碱式碳酸钴的水热合成及其结构表征
- 格式:pdf
- 大小:347.36 KB
- 文档页数:4
非选择必考题标准练(四)满分:58分1.(14分)碱式碳酸钴[Co x(OH)y(CO3)2]可用作电子材料、磁性材料的添加剂,受热时可分解生成三种氧化物。
为了确定其组成,某化学兴趣小组同学设计了如图所示装置进行实验。
(1)请完成下列实验步骤:①称取3.65 g样品置于硬质玻璃管内,称量乙、丙装置的质量;②按如图所示装置组装好仪器,并检验装置气密性;③加热甲装置中硬质玻璃管,当乙装置中不再有气泡产生时(填实验现象),停止加热;④打开活塞K,缓缓通入空气数分钟后,称量乙、丙装置的质量;⑤计算。
(2)步骤④中缓缓通入空气数分钟的目的是将甲装置中产生的水蒸气和CO2全部赶入乙、丙装置中。
(3)某同学认为上述实验装置中存在一个明显缺陷,为解决这一问题,可选用下列装置中的D(填字母)连接在活塞K前(或甲装置前)(填装置连接位置)。
(4)若按正确装置进行实验,测得如下数据:乙装置的质量/g 丙装置的装置/g加热前80.00 62.00加热后80.36 62.88则该碱式碳酸钴的化学式为Co3(OH)4(CO3)2。
(5)有人认为用如图所示装置进行两次实验也可以确定碱式碳酸钴的组成。
实验Ⅰ:称取一定质量的样品置于Y形管a处,加入一定体积一定物质的量浓度的足量稀硫酸于Y形管b处,量气管中盛放饱和碳酸氢钠溶液,而不用蒸馏水,其原因是饱和碳酸氢钠溶液会降低CO2的溶解度,然后通过将b向a倾斜,使稀硫酸流入a中(填操作)引发反应,测定产生的CO2的体积(假如实验条件是在室温下)。
实验Ⅱ:将实验Ⅰ中反应后的液体和足量的锌粒分别放置在另一个Y形管的a、b中,量气管中盛装蒸馏水,此时引发反应的方式与实验Ⅰ不同(填“相同”“不同”或“可相同也可不同”),然后测定产生H2的体积(假设实验条件是在室温下)。
两次实验结束时,读数前,先恢复至室温,再调节量气管两侧液面持平,然后平视读数;下列操作有可能会使y的值偏大的是B(填字母)。
碳酸钴沉淀洗涤净化工艺的改进碳酸钴是合成各种有机钴化合物、钴盐催干剂、橡胶工业用钴盐粘合增进剂的重要中间体,由工业纯碱和硫酸钴水溶液复分解反应制得。
由于碳酸钴极易吸附硫酸根和其它杂质离子,所以要用水反复洗涤才能达到质量要求。
一般情况下用常温软化水水需洗涤十几次,热软化水需洗涤7次以上,操作周期长工作效率低。
其中沉降澄清时间和洗涤重复次数随反应条件和操作条件变化,所需时间占整个生产周期的80%,是决定企业生产能力的关键因素。
为了缩短洗涤时间和减小洗涤次数,在对沉降洗涤操作进行深入研究的基础上,对洗涤工艺方法进行了改进,提出了新的工艺措施,洗涤工作效率提高2倍。
1 影响沉淀反应和粒子沉降速度的因素温度:温度高有利于形成结晶状态较好的碳酸钴沉淀缩短澄清时间。
在吸附-解附平衡中升高温度有利于杂质解吸。
浓度:碳酸钠浓度大,生成的细微沉淀物中可能含有胶态氢氧化物,杂质吸附量大幅度增加。
硫酸盐共沉淀:沉淀剂加入过快或浓度过大时,均可能发生硫酸盐共沉淀问题。
其表现是碱式碳酸钴中夹杂一定量硫酸盐,无论怎样洗涤也无法洗净硫酸根离子。
含硫酸盐的碱式碳酸钴反应活性大大减小,产品中夹杂生料。
沉淀剂过量问题:过量幅度小或等量加入会导致碳酸钴沉淀不完全, 滤液发红损失钴。
胶体化倾向:过大的搅拌强度、过高的沉淀剂浓度都可能使沉淀粒子胶体化。
胶体化粒子沉降速度减小,其吸附能力和包裹能力都大大增强,洗涤难度成倍增加,用水量剧增。
2 沉淀洗涤工艺的改进缩短沉淀物洗涤时间的工艺措施,首先是改善沉淀工艺条件,使沉淀保持较好的状态,使之易于沉降和过滤;其次是采取有效措施缩减静置澄清时间。
2.1 保持适宜的沉淀反应工艺条件沉淀剂的加入速度小一些,有利于生成较大的颗粒。
经验表明在2m3的硫酸钴溶液(0.15~0.25,质量分率,下同)中碳酸钠溶液(0.1~0.20)加入速度每分钟2~5L较适宜,可以防止硫酸盐共沉淀。
沉淀温度维持70~80℃可获得满意效果。
备战2022届高考化学一轮实验专题突破05——无机化合物制备探究实验填空题(共12题)1.碘酸钾(KIO 3)是重要的食品添加剂。
某化学兴趣小组设计下列步骤制取 KIO 3,并进行产品步骤I :用 Cl 2 氧化 I 2 制取HIO 3(1)装置A 中发生反应的化学方程式为_______。
(2)装置 B 中的 CCl 4 可以加快反应速率,原因是_______。
(3)反应结束后,获取 HIO 3 溶液的操作中,所需玻璃仪器有烧杯、玻璃棒和_______。
步骤II :用 KOH 中和HIO 3 制取 KIO 3(4)该中和反应的离子方程式为_______。
中和之前,应将上述 HIO 3 溶液煮沸至接近无色,否则中和时易生成_______(填化学式)而降低 KIO 3 的产量。
(5)往中和后的溶液中加入适量_______,经搅拌、静置、过滤等操作,得到白色固体。
(6)为验证产物,取少量上述固体溶于水,滴加适量 SO 2 饱和溶液,摇匀,再加入几滴淀粉溶液,溶液变蓝。
若实验时,所加的 SO 2 饱和溶液过量,则无蓝色出现,原因是_______。
步骤III :纯度测定(7)取 0.1000 g 产品于碘量瓶中,加入稀盐酸和足量 KI 溶液,用 0.1000 mol∙L −1Na 2S 2O 3 溶液滴定,接近终点时,加入淀粉指示剂,继续滴定至终点,蓝色消失(I 2+2223S O -=2I -+246S O -), 进行平行实验后,平均消耗 Na 2S 2O 3 溶液的体积为 24.00 mL 。
则产品中 KIO 3 的质量分数为_______。
[M(KIO 3)=214.0 g∙mol −1]2.硫酸锰铵()()4y 42x 2NH Mn SO nH O ⋅⎡⎤⎣⎦可用作织物和木材加工的防火剂。
实验室利用废弃锌锰干电池可以制备硫酸锰铵并回收ZnCl 2溶液。
步骤如下:步骤I :拆分干电池得到锰粉(主要含MnO 2、炭粉、NH 4Cl 、ZnCl 2和少量FeCl 2等)。
第29卷第4期2007年8月甘 肃 冶 金G ANS U MET ALLURGYVol.29 No.4Aug.,2007文章编号:167224461(2007)0420063203液相法合成碳酸钴的过程控制李冠军1,王同敏2(1.西北矿冶研究院精细化工研究所,甘肃 白银 730900; 2.甘肃贝特瑞新材料有限公司,甘肃 白银 730900)摘 要:本文着重考查了碳酸钴合成过程中氯化钴的浓度、反应温度、加料速度及表面活性剂等因素对碳酸钴的成核、生长的影响,通过以上条件的优化选择,利用液相法合成理想的碳酸钴晶体。
关键词:碳酸钴;表面活性剂;温度;浓度;液相法中图分类号:O643.13+2;T Q127.1+3 文献标识码:A1 前言近十多年来,人们对通过液相法制备各种超微粉体表现出越来越浓厚的兴趣。
该法是由反应物分子、离子通过反应生成产物并经成核和生长两个阶段制备超微颗粒。
液相法制备超微颗粒的特点是:⑴可达到原子 分子水平的混合;⑵所得粉体的纯度高;⑶能够控制成核和组分的均匀性。
但是,液相沉淀法在反应体系中总是存在着沉淀剂局部过浓、溶液体系内温度分布不均等现象,特别是当反应物浓度较高时,由于体系内离子强度高,粒子间相互作用剧烈造成微粒间的团聚及二次成核等,使得到的颗粒呈多分散性。
因此开发减少颗粒团聚的新液相法是一个重要方向。
目前在湿法制粉领域控制粉末团聚主要的手段有两种:一种是控制条件使成核过程与生长过程分开。
要达到这个目的需要选择合适的沉淀体系,确保化学反应在整个体系中迅速、均匀地成核,使已形成的晶核同步生长,同时抑制生长阶段新晶核的产生。
这种方法由于控制成核过程与生长过程的分开非常困难,因此在应用上有一定的局限。
另一种方法是加入大分子的有机添加剂,添加剂的作用在于改变粒子成核生长的历程,利用添加剂的静电效应和空间位阻效应防止粒子在液相中团聚,使粉体保持单分散。
本项研究采用普通的液相沉淀工艺制备碳酸钴粉体。
贵州省遵义市凤冈县第一中学2024届高三最后一卷化学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个选项符合题意)1、短周期元素W、X、Y和Z的原子序数依次增大,W的单质是一种常用的比能量高的金属电极材料,X原子的最外层电子数是内层电子数的2倍,元素Y的族序数等于其周期序数,Z原子的最外层电子数是其电子层数的2倍。
下列说法错误的是A.W、Z形成的化合物中,各原子最外层均达到8个电子结构B.元素X与氢形成的原子数之比为1∶1的化合物有很多种C.元素Z可与元素X形成共价化合物XZ2D.元素Y的单质与氢氧化钠溶液或盐酸反应均有氢气生成2、最近我国科学家对“液流电池”的研究取得新进展,一种新型的高比能量锌-碘溴液流电池工作原理如下图所示。
下列有关叙述错误的是A.放电时,a 极电势高于b 极B.充电时,a 极电极反应为I2Br-+2e-=2I-+Br-C.图中贮液器可储存电解质溶液,提高电池的容量D.导线中有N A个电子转移,就有0.5 mol Zn2+通过隔膜3、化学是现代生产、生活与科技的中心学科之一,下列与化学有关的说法,正确的是A.2022年冬奥会聚氨酯速滑服,是新型无机非金属材料B.石墨烯是由单层碳原子构成的平面结构新型碳材料,属于烯烃C.顾名思义,苏打水就是苏打的水溶液,也叫弱碱性水,是带有弱碱性的饮料D.人们洗发时使用的护发素,其主要功能是调节头发的pH使之达到适宜的酸碱度4、用类推的方法可能会得出错误结论,因此推出的结论要经过实践的检验才能确定其正确与否。
下列推论中正确的是( )A .Na 失火不能用2CO 灭火,K 失火也不能用2CO 灭火B .工业上电解熔融2MgCl 制取金属镁,也可以用电解熔融3AlCl 的方法制取金属铝C .Al 与S 直接化合可以得到23,Al S Fe 与S 直接化合也可以得到23Fe SD .34Fe O 可以写成2334,FeO Fe O Pb O ⋅也可写成23PbO Pb O ⋅5、景泰蓝是一种传统的手工艺品。
2025届山东省泰安市宁阳县第四中学高三上化学期中学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共包括22个小题。
每小题均只有一个符合题意的选项)1、合成氨工业上,采用循环利用操作的主要目的是A.加快反应速率B.提高氨气的平衡浓度C.降低氨气的沸点D.提高N2和H2的利用率2、海藻中含有丰富的、化合态的碘元素。
下图是实验室从海藻里提取碘的流程的一部分,下列判断正确的是( )A.可用淀粉溶液检验步骤②的反应是否进行完全B.步骤①、③的操作分别是过滤、萃取分液C.步骤③中加入的有机溶剂是裂化汽油或乙醇D.步骤④的操作为过滤3、下列有关操作的说法不正确的是A.《本草经集注》记载了鉴别硝石(KNO3)和朴消(Na2SO4)的方法:“以火烧之,紫青烟起,乃真硝石也”,此处运用了物质升华的性质B.《本草纲目》记载了烧酒的制作工艺:“凡酸坏之酒,皆可蒸烧”,此处用到的操作是蒸馏C.《肘后备急方》一书中有“青蒿一握,以水二升渍,绞其汁”,此处用到的操作是溶解D.唐诗有“千淘万漉虽辛苦,吹尽黄沙始得金”的诗句,此处用到的操作是过滤4、酸在溶剂中的电离实质是酸中的H+转移给溶剂分子,如HCl+H2O=H3O++Cl-。
已知H2SO4和HNO3在冰醋酸中的电离平衡常数分别为K al(H2SO4)=6.3×10-9,K a(HNO3)=4.2×10-10。
