巧算图形面积
- 格式:doc
- 大小:24.78 KB
- 文档页数:4
《巧求组合图形面积》教学设计长沙师范学院附属小学刘婧◆学情分析学生在以前的学习中已经掌握了长方形、正方形、平行四边形、三角形、圆形的面积计算方法。
在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力。
为体现这一思想,安排了两个情境活动:在“组合图形面积”中,重点探索计算组合图形面积的方法;在“探索活动”中,主要学习不规则图形面积的计算。
在现实生活中,学生将接触到大量的不规则图形的面积问题,根据《课标》的要求,让学生掌握计算不规则图形的面积,是培养学生空间观念的一个方面,同时也是提高学生解决实际问题能力的一个方面。
◆教学目标【知识与能力目标】:1、在自主探索的活动中,归纳计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能利用转化的思想将较复杂的图形转化为简单的基本图形,并求面积。
3、能运用所学知识,解决生活中组合图形的实际问题。
【过程与方法目标】:在巧解面积的过程中体会转化的含义和应用的手段,感受转化法在巧算面积时的价值。
【情感态度与价值观目标】:积累求解面积的经验,增强解决问题时的“转化”意识,提高学好数学的信心。
◆教学重难点【教学重点】:感受“转化”策略的价值,能用“转化”的策略巧算面积。
【教学难点】:理解、运用转化思想中“分割”和“移补”等方法巧算面积。
◆课前准备七巧板教具模型,多媒体课件,学习探究卡,自制扇形彩纸◆教学过程一、激趣导入、复习铺垫。
1.玩转七巧板,创意无限(看视频)师:同学们,七巧板是古代劳动人民发明的图形游戏,至今有两千五百年了,利用七巧板可以拼成三百多种图形。
今天我们一起来看看玩转七巧板的创意作品。
师:请同学们仔细观察我们拼出的图案,说说它们的共同特点是什么呢?2.复习铺垫。
师:七巧板都是七块木板,每块是我们学过的什么图形?交待这些图形叫做基本图形。
(课件出示基本图形)我们就把像这样的由2个或2个以上的基本图形组合起来的图形叫做组合图形。
面积的巧算知识点总结1:分割法2:添补法【例题精讲】例1如图:在一个等腰三角形中作一个正方形,已知阴影部分的面积是3平方厘米,那么大三角形的面积是多少平方厘米?【答案】27平方厘米可以将等腰三角形分割成完全相同的9个和阴影部分完全相同的等腰三角形,因此大三角形的面积是3×9=27(平方厘米)【例题小结】分割法:等腰三角形的分割。
练习1如图:在一个等腰三角形中作一个正方形,已知正方形的面积是36平方厘米,那么大三角形的面积是多少平方厘米?【答案】72平方厘米【解析】连接小正方形的对角线,可以将正方形分割成两个全等的等腰直角三角形,小三角形的面积是正方形面积的一半,又因为大直角三角形是等腰直角三角形,因此相当于被分割成4个面积相等的等腰直角三角形,因此大三角形的面积是36÷2×4=72平方厘米。
【小结】分割法:等腰直角三角形的分割。
例2 如图:有三个正方形,较小的正方形是由较大的正方形的各边中点连接而成,已知最小的正方形的周长为20厘米,那么最大的正方形面积是多少平方厘米?【答案】100平方厘米最小正方形的边长是20÷4=5(厘米),因此面积是5×5=25(平方厘米),连接大正方形的对角线,得出大正方形的面积是小正方形的4倍,因此面积是25×4=100(平方厘米)。
【例题小结】分割法:正方形的分割。
练习2 如图:有两个正方形,小正方形是由大正方形各边中点连结而成。
已知大正方形的边长是16厘米,那么小正方形的面积是多少平方厘米?【答案】128平方厘米【解析】连接小正方形的对角线,可将大正方形分成8个相等的直角三角形,以此小正方形的面积是大正方形面积的一半,因此面积是16×16÷2=128(平方厘米)。
【小结】分割法:正方形的分割。
例3 在下图中,三角形ABC 和三角形DEF 是两个完全相同的等腰直角三角形,其中DI 长6厘米,CF长3厘米,那么阴影部分的面积是多少平方厘米?【答案】27平方厘米连接HI。
