5 电磁波在导电媒质中的传播
- 格式:ppt
- 大小:1.42 MB
- 文档页数:20
《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。
2、通量的定义;散度的定义及作用。
3、环量的定义;旋度的定义及作用;旋度的两个重要性质。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。
第二章静电场1、电场强度的定义和电力线的概念。
2、点电荷的场强公式及场强叠加原理;场强的计算实例。
3、静电场的高斯定理;用高斯定理求场强方法与实例。
4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。
5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。
6、静电场环路定理的积分形式和微分形式,静电场的基本性质。
7、电位梯度的概念;电位梯度和电场强度的关系。
8、导体静电平衡条件;处于静电平衡的导体的性质。
9、电偶极子的概念。
10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。
11、介质中静电场的基本方程;介质中静电场的性质。
12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。
13、静电场的能量分布,和能量密度的概念。
第三章电流场和恒定电场1、传导电流和运流电流的概念。
2、电流强度和电流密度的概念;电流强度和电流密度的关系。
3、欧姆定律的微分形式和积分形式。
4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。
5、电动势的定义。
6、恒定电场的基本方程及其性质。
第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。
2、电流元与电流元之间磁相互作用的规律-安培定律。
3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。
4、洛仑兹力及其计算公式。
5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。
计算磁场的方法和实例。
6、磁通的定义和单位。
7、磁通连续性原理的微分形式、积分形式和它们的意义。
8、通量源和旋涡源的定义。
9、安培环路定律的积分形式和微分形式。
电磁波传播基础
1. 电磁波的性质
- 电磁波是一种横波,由电场和磁场组成,相互垂直
- 电磁波在真空中以光速传播,在介质中速度略小于光速 - 电磁波具有波长、频率、振幅等特征参数
2. 电磁波的传播模式
- 电磁波可以在导体、介质和真空中传播
- 在导体中,电磁波以沿导体表面的导体波形式传播
- 在介质中,电磁波以体波形式传播,并遵循折射和反射规律 - 在真空中,电磁波以自由空间波形式直线传播
3. 电磁波的反射和折射
- 当电磁波入射到介质边界时,会发生反射和折射现象
- 反射和折射角度遵循斯涅尔定律
- 介质的电磁特性决定了反射和折射的程度
4. 电磁波的衍射和干涉
- 电磁波遇到障碍物或狭缝时会发生衍射现象
- 多个电磁波在空间叠加会产生干涉效应
- 衍射和干涉现象在许多应用中都有重要作用
5. 电磁波的极化
- 电磁波的电场振动方向定义了极化状态
- 常见的极化状态包括线极化、圆极化和椭圆极化
- 极化特性在通信和遥感等领域有重要应用
6. 电磁波的衰减和增强
- 电磁波在传播过程中会受到多种因素的影响而衰减
- 大气、障碍物和介质损耗都会导致电磁波衰减
- 天线和放大器等设备可以增强电磁波的强度
以上是电磁波传播基础的一些主要内容,包括电磁波的性质、传播模式、反射和折射、衍射和干涉、极化以及衰减和增强等方面。
了解这些基础知识对于研究和应用电磁波技术至关重要。
电磁场试题华侨⼤学2008 --- 2009学年第⼆学期⼯程电磁场试题A卷⼀.填充题(在下列各题中,请将题中所要求的解答填⼊题⼲中的各横线上⽅内。
本⼤题共20分,共计10⼩题,每⼩题2分)1.麦克斯韦⽅程组的微分形式是、、、。
2.静电场中,理想介质分界⾯两侧电场强度E满⾜的关系是,电位移⽮量D满⾜的关系是。
3.极化强度为P的电介质中,极化(束缚)电荷体密度为ρP = ,极化(束缚)电荷⾯密度为σP = 。
4.将⼀理想导体置于静电场中,导体内部的电场强度为,导体内部各点电位,在导体表⾯,电场强度⽅向与导体表⾯法向⽅向是关系。
5.已知体积为V的介质的磁导率为µ,其中的恒定电流J分布在空间形成磁场分布B和H,则空间的静磁能量密度为,空间的总静磁能量为。
6.在线性和各向同性的导电媒质中,电流密度J、电导率γ和电场强度E之间的关系为,此关系式称为欧姆定律的微分形式。
7.为分析与解算电磁场问题的需要,在动态电磁场中,通常应⽤的辅助位函数为和;它们和基本场量B、E之间的关系分别为和。
8.任意两个载流线圈之间都存在互感(互感系数).对互感有影响的因素是,对互感没有影响的因素是。
(可考虑的因素有:线圈的⼏何性质、线圈上的电流、两个线圈的相对位置、空间介质)9.平均坡印廷⽮量S av = ,其物理意义是。
10.在⾃由空间传播的均匀平⾯波的电场强度为E =e x100cos(ωt-20z)V/m,则波传播⽅向为,相伴的磁场H= A/m。
⼆、计算题(本⼤题共80分,共计7⼩题。
)1.同轴线的内导体半径为a,外导体的半径为b,其间填充介电常数raεε=的电介质。
已知外导体接地,内导体的电位为U0,如图1所⽰。
求:(1)介质中的E和D;(2)介质中的极化电荷分布。