下列说法正确的是( )A.H2SO4在冰醋酸中的电离方程式为H2SO4+2CH3COOH=SO42-+2CH3COOH2+B.H2SO4在冰醋酸中:()+32c CH COOH=c(HSO4-)+2c(SO42-)+c(CH3COO-)C.浓度均为0.1mol·L-1的H2SO4或HNO3的冰醋酸溶液:pH(H2SO4)>pH(HNO3)D.向HNO3的冰醋酸溶液中加入冰醋酸,()()+323c CH COOHHNOc的值减小5、新华社哈尔滨9月14日电:记者从黑龙江省相关部门获悉,13日14时40分黑龙江省鸡东县裕晨煤矿发生瓦斯爆炸,有9名矿工遇难。
2021-2022学年广东省高三(上)摸底联考化学试卷一、单选题(本大题共16小题,共44.0分)1.广东地处五岭之南,欹枕珠水云山,面朝南海碧波,物产丰盛,人杰地灵。
两千年来,长盛不衰的海上丝绸之路,为广东带来对外贸易的繁荣,也催生出众多绚丽多姿的传统工艺经典。
下列广东工艺品主要由有机高分子材料制成的是()选项A B C D工艺品佛山丝绸“香云名称光彩烧瓷广州玉雕潮汕贝雕纱”A. AB. BC. CD. D2.广东省2021年新冠疫情得到有效控制,疫情防控进入常态化阶段。
下列说法不正确的是()A. 新型冠状病毒是一种蛋白质,其由C、H、O三种元素组成B. 为防止蛋白质变性,疫苗等生物制剂应冷链储运C. 氧化剂ClO2极易溶于水而不与水反应,可用于医院污水的杀菌消毒D. 口罩的主要成分为聚丙烯、聚乙烯,使用后随意丢弃可造成污染3.庆祝中国共产党成立100周年大会上,总书记宣告中华大地全面建成了小康社会。
化学科研人员在科技强国道路上作出了巨大贡献。
下列有关化学与生产生活、科研的说法正确的是()A. 白砂糖做成“棉花糖”就成了高分子化合物——多糖B. 氯化钙、活性炭以及硅藻土、铁粉都是食品包装袋中常见的干燥剂C. FeCl3溶液具有酸性,可用于镀覆层前的钢铁除锈D. 石墨制成富勒烯(C60)用于超导研究,属于物理变化4.生活中处处有化学。
下列日常生活中,相应化学原理分析错误的是()选项日常活动或现象化学原理A“冬月灶中所烧薪柴之灰,令人以灰淋汁,取碱浣衣。
”——《本草纲目》“薪柴之灰”含氢氧化钠,其水溶液显碱性,“浣衣”时油污水解发生化学变化B把石灰浆喷涂在树皮上,消灭过冬虫卵碱性环境使虫卵蛋白质变性而死亡C聚合氯化铝化学式为[Al2(OH)n⋅Cl6−n]m用于污水处理,是一种无机高分子混凝剂水解后形成Al(OH)3凝胶,通过吸附使水中杂质形成不溶物达到沉降D久置的红薯比新挖的红薯甜部分淀粉转化为二糖或单糖A. AB. BC. CD. D5.土臭素是微生物在代谢过程中产生的一种具有土腥味的挥发性物质,其结构简式如图所示。
碱式碳酸钴晶体全文共四篇示例,供读者参考第一篇示例:碳酸钴晶体是一种重要的无机化合物,具有许多重要的应用价值。
碱式碳酸钴晶体则是碳酸钴晶体的一种特殊形态,具有更加丰富的物理性质和化学性质。
本文将重点介绍碱式碳酸钴晶体的结构、性质、制备方法及应用领域。
一、结构碳酸钴晶体的晶体结构是以Co2+离子为中心,被CO32-离子所包围形成的。
而碱式碳酸钴晶体则是在碳酸钴晶体的基础上,受到其他碱金属的影响,形成了新的结构。
一般来说,碱式碳酸钴晶体可以分为单层结构和多层结构两种。
单层结构的碱式碳酸钴晶体中,碱金属离子与钴离子交替排列在空间中,形成紧密的结构。
这种结构具有较高的稳定性和光学性能,因此在一些光学器件中有重要的应用。
而多层结构的碱式碳酸钴晶体则是多个单层结构叠加在一起形成的,具有更加复杂的物理性质和化学性质。
二、性质碱式碳酸钴晶体具有许多独特的性质,使其在多个领域有着广泛的应用。
碱式碳酸钴晶体具有良好的热稳定性和化学稳定性,能够在高温和腐蚀性环境下保持稳定。
碱式碳酸钴晶体具有优异的光学性能,能够在可见光和紫外光范围内发光和吸收光线。
碱式碳酸钴晶体还具有优异的磁性能和电学性能,可用于磁性和电学器件的制备。
三、制备方法碱式碳酸钴晶体的制备方法主要包括溶液法、固相反应法和水热法等。
溶液法是最常用的制备方法之一。
将钴盐和碳酸盐在溶液中混合,调节pH值和温度,使其形成碳酸钴晶体,在加入适量的碱金属盐后可以得到碱式碳酸钴晶体。
而固相反应法是将钴盐和碱金属盐在一定比例下混合,经过高温反应形成碱式碳酸钴晶体。
水热法则是在高温高压的水热条件下,通过反应生成碱式碳酸钴晶体。
四、应用领域碱式碳酸钴晶体在光学、磁性和电学领域有着广泛的应用。
在光学领域,碱式碳酸钴晶体可用于制备发光器件、激光器件和光学传感器等。
在磁性领域,碱式碳酸钴晶体可用于制备磁性记忆材料、磁性传感器和磁性存储材料等。
在电学领域,碱式碳酸钴晶体可用于制备二极管、晶体管和电容器等。
碱式碳酸钴的热离解过程与形貌继承性张立;王振波;余贤旺;吴冲浒;单成【摘要】以碳酸氢铵为沉淀剂,从氯化钴溶液中沉淀制得棒状碱式碳酸钴.采用TG-DTG-DSC热分析技术对碱式碳酸钴的热离解过程进行研究,采用X射线衍射技术对碱式碳酸钴在不同煅烧温度下的热离解产物进行物相分析,采用扫描电镜观察碱式碳酸钴及其在700℃的煅烧产物Co3O4的形貌特征.结果表明,在此实验条件下,碱式碳酸钴在450℃煅烧以及保温3h的热离解产物中CoO的质量分数依然高达50.5%,碱式碳酸钴完全离解为Co3O4的温度高于359.5~421.1℃的热分析测量值:700℃煅烧可得到单一相成分的C0304; 850℃煅烧,Co3O4发生离解,热离解产物中CoO的质量分数高达47.93%,这一离解温度低于Co3O4热离解最低温度为910~920℃的热力学理论预测值.要制备单一相成分的Co3O4,必须严格控制其前躯体的煅烧离解条件.Co3O4产物对碱式碳酸钴具有良好的形貌继承性,因此通过控制Co3O4粉末前驱体的制备条件可以实现对Co3O4粉末形貌的有效控制.【期刊名称】《粉末冶金材料科学与工程》【年(卷),期】2010(015)006【总页数】6页(P679-684)【关键词】碱式碳酸钴;四氧化三钴;热离解;形貌继承性【作者】张立;王振波;余贤旺;吴冲浒;单成【作者单位】中南大学粉末冶金国家重点实验室,长沙,410083;中南大学粉末冶金国家重点实验室,长沙,410083;中南大学粉末冶金国家重点实验室,长沙,410083;厦门金鹭特种合金有限公司,厦门,361006;国家钨材料工程技术研究中心,厦门,361006;中南大学粉末冶金国家重点实验室,长沙,410083【正文语种】中文【中图分类】TB38Co3O4粉末广泛应用于电化学[1]、催化剂[2]、磁性材料[3]等领域。
随着锂离子二次电池与超级电容器需求量的不断增加,Co3O4粉末的市场需求量也在日益扩大。
绝密★启用前滨城高中联盟20232024学年度上学期高三期中II考试化学命题人:大连育明高级中学刘懿校对人:大连育明高级中学王仕作可能用到的相对原子质量: H1 C12 N14 O16 Na23 Co59一、选择题:本题共15 小题,每小题3分,共45 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 化学与生产、生活密切相关。
下列说法正确的是A. 侯氏制碱法制得的最终产物为NaHCO₃B. ¹H、²H、³H可用于制造氢弹C. 富勒烯是一种新型无机非金属材料;C₃₃与石墨烯互为同素异形体D. 亚硝酸钠是一种防腐剂,奶粉中添加的硫酸锌也是一种防腐剂2. 下列化学用语或表述正确的是A. H₃O₃的电子式:B. Fe²₃的结构示意图:C.铁片和锡片用导线连接后插入稀盐酸,负极的电极反应方程式为:Fe−3e⁻=Fe³⁺D. H₃PO₃为二元弱酸,KH₃PO₃与足量 NaOH溶液反应的离子方程为: H2PO3−+2OH−=PO33−+2H2O3. 下列有关工业制备反应正确的是A. 制 NaOH: Ca(OH)₂+Na₂CO₃=CaCO₃+2NaOHB. 冶炼银: 2Ag2O(熔融)电解4Ag+O2↑C. 合成氨: NH₃⋅H₂O+NH₃↑+Ca(OH)₂D. 制备漂白粉:2Cl₂+2Ca(OH)₂=CaCl₂+Ca(ClO)₂+2H₂O4. N A为阿伏加德罗常数的值,下列说法不正确的是A.1L0.01mol⋅L⁻¹FeCl₂溶液和1L0.01mol⋅L⁻¹K₃[Fe(CN)₆]溶液混合,混合后溶液中 K₃B.1L0.1mol⋅L⁻¹CuCl₂溶液和1L0.1mol⋅L⁻¹NaHS溶液混合,混合后溶液中存在:n(S²)+n(HS⁻)+n(H₂S)<0.1molC. 156g Na₃O₃与足量SO₃充分反应,转移电子数为4N AD. 28gN₃和 N₃的混合气体, 含有电子数为14N A5. 已知HN₃(叠氮酸)是一种酸性很弱的酸。
第1页,共20页三三三三2020三三三三三三三三三——三三三三三三三三三三三1. 氰化钠是一种重要的基本化工原料,同时也是一种剧毒物质。
一旦泄漏需要及时处理,一般可以通过喷洒双氧水或过硫酸钠(Na 2S 2O 8)溶液来处理,以减轻环境污染。
Ⅰ.已知:氰化钠是一种白色结晶颗粒,化学式为NaCN ,有剧毒,易溶于水,水溶液呈碱性,易水解生成氰化氢。
(1)请设计实验证明N 、C 元素的非金属性强弱:________。
(2)NaCN 用双氧水处理后,产生一种酸式盐和一种能使湿润的红色石蕊试纸变蓝的气体,该反应的离子方程式是________。
Ⅱ.工业制备过硫酸钠的反应原理如下:主反应:(NH 4)2S 2O 8+2NaOH 55∘C ̲̲̲̲̲̲̲̲̲Na 2S 2O 8+2NH 3↑+2H 2O副反应:2NH 3+3Na 2S 2O 8+6NaOH90∘C ̲̲̲̲̲̲̲̲̲6Na 2SO 4+6H 2O +N 2 某化学兴趣小组利用上述原理在实验室制备过硫酸钠,并检测用过硫酸钠溶液处理后的氰化钠废水是否达标排放。
【实验一】实验室通过如图所示装置制备Na 2S 2O 8。
(3)装置b 的作用是________。
(4)装置a中反应产生的气体需要持续通入装置c的原因是________。
(5)上述装置中还需补充的实验仪器或装置有________(填字母)。
A.温度计B.洗气瓶C.水浴装置D.酒精灯【实验二】测定用过硫酸钠溶液处理后的废水中氰化钠的含量。
已知:①废水中氰化钠的最高排放标准为0.50mg⋅L−1。
②Ag++2CN−===[Ag(CN)2]−,Ag++I−===AgI↓,AgI呈黄色,且CN−优先与Ag+反应。
实验如下:取100.00mL处理后的氰化钠废水于锥形瓶中,并滴加几滴KI溶液作指示剂,用1.00×10−4mol⋅L−1的标准AgNO3溶液滴定,消耗AgNO3溶液的体积为1.50mL。
