第17章APDL基础ansys教程
- 格式:ppt
- 大小:1.03 MB
- 文档页数:44
ANSYS基础教程—APDL基础ANSYS是一款强大的工程仿真软件,它提供了多种分析工具和模块,可以用于各种领域的工程仿真,如结构力学、流体力学、热传导等。
在ANSYS中,APDL(ANSYS Parametric Design Language)是一种用于命令方式建模和分析的语言。
本文将介绍APDL的基础知识和使用方法。
APDL是一种类似于编程语言的命令语言,用于定义模型、应用加载和边界条件、运行分析和处理结果。
它与ANSYS Workbench相比,更加灵活和强大,适用于更复杂的分析和定制需求。
APDL使用文本方式输入,命令间采用逐行执行的方式。
首先,我们需要了解APDL的基本命令。
APDL命令由一个关键字和一些参数组成,关键字指定所需要执行的操作,而参数则提供了操作所需要的具体信息。
例如,使用KEYOPT命令可以设置单元选项,语法为KEYOPT,KEY,NUM,其中KEY是要设置的选项,NUM是要设置的数值。
另外,APDL还提供了大量的预定义变量和函数,可以为模型和分析提供更多的灵活性。
其次,我们需要了解APDL的建模步骤。
建模步骤通常包括几个主要的操作,如几何建模、网格划分、材料定义、加载和边界条件定义等。
几何建模可以使用APDL的几何命令来创建几何实体,如线段、圆、方框等。
网格划分可以使用APDL的划分命令,如DIVIDE、MESH等来生成网格。
材料定义可以使用APDL的材料命令来定义材料属性,如密度、弹性模量等。
加载和边界条件定义可以使用APDL的边界条件命令来设置载荷和约束条件。
最后,我们需要了解如何运行模型分析和处理结果。
在APDL中,可以使用SOLVE命令来运行模型分析,语法为SOLVE,SOLVEID,其中SOLVEID是分析的编号。
在进行分析之前,需要保证模型的几何、网格、材料定义和加载边界条件正确无误。
分析完成后,可以使用APDL的后处理命令来处理结果,如输出节点和单元的位移、应力等信息。
目录第一章 APDL是什么?错误!未定义书签。
第二章在工具条上添加命令错误!未定义书签。
修改工具条错误!未定义书签。
嵌套工具条缩写错误!未定义书签。
第三章利用参数错误!未定义书签。
参数错误!未定义书签。
参数命名规那么错误!未定义书签。
从*STATUS命令中隐藏参数错误!未定义书签。
概念参数错误!未定义书签。
在运行进程中给参数赋值错误!未定义书签。
在启动时给参数赋值错误!未定义书签。
赋ANSYS提供的值给参数错误!未定义书签。
*GET命令的用法错误!未定义书签。
内嵌获取函数的用法错误!未定义书签。
排列显示参数错误!未定义书签。
删除参数错误!未定义书签。
字符参数的用法错误!未定义书签。
数字参数值的置换错误!未定义书签。
避免置换错误!未定义书签。
字符参数值的置换错误!未定义书签。
强制置换错误!未定义书签。
字符参数有效的其它地址错误!未定义书签。
字符参数的限制错误!未定义书签。
数字或字符参数的动态置换错误!未定义书签。
参数公式错误!未定义书签。
带参数的函数错误!未定义书签。
保留、恢复、写参数错误!未定义书签。
数组参数错误!未定义书签。
数组的基础知识错误!未定义书签。
数组参数例如错误!未定义书签。
TABLE类型数组参数错误!未定义书签。
概念和列表显示数组参数错误!未定义书签。
给数组元素赋值错误!未定义书签。
给单独的数组元素赋值错误!未定义书签。
填凑数组向量错误!未定义书签。
交互式编辑数组错误!未定义书签。
利用*VREAD命令用数据文件填凑数组错误!未定义书签。
利用* TREAD命令用数据文件填充TABLE类型数组错误!未定义书签。
插入值错误!未定义书签。
把获取值存入数组参数或恢复数组参数值错误!未定义书签。
列出数组参数错误!未定义书签。
写数据文件错误!未定义书签。
数据格式描述符错误!未定义书签。
对数组参数的运算错误!未定义书签。
对向量的运算错误!未定义书签。
矩阵运算错误!未定义书签。
用于向量和矩阵运算的命令错误!未定义书签。
结合自身经验,谈ANSYS中的APDL命令(二)发表时间:2009-5-10 作者: 倪欣来源: e-works关键字: ANSYS APDL 命令流在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。
1.1 /prep7(进入前处理)定义几何图形:关键点、线、面、体(1).csys,kcnkcn , 0 迪卡尔坐标系1 柱坐标2 球4 工作平面5 柱坐标系(以Y轴为轴心)n 已定义的局部坐标系(2).numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstr(3).K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号(4).Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0” 如果附有节点及单元,则一起拷贝。