第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢?练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 2234 5 3 2 4 3412 4 9 DG如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯?练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割.例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢?例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?3. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?4. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?5. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少? D G 32 434 12 423 3 3 3。
⼩学奥数-巧算三⾓形的⾯积三⾓形⾯积的计算公式:底×⾼÷2,1.三⾓形求⾯积时,常⽤到以下⼏点:(1)两个三⾓形的⾼相等,则他们的⾯积⽐等于对应底边的⽐;(2)两个三⾓形的底边相等,则它们的⾯积⽐等于对应⾼的⽐;(3)蝴蝶模型:梯形的上、下底和对⾓线组成的两个相似三⾓形对应边的⽐相等。
2.特殊三⾓形的特征:(1)等边三⾓形,三个内⾓均为60°;(2)等腰三⾓形两个底⾓相等;(3)等腰直⾓三⾓形常和正⽅形联系在⼀起。
精讲1:下图是两个相同的三⾓形叠在⼀起,求阴影部分的⾯积。
(单位:厘⽶)分析:运⽤转化的思想,将⽆法求得的⾯积转化为规则图形。
由题意可知,阴影部分的⾯积等于梯形ABCD的⾯积。
梯形的下底为8厘⽶,上底可以求出(8-3)厘⽶,⾼为5厘⽶,运⽤梯形⾯积公式:(上底+下底)×⾼÷2,可求出。
解: [8+(8-3)]×5÷2=13×5÷2=32.5(平⽅厘⽶)答:阴影部分的⾯积是32.5平⽅厘⽶。
精讲2:⼤正⽅形边长5厘⽶,⼩正⽅形边长3厘⽶,求图中的阴影部分的⾯积。
分析:观察上图可知,阴影部分的⾯积=⼤正⽅形的⾯积+⼩正⽅形的⾯积-三⾓形ACD的⾯积-三⾓形AEF的⾯积+三⾓形CFG的⾯积。
⼤正⽅形的⾯积=5×5=25平⽅厘⽶,⼩正⽅形的⾯积=3×3=9平⽅厘⽶,三⾓形ACD的⾯积=5×5÷2=12.5平⽅厘⽶,三⾓形AEF的⾯积=3×(5+3)÷2=12平⽅厘⽶,三⾓形CFG的⾯积=(5-3)×3÷2=3平⽅厘⽶。
解:5×5+3×3-5×5÷2-3×(5+3)÷2+(5-3)×3÷2=25+9-12.5-12+3=12.5(平⽅厘⽶)答:阴影部分的⾯积是12.5平⽅厘⽶。
图形面积巧计算专项练习 (附解题思路和参考答案)教学内容:巧算图形面积。
教学对象:三、四年级学生。
教学重点:正方形、长方形面积的计算。
教学难点:重叠图形面积的计算。
教学过程: 一 复习教学(一)点学生回答:1.什么叫面积?2.正方形、长方形的公式、3.遇到较复杂的组合图形后又该如何计算?(二)投影出示下列内容,引导学生熟读记牢。
1面积:面积指的是物体所占平面的大小。
2 长方形的面积=长×宽,长方形的面积÷长=宽,长方形的面积÷宽=长。
正方形的面积=边长×边长,正方形的面积÷边长=边长。
3 求复杂图形的面积,需要敏锐的观察力和灵活的思维,运用添加辅助线、割补、转化等方法解答。
二新课教学(一)例题1 在一张长9米,宽7米的长方形铁板上,切割出一个面积最大的正方形,这个正方形铁板的面积是多少平方米?三 巩固练习11. 明明把一张长12厘米,宽8厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?请根据例题写出解题思路:请列式计算9米 7 米 解题思路:要使切割出的正方形铁板面积最大就要使它的边长最长(如图),那么只能选原来的长方形的宽为边长,即正方形的边长为7米。
解:7×7=49(平方米) 答:这个正方形铁板的面积是49平方米。
2 妈妈把一块长2米,宽6分米的长方形布料裁成一个面积最大的正方形,这个正方形的面积是多少?解题思路: 1. 统一单位:2米=20分米。
2. 再根据正方形的面积公式“边长×边长”可求出基面积。