Selective Synthesis of Cobalt Hydroxide Carbonate 3DArchitectures and Their Thermal Conversion to CobaltSpinel 3D SuperstructuresBenxia Li, Yi Xie, Changzheng Wu, Zhengquan Li, Jin ZhangNano-materials and Nano-chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China Email: yxielab@AbstractHighly uniform 3D sisal-like, dandelion-like and rose-like architectures of cobalt hydroxide carbonate with orthorhombic or monoclinic phase were synthesized through a facile selected-control hydrothermal process at 100 °C, 140 °C and 180 °C, respectively. In addition, cobalt spinel Co3O4 superstructures with broom-like, dandelion-like and rose-like morphologies were obtained by thermal conversion of the corresponding precursor of 3D architectures based on the thermal analysis results, and TEM images show that all Co3O4 superstructures were assembled by nanoparticles. The optical absorption properties of the Co3O4 superstructures were investigated and the results indicate that the superstructures are semiconducting with transitions corresponding to 775nm and 530 nm in the UV-visible spectroscopy.Keywords:cobalt hydroxide carbonate; 3D architectures; superstructures; cobalt spinel.1 IntroductionIt is generally believed that special morphologies and crystallographic forms are responsible for their properties, and thus, controlling the anisotropic inorganic materials at the mesoscopic level has attracted intensive interest presently and become a studying focus in chemical synthetic fields. Recently, the ordered patterned aggregation of nanoparticles are promising candidates in several fields of research and application, therefore, the building and patterning of inorganic nanoparticles into 2D and 3D organized structures by manipulation of individual units is a potential route to utilizing their chemical, optical, catalytic, magnetic and electronic properties.[1,2] Much effort has been made in the fabrication of patterns of well-arranged nanostructures, especially the arrangement of one-dimensional nanostructures because of their interesting physical properties and potential applications in many areas.[3] The oriented growth of nanostructures is difficult in a certain extent because it usually requires additional templates to act as a support, such as porous alumina and polymer additives to control the direct growth.[4,5] However, the introduction of templates and substrates introduces heterogeneous impurities and complicates the synthesis process, which may restrict the wide development of researches and applications. Thus it is very significant to develop facile, mild, easily-controlled methods to synthesize novel patterns through self-assembly of nanoparticles.Co3O4 has been extensively investigated for the last two decades in view of their application as gas sensors, catalysts, magnetic materials, electrochromic devices, and high-temperature solar selective absorbers.[6-10] In recent years, remarkable process has been made in the synthesis of cobalt spinel Co3O4 with different morphologies and by various methods including microemulsion method, reduction/oxidation route, homogeneous precipitation, and metal organic chemical vapor deposition (MOCVD).[11-15] However, there has been no reports about the synthesis of 3D Co3O4 nanostructures.Synthesis of novel nanostructures from suitable precursors is an available and convenient method in the synthesis of nanomaterials, which can help control morphology of the nanostructures through treating the as-obtained precursor with desired morphologies.[16] In the case of Co3O4, it is well known that H2O and CO2 are released from cobalt hydroxide carbonates at elevated temperature, and thus cobalt hydroxide carbonates are more desirable precursors for the cobalt spinel because there are no toxic byproducts during their pyrogenation process.[17] Thus, it is possible to fabricate Co3O4 nanostructures with novel morphologies through as-obtained cobalt hydroxide carbonates precursors.In this work, we successfully synthesized three novel kinds of cobalt hydroxide carbonate 3D architectures through a facile selected-control hydrothermal process via the direct reaction between only cobalt salt (CoCl2·6H2O) and urea under different temperatures (100o C, 140o C and 180o C). The corresponding cobalt spinel Co3O4 3D superstructures were obtained by thermal conversion and oxidization of the 3D architectures cobalt hydroxide carbonate, and the obtained Co3O4 3D superstructures inherit the morphologies of their precursors to some extent. There are some significative features in this work: First, this is the first report of 3D sisal-like, dandelion-like and rose-like architectures of cobalt hydroxide carbonate with orthorhombic or monoclinic phase, and the synthesis process is simple andeasy-manipulated. Then, this is also the first report of 3D Co3O4 superstructures with broom-like, dandelion-like and rose-like morphologies which are further assembled by uniform nanoparticles as observed from their microstructures.2 Experimental2.1 Methods of SynthesisSynthesis of cobalt hydroxide carbonate 3D architectures with different morphologies. All chemical reagents were of analytical grade and used as received without purification. In a typical procedure, 1 mmol CoCl2·6H2O and 3 mmol urea were added to distilled water (12 mL) under stirring to form homogeneous transparent solution. The solution then was transferred into a stainless steel autoclave with a Teflon liner of 15 mL capacity, and heated in an oven at 100°C (140°C or 180°C) for 10 h. After the autoclave was air-cooled to room temperature, the resulting