“1”不拷贝节点和单元imove:“0” 生成拷贝“1”移动原关键点至新位置,并保持号码,此时(itime,kinc,noelem)被忽略注意:MAT,REAL,TYPE 将一起拷贝,不是当前的MAT,REAL,TYPE(5).A, P1, P2, ……… P18 由关键点生成面(6).AL, L1,L2, ……,L10 由线生成面面的法向由L1按右手法则决定,如果L1为负号,则反向。
(线需在某一平面内坐标值固定的面内)(7).vsba, nv, na, sep0,keep1,keep2 用面分体(8).vdele, nv1, nv2, ninc, kswp 删除体kswp: 0 只删除体1 删除体及面、关键点(非公用)(9).vgen, itime, nv1, nv2, ninc, dx, dy, dz, kinc, noelem, imove 移动或拷贝体itime: 份数nv1, nv2, ninc:拷贝对象编号dx, dy, dz :位移增量kinc: 对应关键点号增量noelem,:0:同时拷贝节点及单元1:不拷贝节点及单元imove:0:拷贝体1:移动体(10).cm, cname, entity 定义组元,将几何元素分组形成组元cname: 由字母数字组成的组元名entity: 组元的类型(volu, area, line, kp, elem, node)(11).cmgrp, aname, cname1, ……,cname8 将组元分组形成组元集合aname: 组元集名称cname1……cname8: 已定义的组元或组元集名称1.2 定义几个所关心的节点,以备后处理时调用节点号。
APDL热分析关键知识及实例一.关键概念(1)λ:热导率,是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所传递的热量。
(2)E: 弹性模量,材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
(3)Β:热胀系数,物体由于温度改变而有胀缩现象。
其变化能力以等压(p一定)下,单位温度变化所导致的长度量值的变化,即热膨胀系数表示。
各物体的热膨胀系数不同,一般金属的热膨胀系数单位为1/度(摄氏)。
(4)μ:泊松比,指材料在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。
(5)α:传热系数、膜系数,单位时间通过单位面积传递的热量。
(6)T u: 接触温度,材料与外界接触处温度。
(7)C: 热容,“当一系统由于加给一微小的热量δQ而温度升高dT时,δQ/dT 这个量即是该系统的热容。
”(8)q: 热通量,单位时间内,通过物体单位横截面积上的热量。
(9)ε:发射系数,原子谱线中发射谱线的辐射能量可用一个发射系数来表示,其含义为单位时间单位体积单位立体角内辐射的能量。
●传热三种基本方式:热传导、热对流及热辐射。
●热流率/热流量(Heat flow)表示单位时间内,通过传导,对流,辐射的方式穿过给定表面传输的热量,也称为热流量。
常表示为Φ,国际单位为瓦特(W)。
这是一种热学上荷载,即热量,相当于功率。
如果大于零,表示热量流入,物体获得热量,反之,热量外流。
●热流密度/热通量(Heat Flux)一般用q表示,定义为单位时间内,通过物体单位横截面积上的热量。
二.基本代号(热力学基本符号)●APDL关键缩略写K:关键点L:线E:单元DENS:密度MAT:材料ET:单元类型KXX:热导率EX:弹性模量HF:传热系数PRXY:泊松比ALPX:热胀系数REFT:参考温度GXY:剪切模量MU:摩擦系数REAL:实常数MP:材料类型PRIN:主应力SINT:应力强度SEQV:等效应力IC:初始条件三.主要知识1.常用分析单元:MASS71:Thermal MassLINK31:Radiation LinkLINK33: convection LinkLINK34:conduction LinkPLANE35:Thermal SolidPLANE55:Thermal SolidSHELL131:Themal ShellPLANE223:Coupled_filed Solid2.热分析的类型ANSYS支持两种类型的热分析:(1)稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。