(10分)o图12.如图2中所⽰平⾏板电容器的极板⾯积为S,板间距离为l,当电容器两端所加电压为U时,忽略极板的边缘效应。
试应⽤虚位移法计算平⾏板电容器两极板之间的作⽤⼒。
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为方程。
3.时变电磁场中,数学表达式H E S ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz e y B ˆˆ2+-= 是否是某区域的磁通量密度(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+= ,z y x e e e B ˆˆ3ˆ5--= ,求(1)B A +(2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E e E --=004ˆ3ˆ(1) 试写出其时间表达式;(2)说明电磁波的传播方向; 四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球内任一点的电场强度(2)球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
华侨大学2008 --- 2009学年第二学期工程电磁场试题A卷一.填充题(在下列各题中,请将题中所要求的解答填入题干中的各横线上方内。
本大题共20分,共计10小题,每小题2分)1.麦克斯韦方程组的微分形式是、、、。
2.静电场中,理想介质分界面两侧电场强度E满足的关系是,电位移矢量D满足的关系是。
3.极化强度为P的电介质中,极化(束缚)电荷体密度为ρP = ,极化(束缚)电荷面密度为σP = 。
4.将一理想导体置于静电场中,导体内部的电场强度为,导体内部各点电位,在导体表面,电场强度方向与导体表面法向方向是关系。
5.已知体积为V的介质的磁导率为μ,其中的恒定电流J分布在空间形成磁场分布B和H,则空间的静磁能量密度为,空间的总静磁能量为。
6.在线性和各向同性的导电媒质中,电流密度J、电导率γ和电场强度E之间的关系为,此关系式称为欧姆定律的微分形式。
7.为分析与解算电磁场问题的需要,在动态电磁场中,通常应用的辅助位函数为和;它们和基本场量B、E之间的关系分别为和。
8.任意两个载流线圈之间都存在互感(互感系数).对互感有影响的因素是,对互感没有影响的因素是。
(可考虑的因素有:线圈的几何性质、线圈上的电流、两个线圈的相对位置、空间介质)9.平均坡印廷矢量S av = ,其物理意义是。
10.在自由空间传播的均匀平面波的电场强度为 E =e x100cos(ωt-20z)V/m,则波传播方向为,相伴的磁场H= A/m。
二、计算题(本大题共80分,共计7小题。
)1.同轴线的内导体半径为a,外导体的半径为b,其间填充介电常数raεε=的电介质。
已知外导体接地,内导体的电位为U0,如图1所示。
求:(1)介质中的E和D;(2)介质中的极化电荷分布。
(10分)o图12.如图2中所示平行板电容器的极板面积为S,板间距离为l,当电容器两端所加电压为U时,忽略极板的边缘效应。
试应用虚位移法计算平行板电容器两极板之间的作用力。
华侨大学2008 --- 2009学年第二学期工程电磁场试题A卷一.填充题(在下列各题中,请将题中所要求的解答填入题干中的各横线上方内。
本大题共20分,共计10小题,每小题2分)1.麦克斯韦方程组的微分形式是、、、。
2.静电场中,理想介质分界面两侧电场强度E满足的关系是,电位移矢量D满足的关系是。
3.极化强度为P的电介质中,极化(束缚)电荷体密度为ρP = ,极化(束缚)电荷面密度为σP = 。
4.将一理想导体置于静电场中,导体内部的电场强度为,导体内部各点电位,在导体表面,电场强度方向与导体表面法向方向是关系。
5.已知体积为V的介质的磁导率为μ,其中的恒定电流J分布在空间形成磁场分布B和H,则空间的静磁能量密度为,空间的总静磁能量为。
6.在线性和各向同性的导电媒质中,电流密度J、电导率γ和电场强度E之间的关系为,此关系式称为欧姆定律的微分形式。
7.为分析与解算电磁场问题的需要,在动态电磁场中,通常应用的辅助位函数为和;它们和基本场量B、E之间的关系分别为和。
8.任意两个载流线圈之间都存在互感(互感系数).对互感有影响的因素是,对互感没有影响的因素是。
(可考虑的因素有:线圈的几何性质、线圈上的电流、两个线圈的相对位置、空间介质)9.平均坡印廷矢量S av = ,其物理意义是。
10.在自由空间传播的均匀平面波的电场强度为E =e x100cos(ωt-20z)V/m,则波传播方向为,相伴的磁场H= A/m。
二、计算题(本大题共80分,共计7小题。
)1.同轴线的内导体半径为a,外导体的半径为b,其间填充介电常数raεε=的电介质。
已知外导体接地,内导体的电位为U0,如图1所示。
求:(1)介质中的E和D;(2)介质中的极化电荷分布。
(10分)o图12.如图2中所示平行板电容器的极板面积为S,板间距离为l,当电容器两端所加电压为U时,忽略极板的边缘效应。
试应用虚位移法计算平行板电容器两极板之间的作用力。
二、填空1. 矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率,散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2. 矢量函数的环量定义矢量A沿空间有向闭合曲线C 的线积分,旋度的定义过点P作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S点P时,存在极限环量密度。