pink product was filtered, washed with distilled water and absolute ethanol for several times, then dried under vacuum at 60°C for 4h.Thermal Conversion to Co3O4 3D superstructures. The samples of cobalt hydroxide carbonate were further heat-treated in static air. The temperatures of pyrogenation were set above those at which the stable weight was obtained in TGA measurements (see Figure 2). In a typical procedure, 1 mmol as-obtained cobalt hydroxide carbonate sample (obtained at 100o C, 140o C or 180o C respectively) was put into a corundum crucible with capacity of 40 mL which was heated to 500o C for 5 hours at a heating rate of 5°C/min, and then cooled to room temperature. The black powder was collected for the following characterization.2.2 CharacterizationThe samples were characterized by X-ray powder diffraction (XRD) with a Japan Rigaku D/max rA X-ray diffractometer equipped with graphite monochromatized high-intensity Cu-Ka radiation (λ = 1.54178 Å). The accelerating voltage was set at 50 kV, with 100 mA flux at a scanning rate of 0.06 °/s. The morphologies and sizes of the products were observed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FE-SEM), respectively. The field emission scanning electron microscopy (FE-SEM) images were taken on a JEOL JSM-6700FSEM. The transmission electron microscopy (TEM) images and electronic diffraction (ED) patterns were taken on a Hitachi Model H-800 instrument with a tungsten filament, using an accelerating voltage of 200 kV. Thermal gravimetric analysis (TGA) of the as-synthesized samples was carried out on a Shimadzu TA-50 thermal analyzer at a heating rate of 10 K min-1 from room temperature to 700°C in air. X-ray photoelectron spectrum (XPS) was collected on an ESCALab MKII X-ray photoelectron spectrometer, using nonmonochromatized Mg Ka X-ray as the excitation source and C 1s (284.6 eV) as the reference line. Optical absorption spectrum was recorded on a Shimadzu UV-2401PC UV-vis recording spectrophotometer.3. Results and discussion3.1 Phases and morphologies of the cobalt hydroxide carbonate 3D architectures.X-ray power diffraction (XRD) pattern. Morphologies of the three products are determined by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FE-SEM). The systems at different temperatures produce different morphologies: sisal-like obtained at 100oC, dandelion-likeFigure 1. The morphologies of as-obtained cobalt hydroxide carbonates: FESEM images (A-B) of the sisal-like architectures obtained at 100o C; TEM images (C) of two typical nanorods in the sisal-like architectures, inset SAED from a single nanorod;SEM and FESEM images (D-E) of the dandelion-like architectures obtained at 140o C;TEM images (F) of several typical nanorods in the dandelion-like architectures, inset SAED from a single nanorod; SEM images (G-H) of the rose-like architectures obtained at 180o C.obtained at 140o C and rose-like obtained at 180o C, as shown in Figure 1. XRD patterns of the samples shown in Figure 2 identify the phases. All the peaks in sisal-like and dandelion-like products prepared at 100°C and 140°C can both be perfectly indexed to the orthorhombic cobalt basic carbonate phase with constants of a =8.914 Å, b =10.294 Å, c =4.458 Å, which are consistent with the reported values of the orthorhombic Co(OH)x(CO3)0.5⋅0.11H2O (JCPDS card, No.48-0083). All the peaks in the rose-like product prepared at 180°C can be perfectly indexed to the monoclinic cobalt hydroxide carbonate phase with constants of a =9.268 Å, b =12.162 Å, c =3.347 Å, which are very close to the reported values (JCPDS card, No. 29-1416, Co 2(OH)2CO 3 ).Morphologies of cobalt hydroxide carbonate nanostructures. The FE-SEM image of the product obtained at 100o C (Figure 1A) shows that sample consists of uniform 3D sisal-like architectures with average diameter of 15 μm. From the magnified FESEM image of a single sisal (Figure 1B), one can find that this sisal-like architecture is formed by many needle-like nanorods growing radially from the core; and these nanorods were about 200-500 nm wide and 5-8 μm long. The TEM (Figure 1C) shows two typical nanorods growing from the core and inserted SAED pattern of a single nanorod shown in Figure 1C indicates that these nanorods are single crystals with the growth direction along [010].Under the raised temperature of 140°C, 3D dandelion-like architectures (Figure 1D-F) were obtained. Figure 1D depicts that the product is composed of dandelion-like spheres with diameter of 5-8 μm. More details about the structure of a dandelion-like sphere can be observed from Figure 1E, which indicates that10203040506070AB C(023)(450)(412)(142)(060)(340)(050)(231)(301)(040)(221)(300)(220)(020)(100)(052)(451)(351)(170)(520)(510)(350)(160)(430)(250)(150)(330)(240)(031)(040)(140)(130)(120)(020)I n t e n s i t y (a .u .)2θ (degree)Figure 2. The XRD patterns of the as-obtained cobalt hydroxide carbonate. (A) sisal-like architectures obtained at 100o C; (B) dandelion-like architectures