解:3 将以张长10米,宽8米的长方形铁板切割成一个面积最大的正方形,这个正方形的面积是多少平方米?剩下的部分是什么形状?面积是多少?1.正方形的面积:答:这个正方形的面积是 平方米。
2.剩下的面积:答;剩下的部分是 ,面积是 平方米。
(二)例题2 求下面图形的面积。
(单位:厘米)解题思路:不是规则的长方形要把原图进行割补,使其变成规则的图形解答。
巧算面积的七种方法
《巧算面积的七种方法》
1、古典梯形法
众所周知,梯形是以一条垂线为分界,两个直角边在一边,二个钝角边在另一边的四边形,面积的计算方法是将梯形分成两个三角形,用三角形的公式即可,即A = 1/2 (a + b) * h,其中a、b分别为梯形的底边长度,h为梯形的高。
2、测量法
测量法是最简单有效的面积计算方法,只要将物体边缘分别测量出来,然后将测量出来的尺寸记录下来,最后求和就可以得出物体的面积。
3、尺规法
尺规法也是一种常用的面积计算方法,其具体操作为:使用尺规将物体边界轮廓放大或缩小到尺规上,根据尺规刻度记录出轮廓的长度就可以计算出面积了。
4、数学方法
如果地面的图形符合一定的数学方程,例如椭圆、抛物线等,那么可以通过数学方法,借助积分的方式计算出面积。
例如,用积分计算椭圆面积的公式为A = 3/2 * pi * a * b,其中a、b分别为椭圆的短半轴和长半轴长度。
5、立体几何法
立体几何法是一种非常神奇、有效的面积计算方法。
它依据立体几何的几何关系建立模型,根据立体几何的有关定律解出问题的求解方法,这种方法十分的有效。
6、计算机技术法
随着科技的发展,计算机技术也发展得很快,许多计算机软件已经可以非常方便地计算出地面物体的面积了,主要是根据空间几何关系来计算,所以很精确,而且快速。
7、三点定标法
三点定标法是一种利用GPS技术测量工程地物面积的方法,其原理是将地物内部三点定向,并记下该三点之间的距离,最后将距离相乘即可得出地物的面积。
总结
以上就是常用的七种面积计算方法,不仅效率高,而且精确度也非常高,它们可以满足各种不同的地物测量需求,获得更准确更有效的结果。
运用转化思想巧求图形面积
1.一块正方形的钢板,先截去一个宽3分米的长方形,又截去一个宽3分米的长方形,面积比原来正方形减少63平方分米。
请问:原正方形的面积是多少平方分米?
2.一块正方形的钢板,先截去一个宽5分米的长方形,又截去一个宽5分米的长方形,面积比原来正方形减少63平方分米。
请问:原正方形的面积是多少平方分米?
面积比原正方形面积少80平方厘米,那么原正方形的面积是多少平方厘米?
4.—个正方形,一边截去2厘米,另一边截去2厘米,剩下的正方形面积比原正方形面积少36平方厘米,那么原正方形的面积是多少平平方厘米?
比原正方形面积少56平方厘米,那么原正方形的面积是多少平
方厘米?
6.一个正方形,一边截去6厘米,另一边截去6厘米,剩下的正方形面积比原正方形面积少144平方厘米,那么原正方形的面积是多少平
方厘米?
7.图中甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40平方厘米。
请问:乙正方形的面积是多少平方厘米?
8.下图是甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45平方厘米.求甲、乙的面积之和。
周长和面积专题训练(巧算面积)一、知识梳理要想快速准确地将复杂的图形面积计算出来,首先要熟练的掌握最基础的图形面积计算公式。
任何一个复杂图形求面积,都要用到基础的公式逐步求解。
常用面积计算公式:长方形面积=长×宽,s=ab;正方形面积=边长×边长,s=a2;平行四边形面积=底×高,s=ah;三角形面积=底×高÷2,s=ah÷2;梯形面积=(上底+下底)×高÷2,s=(a+b)h÷2圆形面积=圆周率×半径的平方,s=∏r2;我们在计算复杂的图形面积时,经常会用到一些巧妙的方法,例如拆分组合图形、割补组合图形……。
本次专题还将带领同学接触一些更巧妙的算法。
