选项D.
【答案】 D
空间几何体的三视图问题的求解关键
(1)形状的确定:三视图与空间几何体的相互转化是解决这类问题的常用方法.
(2)大小的确定:根据三视图的大小可确定几何体的大小,由几何体的大小也可确定出三视图的大小.
考点二空间几何体的表面积与体积
例1、如图7-2-4是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()
图7-2-4
A.9πB.10πC.11πD.12π
【尝试解答】从题中三视图可以看出该几何体是由一个球和一个圆柱体组合而成的,其表面积为S=4π×12+π×12×2+2π×1×3=12π.故选D.
【答案】D
方法与技巧 1.解答本题的关键是根据三视图得到几何体的直观图,弄清几何体的组成.
2.在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.
3.以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.
2、[2014·辽宁卷] 某几何体三视图如图1-2所示,则该几何体的体积为( )
图1-2
A .8-π4
B .8-π
2 C .8-π D .8-2π
答案:C [解析] 根据三视图可知,该几何体是正方体切去两个体积相等的圆柱的
四分之一后余下的部分,故该几何体体积V =23
-12×π×12×2=8-π.
跟踪练习 [2014·天津卷] 一个几何体的三视图如图1-2所示(单位:m),则该几何体的体积为________m 3.
答案:20π
3 [解析] 由三视图可知,该几何体为圆柱与圆锥的组合体,其体积V =
π×12×4+13π×22
×2=20π3.
考点三 多面体与球
例 [2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A.81π4 B .16π C .9π D.27π4
10.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =1
2AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R .又因为△AOE 为直角三角形,所以
OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =9
4,所以该球的表面积S =4πR 2=4π⎝ ⎛⎭
⎪
⎫942
=81π4.
跟踪练习(2010新课标全国,5分)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )
A .πa 2 B.73πa 2 C.11
3πa 2 D .5πa 2 解析:三棱柱如图所示,由题意可知:
球心在三棱柱上、下底面的中心O 1、O 2的连线的中点O 处, 连接O
1B 、O 1O 、OB ,其中OB 即为球的半径R ,
由题意知:O 1B =23×3a 2=3a
3,
所以半径R 2=(a 2)2+(3a 3)2=7a
2
12,
所以球的表面积是S =4πR 2
=7πa 2
3.
答案:B。