obtained at 140o C; (C) rose-like architectures obtained at 180o C.the 3D architectures were aggregated by well-arranged nanorods with uniform diameters about 100 nm and length up to 4 μm, growing from a core. Compared with the sisal-like architectures, the nanorods without sharp ends in the dandelion-like architectures were congregated more compactly into a sphere from the core. The TEM image (Figure 1F) shows several typical nanorods growing from a core and inserted SAED demonstrates the single-crystal nature of the nanorods with the growth direction of [010].At the elevated temperature of 180°C, the phase and morphology of the product obtained were quite different from the other two samples obtained at lower temperatures. The panoramic morphology of this sample (Figure 1G) indicates many rose-like assemblies with sizes ranging between 60 and 80 μm formed by many petal-like flakes. Figure 1H shows a typical magnified SEM image of the rose-like architectures and the petal-like flakes with different sizes congregate layer by layer from a core to form a rose-like architecture.Thermal Analysis for the cobalt hydroxide carbonate 3D architectures. The TGA and DrTGA study on the sisal-like and dandelion-like cobalt hydroxide carbonate architectures indicate that under air atmosphere, the sisal-like and dandelion-like cobalt hydroxide carbonate architectures have very similar thermal behaviors. Typically, one TGA and DrTGA curve is shown in Figure 3A, which shows a obvious weight loss peak at the temperature range of 200-300°C and a little peak at 310-360°C. The weight losses corresponding to the two steps in TGA are about 21.17% and 2.97%, respectively. The first weight loss ascribes to a simultaneous removal of structural water and carbon dioxide by dehydroxylation and decomposition of carbonate groups, and the second may be due to the continuing decomposition of some residual carbonate groups. Whereas in DrTGA curve of the rose-like cobalt hydroxide carbonate architectures (Figure 3B), there is a well-defined peak at 260-357°C, which may be due to a simultaneous removal of hydroxyl and carbonate anions, and the total weight loss is about 22.32%. According to the thermal analysis datum, the rose-like monoclinic cobalt hydroxide carbonate architectures decompose at higher temperature, indicating that the monoclinic cobalt hydroxide carbonate is thermally more stable than its orthorhombic polymorph, which is consistent with the fact that the monoclinic rose-like cobalt hydroxide carbonate architectures formed under higher temperature.1002003004005006007007580859095100105A DrTGA%TGAw e i g h t l o s s (a r b . u n i t )Temp(oC)1002003004005006007007580859095100105DrTGATGA %w e i g h t l o s s (a r b . u n i t )Temp(oC)B3.2 Phases and morphologies of the thermal conversion products of Co3O4.X-ray power diffraction (XRD) pattern. XRD patterns of the pyrolysis products from three precursors of cobalt hydroxide carbonate are shown in Figure 4, from which one can clearly see that three pyrolysis products show identical phase. All the reflection peaks can be indexed to pure cubic phase of Co 3O 4 spinel with lattice parameter a=8.075 Å, which are very close to the reported value (a = 8.083 Å) (JCPDS: 42-1467). No other peaks for impurities were detected.Figure 3. TGA and DrTGA curves of the as-obtained cobalt hydroxide carbonates (A) sisal-like or dandelion-like architectures obtained at 100o C; (B) rose-like architectures obtained at 180o C.Figure 4. XRD patterns of thermal conversion products Co 3O 4: (A) obtained from the pyrolysis of the sisal-like architectures, (B) obtained from the pyrolysis of the dandelion-like architectures, (C) obtained from the pyrolysis of the rose-like architectures.XPS measurement. Further evidence for purity and composition of the samples is obtained by XPS measurements. Figure 5 shows the typical Co 2p and O 1s core spectrum. The two core lever peaks at 780.5 and 795.7 eV in Figure 5A correspond to Co 2p3/2 and Co 2p1/2, respectively, characteristic of the Co 3O 4 phase. [18] The O 1s core spectrum (figure 5B) shows three peaks at 530.4 and 531.8 and 533.2 eV, respectively, which can be attributed to absorbed gaseous oxygen ( 530.4 eV) and O 2- combined with Co 2+ (531.8 eV) ,Co 3+(533.2 eV) .770780790800810Co 2p 1/2Co 2p 3/2AR e l a t i v e t e n s i t y (c p s )Binding energy (eV)526528530532534536538540BO 1sR e l a t i v e i n t e n s i t y (c p s )Binding energy (eV)Morphologies of Co 3O 4 nanostructures. Morphologies of the three pyrolysis products Co 3O 4 are shown in Figure 6A-I. Figure 6A-C belong to the as-obtained Co 3O 4 from pyrolysis of the sisal-like cobalt hydroxide carbonate architectures at 500°C. The morphology (Figure 6A) of the final product depicts that most of them are broom-like superstructures with average length of 10 μm and width of 5 μm, and these broom-like superstructures consist of many nanorods with different lengths radiating from the center. Further details