ANSYS_数据⽂件读写的APDL命令详解及实例ANSYS 数据⽂件读写的APDL命令详解及实例作者:huright⼀ FORTRAN数据格式I格式(⼜叫整数格式)⼀般形式:Iw 或:Iw.m其中:w ⼀个数据占的位数宽度(⼜称“字段宽度”),m 需要输出的最少数字位数。
例1:(1)数字在指定的区域内向右端靠齐,如果数字位数⽐指定的字段宽度w⼩,则左边补以空格。
负数的符号也包含在字段宽度内。
(2)如果数字的位数超过了规定的字段宽度w,则不输出有效数据,⽽在该字段宽度范围内充满“*”符号。
(3)如果数字的位数超过了m,则按实际应输出的位数输出(但条件是不能超过w)。
m 不包括负号所占的⼀列。
F格式(⼜叫⼩数型格式)⼀般形式:Fw.dw 各数值占的总位数 d 输出数据的⼩数位数(⼩数点后的位数)。
例1:(1)数字在指定的区域内向右端靠齐,如果数字位数(含⼩数点和符号位)⽐指定的字段宽度w⼩,则左边补以空格;如果数字的位数超过了规定的字段宽度w,则不输出有效数据,⽽在该字段宽度范围内充满“*”符号。
(2)如果数据的⼩数位数⽐指定的⼩数位数d⼩,则在⼩数右边补0以凑⾜d位;如果⼩数位数⼤于d位,则输出时多于的⼩数位数按“四舍五⼊”规则舍去。
(3)假设b为数据整数部分的位数,则应使w≥b+d+1(⼩数点占⼀列),如果输出负数,则应保证w≥b+d+2(⼩数点和负号各占⼀列)。
(4)⽤F格式输出时应注意,由于难以事先确切估计出数据的⼤⼩,输出⼤的数时容易产⽣“宽度不够”的错误(由于w不够⼤),输出⼩的数时会出现丢掉有⽤数字的情况(由于d不够⼤⽽将后⾯的数字截去),这就是“⼤数印错,⼩数印丢”。
E格式(⼜叫指数型格式)⼀般形式:w.dw 各数值占的总位数,d 输出数据的⼩数位数(⼩数点后的位数)。
例1:(1)采取标准化的指数形式输出⼀个实数,d为以指数形式出现的数据的数字部分的⼩数位数。
(2)指数部分⼀般占4列,其中字母“E”和指数的符号各占⼀列,指数2列。
ANSYS基础教程—APDL基础发表时间:2011-3-17关键字:ANSYS ANSYS教程 APDL基础信息化调查找茬投稿收藏评论好文推荐打印社区分享本文主要介绍APDL基础功能,包括:定义参数、利用参数、获取数据库信息方面展开。
概述·APDL 是ANSYS 参数化设计语言的缩写,它是一种允许使用参数并能完成一系列任务的强大的程序语言。
·使用APDL, 可以:–用参数而不是用数值输入模型尺寸,材料类型等。
–从ANSYS 数据库中获取信息, 比如节点位置或最大应力。
–在参数中进行数学运算,包括矢量和矩阵运算。
–把常用的命令或宏定义成缩写形式。
–建立一个宏使用if-then-else分支和do循环等来执行一系列任务。
A. 定义参数·用以下格式定义参数Name=Value–可以在输入窗口或标量参数对话框中输入(Utility Menu > Parameters > Scalar Parameters...)–参数名不能超过8个字符。
–值可以是一个数值,一个以前定义过的参数,一个函数,一个参数表达式,或者一个字符串(用单引号括住)。
·例子:inrad=2.5 g=386outrad=8.2 massdens=density/gnumholes=4 circumf=2*pi*radthick=outrad-inrad area=pi*r**2e=2.7e6 dist=sqrt((y2-y1)**2+(x2-x1)**2)density=0.283 slope=(y2-y1)/(x2-x1)bb=cos(30) theta=atan(slope)pi=acos(-1) jobname=‘proj1’用*SET 看有用参数列表·以上例子是关于标量参数的, 它只有一个值—数字或者字符。
·ANSYS 也提供数组参数, 它有若干个值。
数字数组和字符数组都是有效的。
ANSYS的基本步骤讲解1.问题定义:在使用ANSYS之前,您需要明确要解决的问题。
定义问题包括确定您要分析的物理现象,所使用的材料,边界条件和所需的结果等。
2.创建几何模型:根据问题定义,您需要创建一个几何模型来表示分析的对象。
ANSYS 提供了各种建模工具,可以用于创建二维和三维的几何形状。
您可以使用ANSYS自带的CAD工具或导入其他CAD软件创建的模型。
3.划分网格:对几何模型进行网格划分是进行仿真分析的关键步骤。
ANSYS提供了各种网格划分工具,可以根据需要选择不同的划分技术和网格密度。
良好的网格划分可以提高仿真的准确性和效率。
4.材料属性定义:根据问题定义,您需要为模型中的不同部分定义适当的材料属性。
ANSYS提供了一个材料库,可以选择多种不同的材料,并根据需要定义其属性参数,如弹性模量,热导率等。
5.添加约束条件:在仿真中,机械结构通常受到约束条件的限制。
您需要添加适当的约束条件来代表物理世界中的限制。
ANSYS提供了各种约束选项,包括固定支撑、自由支撑、弹簧等。