二者的关系;旋度的物理意义点P的旋度的大小是该点环量密度的最大值;点P的旋度的方向是该点最大环量密度的方向。
3. 电场强度与电位移矢量的关系:4. 当波从电介质中进入导电煤质后,其波幅衰减到原波幅的倍时,它行经的深度定义为透入深度,且其大小为(波的衰减系数)5. 趋肤效应是指 当交变电流通过导体时,随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体表面附近,导体内部的电流越来越小的现象 ,趋肤深度的定义是 电磁波的振幅衰减到e-1时,它透入导电介质的深度 ,趋肤深度的表达式。
6. 分立的带电导体系统的电场能量表达式为:7. 线性煤质中,两导体间的电容与两导体所带的电量和两导体间的电压无关(填有关或无关),与两导体的几何尺寸、相互位以及空间煤质的电容率有关8. 如下图,具有相同半径的的平行双输电线,假设几何中心轴相聚,则其电轴中心间的距离的表达式为:9. 麦克斯韦方程组的积分表达式分别为、、、其物理描述分别为电荷是产生电场的通量源、变换的磁场是产生电场的漩涡源、磁感应强度的散度为0,说明磁场不可能由通量源产生、传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。
10. 麦克斯韦方程组的微分形式分别为、、、 。
其物理意义分别为 、 、 、 。
(同第九题)11. 不同导电媒质的交界面处,恒定电场的折射定律为12. 以无穷远处为电势零点,则在真空中放置的点电荷所产生的电场强度表示为:;其电势表达式为:13. 磁通的连续性原理:14. 坡印廷矢量的数学表达式,其物理意义 电磁能量在空间的能流密度。
《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。
试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。
解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。
当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。
解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。
解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。
考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。
当该电磁波进入某理想介质后,波长变为0.09m 。
设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。
电磁波在介质中的传播与介质吸收电磁波是一种具有电场和磁场相互作用的波动现象,它在真空中的传播速度是光速。
然而,当电磁波传播到介质中时,它的传播速度会受到一定的影响。
在介质中传播的电磁波遇到了新的挑战,与介质发生了相互作用。
这种相互作用表现为介质对电磁场的吸收和折射现象。
介质吸收电磁波的过程实际上是由于介质分子或原子对电磁波能量的吸收。
当电磁波作用于介质时,其电场会使介质中的电子被加速振动,从而吸收电磁波的能量。
这导致电磁波在介质中的传播速度减小,且波长也会发生改变。
这种现象在可见光的传播过程中表现出来,使得物体呈现出各种颜色。
不同种类和性质的介质对电磁波的吸收程度有所不同。
以电磁波在大气中的传播为例,大气中的氧气和水蒸气对电磁波有较强的吸收能力。
特别是对于高频的电磁波,如紫外线和X射线,它们会被大气层中的氧气和臭氧吸收。
这就是为什么紫外线可以被臭氧层过滤的原因。
另外,介质对电磁波吸收的程度还与电磁波的频率有关。
通常来说,介质对于低频的电磁波吸收较弱,而对于高频的电磁波吸收较强。
这也是为什么在无线通信中,高频电磁波更容易被建筑物和其他物体阻挡的原因。
除了吸收外,介质对电磁波的传播还会发生折射现象。
当电磁波从一种介质传播到另一种介质中时,由于介质的不同密度和折射率,电磁波的传播方向会发生变化。
这可以通过斯涅耳定律来描述,即入射角和折射角之间的关系。
折射现象在日常生活中也是非常常见的。
当我们将一根木棍放入水中时,我们会观察到木棍在水中的表现似乎发生了转折。
实际上,这是由于电磁波在木棍和水之间的折射现象造成的。
总之,电磁波在介质中的传播与介质的吸收现象密切相关。
介质对电磁波的吸收能力取决于电磁波的频率和介质的性质,而电磁波的传播方向则受到介质折射现象的影响。
电磁波在介质中的传播和介质吸收的研究对于深入理解物质结构和电磁波的相互作用具有重要意义。
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,BE t ∂∇⨯=-∂,0B ∇=,D ρ∇=2静电场的基本方程积分形式为:CE dl =⎰S D ds ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H 4线性且各向同性媒质的本构关系方程是: 4.D E ε=,B H μ=,J E σ= 5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。
12ϕϕ= 1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E 的单位是V/m ,电位移D的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是( 0B ∇= )2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。