shown in Figure 6B reveal that the nanorods look like bead-like chains formed by lots of nanoparticles interconnected with each other along a definite direction. The TEM image of a single Co 3O 4 nanorod shown in Figure 6C demonstrates that the nanorod, with 250 nm wide in the middle and 2.5 μm long, are flat and has a sharp end, which is consistent with that of its precursor observed in Figure 1C, but it is interesting that the nanorods split into several nanorods with smaller width. The insert of Figure 6C shows a magnified TEM image of a nanorod formed with uniform nanoparticles, which indicates these nanoparticles were orderly arranged into a line, and the observed average size of the particles is about 100-150 nm. This nanostructure was investigated by the electron diffraction (ED) patterns (insert b in Figure 6C) in which the electron diffraction spots separate clearly, which indicates these nanoparticles are well crystallized and self-assembled along a desired pattern.Figure 5. High-resolution XPS core spectrum: (A) Co 2p in the oxide sample; (B) O 1s.Figure 6D-F show the FESEM image of the dandelion-like Co 3O 4 superstructures obtained from pyrolysis of the dandelion-like cobalt hydroxide carbonate architectures at 500°C. The typical panoramic morphology of some assemblies shown in Figure 6D indicates that all the 3D dandelion-like structures with diameter of 6-10 μm are assembled by well-aligned nanorods, which is similar to its corresponding precursor. But the magnified FESEM image of a part of the dandelion-like Co 3O 4 superstructures (Figure 6E) shows that the nanorods look like bead-like chains assembled by many nanoparticles. Figure 6F shows a TEM image of a nanorod formed by uniform nanoparticles with sizes of about 100 nm which were orderly arranged into a line. And the SAED pattern (insert in Figure 6F) consistent with insert b in Figure 6F indicates these uniform nanoparticles are self-assembled along a desired pattern.Figure 6G-I show the representative FESEM images of the product obtained by pyrolysis of the rose-like cobalt hydroxide carbonate architectures at 500o C. The image with low magnification (Figure 6G) reveals that the as-prepared product consists of a large scale of highly uniform rose-like superstructures with average size of 60 μm, which perfectly inherit the morphologies of their precursors. However, from anFigure 6. FESEM images (A, B ) of broom-like Co 3O 4superstructures obtained from the pyrolysis of the sisal-like cobalt hydroxide carbonate architectures; TEM image (C )of a nanorod formed with nanoparticles, inserted SAED and a amplified part of the nanorod. FESEM images (D, E) of the dandelion-like Co 3O 4superstructures obtained from the pyrolysis of the dandelion-like cobalt hydroxide carbonateimage with high magnification (Figure 6H), it is found that these flakes in fact are assembled with many uniform nanoparticles distributing on two-dimension plane, which is different from their precursors of rose-like cobalt hydroxide carbonate architectures. The TEM image (Figure 6I) of a flake further confirms that the flake consists of many particles with average size about 80 nm, and the inserted SAED pattern taken on the flake exhibits diffuse polycrystalline ring patterns, which may attribute to the relatively small size of the nanoparticles and their two-dimension dispersion. The result of SAED also further confirms that these flakes are constructed from crystalline Co 3O 4 nanoparticles. 3.3 Possible formation mechanismFormation mechanism of the precursors: cobalt hydroxide carbonates architectures. In previous reports, the synthesis of the metal hydroxide carbonates usually involves precipitation of metal salts with an alkaline carbonate in the appropriate pH range of 7 to 9, [19] while these reactions are too rapid to control the crystal growth. Urea, (NH 2)2CO is a nonionic, nontoxic, cheap, stable, crystalline, and water soluble compound. It decompose to release NH 3 and CO 2 at about 70 o C, then NH 3 and CO 2 hydrolyzed to produce the precipitators OH - and CO 32- which slowly deposit metal ion, and thus homogeneous precipitation of metal salt by urea hydrolysis can overcome the faults brought by directly adding precipitator into solution.The formation of cobalt hydroxide carbonate involved a hydrolysis-precipitation process, in which urea afforded simultaneously hydrolysis-precipitation to bivalent Co 2+ ions. The main reactions in the system can be expressed as follows.232222CO NH O H NCONH H +→+ (1) −−+→+H CO O H CO 22322 (2)−++→+OH NH O H NH 423 (3)The formation of orthorhombic cobalt hydroxide carbonate phase can formulate as:Co2+ + xOH - + 0.5CO 32- + 0.11H 2O Co(OH)x (CO 3)0.5⋅0.11H 2O (4)At the elevated temperature of 180°C, the reaction can be expressed as follow:2Co 2+ + 2OH - + CO 32-Co 2(OH)2CO 3 (5)The formation of the 3D architectures relates to the experimental parameters as well as thermodynamics and kinetics control on the reaction between metal