通过添加这些约束条件,您可以更准确地模拟实际场景。
6.应用载荷:在仿真中,您需要明确地定义作用在模型上的载荷。
这可能是一个力,一个压力,一个温度或者其他物理效应。
您需要在模型的相关位置上添加适当的载荷。
ANSYS提供了各种载荷选项,可以精确描述应用的载荷。
7.设置仿真参数:在进行仿真之前,您需要设置一些模拟参数。
这些参数可以控制仿真过程和结果的精度。
例如,您可以设置时间步长、迭代次数、收敛标准等。
8.运行仿真:配置完所有参数后,可以开始运行仿真。
ANSYS将根据所设置的仿真参数对模型进行计算。
这可能需要一段时间,具体取决于模型的大小和复杂程度。
9.结果分析:仿真运行结束后,可以进行结果分析。
ANSYS提供了丰富的结果可视化和后处理工具,可以帮助您更好地理解和解释结果。
您可以查看模型的位移、应力、应变、温度分布等结果。
10.结果验证:最后,您需要对仿真结果进行验证。
apdl帮助文档使用方法全文共四篇示例,供读者参考第一篇示例:APDL(ANSYS Parametric Design Language)是一种用于有限元分析的编程语言,可以帮助用户更灵活地控制ANSYS软件进行模拟和分析。
在使用APDL时,熟练掌握其各种命令和语法是非常重要的。
本文将介绍APDL的基本使用方法,帮助使用者更好地理解和应用这一强大的工具。
一、基本语法在APDL中,命令的基本格式为:```命令[选项1] [选项2] ... [选项n]```命令是要执行的操作,选项是可选的参数。
要定义一个直线单元,可以使用以下命令:```ET,1,2```这里,ET是定义元素类型的命令,1是元素类型的编号,2是元素类型的位置。
二、常用命令1. 定义材料参数在APDL中,可以使用MP命令来定义材料参数。
要定义一个弹性材料,可以使用以下命令:```MP,DENS,1,2700MP,EX,1,70e9MP,NUXY,1,0.3```这里,DENS是密度,EX是弹性模量,NUXY是泊松比,1是材料编号,2700是密度值,70e9是弹性模量值,0.3是泊松比值。
2. 定义几何结构```BLOCK,0,1,0,1,0,1```这里,0和1是立方体的起始点和终点的坐标。
3. 定义边界条件这里,1是节点编号,UX、UY、UZ是节点的位移自由度,0是边界条件的值。
三、常见问题解决在使用APDL时,可能会遇到一些常见问题,如:1. 语法错误:在输入命令时应注意命令的格式和参数的正确性。
2. 节点编号错误:在定义边界条件和加载条件时应确保节点编号的准确性。
3. 材料参数错误:在定义材料参数时应注意单位的统一和材料数据的准确性。
解决这些问题的关键在于不断练习,熟悉APDL的各种命令和语法,增加编程的经验和技巧。
四、使用技巧在使用APDL时,可以结合ANSYS的图形界面进行模型建立和后处理,更直观地查看模拟结果。
可以编写批处理脚本,自动化执行模拟过程,提高工作效率。
ANSYS高级分析之APDL基础ANSYS是一款广泛使用的工程仿真软件,它可以进行各种复杂的物理和工程分析。
其中,ANSYS Parametric Design Language(APDL)是ANSYS的一种基于命令行交互的脚本语言,它可以用于创建和控制各种物理模型,并进行高级分析。
APDL语言主要通过输入一系列的命令来操作ANSYS软件。
在使用APDL进行高级分析之前,我们需要先了解一些基础知识。
APDL中的命令可以分为几个主要的类别,包括几何命令、物理命令、边界条件命令和求解命令等。
几何命令用于创建和修改几何模型,比如绘制线段、圆弧和矩形等。
物理命令用于定义分析的物理性质,比如材料的力学性质、热物性等。
边界条件命令用于设定边界条件,如约束和载荷。
求解命令用于进行数值计算,如求解结构的位移、应力和应变等。
除了常规的命令之外,APDL还提供了一些高级分析的功能。
其中,参数化分析是其中一项重要功能,它可以通过修改输入参数或模型的几何特性,自动执行多个分析,从而得到一系列的结果。
参数化分析可以通过循环和条件语句来实现。
另外,APDL还提供了特殊命令和工具,用于处理大规模模型和复杂的分析问题。
在使用APDL进行高级分析时,需要遵循一些最佳实践。
首先,我们应该仔细设计分析模型,包括选择适当的边界条件和物理参数,并进行合理的离散化。
其次,我们应该对模型进行验证和校准,比较模拟结果与实验数据或已知解进行比较。
最后,我们应该进行后处理,对模拟结果进行分析和解释。
总之,APDL是ANSYS的一种基于命令行交互的脚本语言,它可以用于进行高级分析。
通过使用APDL,我们可以建立复杂的物理模型,并执行各种高级分析。
在使用APDL进行高级分析时,我们应该熟悉APDL的基本命令和语法,合理设计模型和参数,并进行验证和后处理。
只有掌握了APDL的基础知识,我们才能更好地应用ANSYS进行高级分析。