salts and urea, which are well-known factors influencing the crystal growth. The kinetics is modulated by adjusting the temperature and the concentration of reagents, which control the hydrolysis rate and ratio, thus controlling the nucleation and growth processes. At higher temperature, the thermally more stable product, monoclinic Co 2(OH)2CO 3, was obtained through the reaction expressed in Equation (5).As these cobalt hydroxide carbonate 3D assemblies formed spontaneously and neither templates nor surfactants were used to control the process of crystallization in our experiment, a possible formationprocess was supposed. At first, many nuclei initially formed in the homogeneous solution at the beginning of the reaction. Then, as the concentration of the reactants became lower, these nuclei preferentially grew along the [010] direction to form 1D nanorods if the chemical environment constantly feed resource for cobalt basic carbonate. Therefore, the 3D architectures could form by these nanorods grow epitaxially along with the [010] direction from the nuclei formed initially, for which the TEM images (Figure 3C, 3G) provided direct evidences that these nanorods grew from a common core.The morphologies of cobalt hydroxide carbonate 3D nanostructures obtained at different temperatures have elucidated that reaction temperature also plays a crucial role in the growth process of cobalt hydroxide carbonate 3D assemblies. As the reaction temperature was elevated from 140°C to 180°C, the morphologies of cobalt hydroxide carbonate 3D nanostructures have changed greatly in their structures and sizes. Kinetics theory gave us implication that temperature influences greatly on the rate of hydrolysis, nucleation as well as on the growth processes. From the thermodynamic and crystal-symmetry arguments, the monoclinic Co2(OH)2CO3 is thermally more stable, and thus increasing the temperature to 180°C in this approach obtained the 3D rose-like architectures of monoclinic cobalt hydroxide carbonate. In addition, the XRD pattern of the rose-like cobalt hydroxide carbonate architectures shows that the diffraction intensity of the (020) plane are stronger than the reported values, which indicates that the crystal shape anisotropy and the growing orientation of the rose-like cobalt hydroxide carbonate were in the (020) plane perpendicular to the second symmetrical axis of the monoclinic crystal to form 2D flakes. These flakes epitaxially grow from a core and thus aggregate into a rose-like structure.Formation mechanism of Co3O4 superstructures. Upon the pyrolysis of the obtained cobalt hydroxide carbonate samples at 500°C in air, corresponding Co3O4 superstructures were obtained. As indicated from FESEM images (Figure 6), it is observed that the 3D superstructures of Co3O4 approximately maintain the morphology of their corresponding precursors. Seen from the detailed structures, these Co3O4 3D superstructures were built by many uniform nanoparticles which were interconnected along the original directions of the cobalt hydroxide carbonate nanostructures. In addition, one can find that the sisal-like cobalt hydroxide carbonate architectures changed into broom-like superstructures after heat-treated at 500°C for 5h, which is possibly because that the core of the sisal-like architectures is relatively small, and thus when heated at 500°C the sisal-like architectures split into nanorod-bundles. In the other two structures, the nanorods or flakes combine more compactly and the main shapes keep unaltered after heat-treated. Furthermore, in the XRD patterns of Co3O4 superstructures, the intensities of all the reflection peaks are identical with that of the reported values, which are characteristic of the nanoparticles in the Co3O4 superstructures.As indicated in TGA/DrTGA results (Figure 2), the precursor cobalt hydroxide carbonate decomposed to release H2O and CO2 when they were heated above 200°C (or 263°C) in air. The elimination of hydroxyl and carbonate groups from the precursors has great influence on the crystallinity of Co3O4, and the formation of new crystalline phase caused the disruption of the original rod-like or flake-like morphology and led to the architectures formed with nanoparticle array. In the other hand, H2O and CO2 were released in-situ from the precursors of cobalt hydroxide carbonate during the process of the precursors decomposing,and thus the produced Co 3O 4 nanoparticles remain the relative positions along the patterns of their corresponding precursors. This may be the primary reason for the phenomena that these Co 3O 4 nanoparticles have a predominant assembling along 1D direction (or 2D plane) instead of monodisperse nanoparticles.3.4 The optical properties of as-obtained Co 3O 4 products.The optical absorption property of Co 3O 4 products was investigated with room-temperature (RT) by UV-visible spectroscopy (Figure 7), when ethanol is used as a reference. The Co 3O 4 is a p-type semiconductor [21] and its optical band gap can be obtained from the spectra elaboration. The UV-Vis spectra of the three samples are similar except some tiny difference which may contribute to their different sizes and morphologies. The UV-Vis spectroscopy result shows that there are two absorption bands at about 530 nm and 775 nm, respectively. It should be attributed to the valence-to-conduction-band transition in Co 3O 4, and the results are in agreement with the Co 3O 4 band structure.[14b, 21]4. Conclusion and Future worksIn conclusion, we successfully synthesized 3D architectures of cobalt hydroxide carbonate through a facile selected-control hydrothermal process via the direct reaction between only cobalt salt (CoCl 2·6H 2O)Figure 7. UV-visible spectroscopy of Co 3O 4superstructures: (A) obtained from the pyrolysis of the sisal-like precursor, (B) obtained from the pyrolysis of the dandelion-like precursor, (C) obtained from the pyrolysis of the rose-like precursor. 400500600700800C B A 775 nm530 nm I n t e n s i t y wavelength (nm)and urea under different temperatures (100°C, 140°C and 180°C), in which the cobalt hydroxide carbonate 3D nanostructures with orthorhombic or monoclinic phase and morphologies of sisal-like, dandelion-like and rose-like can be selectively prepared, respectively. The thermal stability of these nanostructures was studied and compared with thermal analysis data. In addition, cobalt spinel Co3O4 superstructures with broom-like, dandelion-like and rose-like morphologies were correspondingly obtained by pyrolysis of the 3D architectures of cobalt hydroxide carbonate precursors. Possible mechanism was proposed to elucidate the formation of cobalt hydroxide carbonate architectures and their pyrolysis product of the Co3O4 superstructures. The optical absorption properties of the Co3O4 nanoparticles were investigated and the results indicate that the nanoparticles are semiconducting with transitions corresponding to 775 nm and 530 nm in the UV-visible spectroscopy. These novel Co3O4 nanostructures, which own the highly specific area on the surface of the particles, may bring some novel and unexpected properties, for example, molecular sieves and catalysts, especially for the electrochromic devices, and so on.AcknowledgementsThis work was supported by Specialized Research Fund for the Doctoral Program of Higher Education, the National Natural Science Foundation of China, Chinese Ministry of Education and Chinese Academy of Sciences.References[1] a) L. L. Beecroft, C. K. Ober, Chem. Mater.1997,9, 1302; b) C. B. Murray, C. R. Kagan, M. G.Bawendi, Science1995, 270, 1335.[2] O. Vidoni, K. Philippot, C. Amiens, B. Chaudret, O. Balmes, J. O. Malm, J. O. Bovin, F. Senocq, M.Casanove, Angew. Chem. Int. Ed., 1999, 38, 3736.[3] a) A. M. Morales, C. M.Lieber, Science1998, 279, 208 ; b) W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu,Science1997, 277, 1287; c) C. Feldman,; H. O. Jungk, Angew. Chem.2001, 13, 372; d) H. Yu, P. C.Gibbons, K.F. Kelton, W. E. Bubro, J. Am. Chem. Soc.2001, 123, 359.[4] a) H. Cao, Z. Xu, H. Sang, D. Sheng, C. Tie, AdV. Mater.2001, 13, 121; b) C. Liu, J. A. Zapien, Y. Yao,X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, Adv. Mater.2003, 15, 838.[5] C. Wu , Y. Xie, J. Phys. Chem. B2003, 107, 13583.[6] a) M. Andok, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem.1997, 7, 1779; b) H. Yamaura, J.。
碱式碳酸钴镍全文共四篇示例,供读者参考第一篇示例:碱式碳酸钴镍,是由碳酸盐和金属阳离子钴、镍所构成的一种化合物。
它具有优良的化学稳定性、热稳定性和电化学性能,被广泛应用于电池、催化剂、磁性材料等领域。
本文将着重介绍碱式碳酸钴镍的结构、性质、应用及合成方法。
结构方面,碱式碳酸钴镍通常具有沉淀物的形式存在,其结构类似于层状结构,其中碱式碳酸盐的离子形成了结晶基底,钴、镍离子则填充在碳酸盐的层间空间,形成了一个三维的网状结构。
这种结构既保留了碱式碳酸盐的高效能性能,又增强了镉、镍离子的活性,使得整体性能更为出色。
在性质方面,碱式碳酸钴镍具有良好的导电性能和储能性能。
由于其层状结构,离子能够在层间空间之间自由穿梭,使得电荷传递更为迅速,电导率更高。
碳酸盐也可以吸附大量的阳离子,增加了储能的能力,使得电池循环寿命更长,性能更为稳定。
在应用方面,碱式碳酸钴镍广泛用于锂离子电池、燃料电池、超级电容器等领域。
在锂离子电池中,碱式碳酸钴镍作为正极材料,能够提供更高的容量和更长的循环寿命。
在燃料电池中,碱式碳酸钴镍可以作为催化剂,提高反应速率,降低活化能,促进氢气的产生。
在超级电容器中,碱式碳酸钴镍可以提供更高的电容量和更快的充放电速率。
在合成方法方面,碱式碳酸钴镍可以通过化学沉淀、溶胶凝胶法、水热法等多种方法制备。
化学沉淀法是最为简单和常用的方法,首先将钴、镍盐和碱性碳酸盐混合溶解于水中,然后加入氢氧化钠调节pH 值,产生沉淀,最后经过洗涤、干燥、煅烧等步骤得到最终产物。
第二篇示例:碱式碳酸钴镍是一种在电池领域中广泛应用的化合物,它是由碳酸钴和碳酸镍混合而成的复合物。
这种化合物具有优良的导电性能和循环稳定性,被广泛用于锂离子电池、镍氢电池、镍镉电池等电池系统中。
本文将对碱式碳酸钴镍的结构、性能和应用进行详细介绍。
碱式碳酸钴镍的化学式为(Ni,Co)CO3(OH),其中Ni和Co的比例可以根据具体的应用需求进行调整。
2023年高考化学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题只有一个选项符合题意)1、苯甲酸的电离方程式为+H+,其K a=6.25×10-5,苯甲酸钠(,缩写为NaA)可用作饮料的防腐剂。
研究表明苯甲酸(HA)的抑菌能力显著高于A-。
已知25℃时,H2CO3的K a1=4.17×l0-7,K a2=4.90×l0-11。
在生产碳酸饮料的过程中,除了添加NaA外,还需加压充入CO2气体。
下列说法正确的是(温度为25℃,不考虑饮料中其他成分)()A.H2CO3的电离方程式为H2CO32H++CO32-B.提高CO2充气压力,饮料中c(A-)不变C.当pH为5.0时,饮料中() ()c HAc A-=0.16D.相比于未充CO2的饮料,碳酸饮料的抑菌能力较低2、为落实“五水共治”,某工厂拟综合处理含NH4+废水和工业废气(主要含N2、CO2、SO2、NO、CO,不考虑其他成分),设计了如下流程:下列说法不正确的是A.固体1中主要含有Ca(OH)2、CaCO3、CaSO3B.X可以是空气,且需过量C.捕获剂所捕获的气体主要是COD.处理含NH4+废水时,发生反应的离子方程式为:NH4++NO2-==N2↑+2H2O3、设阿伏加德罗常数的数值为N A,下列说法正确的是A.1L 1 mol·L-1的NaHCO3溶液中含有的离子数为3N AB.22.4 L的CO2与过量Na2O2充分反应转移的电子数为N AC.常温下,2.7 g铝片投入足量的浓硫酸中,铝失去的电子数为0.3N AD.常温常压下,14g由N2与CO组成的混合气体含有的原子数目为N A4、某溶液可能含有下列离子中的若干种:Cl−、SO42—、SO32—、HCO3—、Na+、Mg2+、Fe3+,所含离子的物质的量浓度均相同。