二、例题精讲【例1】一个边长为40厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积(图(a)).分析:第一个正方形的面积不难求出,第二个正方形的面积是多少呢?如图(b)所示,把大正方形平均分成8份,小正方形有4份,所以第二个正方形的面积是第一个正方形面积的一半.解:第二个正方形的面积为第一个正方形面积的一半.依此类推,第五个正方形的面积为:40×40÷2÷2÷2÷2=100(平方厘米)答:第五个正方形的面积为100平方厘米.【例2】如下图(a),大正方形比小正方形的面积大40平方厘米.求这两个正方形的面积.分析:将小正方形补成与大正方形一样(如图(a)),然后将所补的部分分成三块(如图(b)),并利用图(c)求得大、小、正方形的边长之差.解:如上图(b),大正方形比小正方形的面积多2块A和1块B.再将B下方的A旋转到如图(c).由A、B、A拼成的长方形,面积是40平方厘米,长是20厘米,所以宽是40÷20=2(厘米).即大正方形与小正方形边长的差是2厘米.所以大正方形边长为(20+2)÷2=11(厘米)小正方形边长:20-11=9(厘米)所以,大正方形面积为11×11=121(平方厘米)小正方形面积为9×9=81(平方厘米)答:大正方形面积为121平方厘米,小正方形面积为81平方厘米.【例3】一块长方形,用垂直于长和宽的两条线分成四块,其中三块面积分别为15、18、30平方米.第四块面积是多少平方米(如图(a))?解如图(b),长方形A的面积=a×b,长方形D的面积=c×d,因此长方形A的面积×长方形D的面积=a×b×c×d同样长方形B的面积×长方形C的面积=b×c×a×d所以长方形A的面积×长方形D的面积=长方形B的面积×长方形D的面积.在图(a)中,所求面积为15×30÷18=25(平方米)答:第四块面积是25平方米.发现:当一个长方形被分成四个小长方形时,对角的两个长方形面积的乘积一定相等.三、专题特训1.求图中的阴影部分的面积(单位:厘米).2.一个边长为80厘米的大正方形,称为第一个正方形.依次连接四边的中点,得到第二个正方形.这样继续下去,得到第三个,第四个,第五个,第六个,第七个,第八个正方形.求这八个正方形的面积的和.3.四个一样的长方形和一个小的正方形(如图所示)拼成一个面积为49平方米的大正方形.小正方形的面积是4平方米.长方形的短边是几米?4.一块长方形地被两条直线截成四块(如下图).其中三块长方形的面积是24、30、20平方米,第四块面积是多少平方米?5.如图所示,已知长方形ABCD,AD=8厘米,AB=5厘米,E、F分别为AB及BC边的中点.求阴影图形的面积.6.如图所示,已知正方形的边长为8厘米.求阴影部分的面积.7.如图所示,一块长方形草地,长100米,宽80米,中间有一条宽4米的道路.求草地(阴影部分)的面积.8.如图所示,一个长方形被两条直线分成三个长方形和一个正方形。
东方名师教育授课讲义教师: 李芳芳 科目: 数学 学生: 年级: 上课时间: 年 月 日 时 分至 时 分共 小时课题: 图形的周长和面积备注 一、 教学目标:掌握长方形、正方形的周长和面积并能灵活应用,巧算周长和面积二、教学重难点:灵活使用公式,计算周长和面积三、教学内容及过程: 【知识梳理】正方形:周长=边长×4 面积=边长×边长 长方形:周长=(长+宽)×2 面积=长×宽【融知于题】 【典型例题分析】例1、如下图,一个长方形土地里面有一块正方形花坛,这个花坛的周长是200米,它的各边和长方形的各边恰好平行,和长方形各边的距离如图所示(单位:米),那么这个长方形的周长是多少?这样做正方形的边长是200÷4=50(米) 所以长方形的长=50+40+60 =150(米)宽=50+20+30=100(米)因此长方形的周长是:(150+100)×2=500(米)答:这个长方形的周长是500米。
例2、下图是四个一样的长方形和一个小正方形拼成了一个大正方形,大正方形的面积为121平方米,小正方形的面积是25平方米。
求长方形的长和宽。
这样做由题意可知大正方形的面积是121平方米,所以它的边长为11米。
小正方形的面积是25平方米,所以它的边长是5米。
大正方形的边长恰等于长方形的长、宽的和,或者等于小正方形的边长再加上长方形的两个宽。
由第二个条件可以得到长方形的宽是:(11-5)÷2=3(米)再由第一个条件可以得到长方形的长是:11-3=8(米)答:长方形的边长是8米,宽是3米。
例3、如下图是一个长22米,宽18米的迷宫,其中道路的宽为2米,从A 点出发,沿道路的中心线向里走去,一直到B点(到迷宫的尽头,挨到墙)。
所走过的路线的长度是多少米?这样做将长方形的迷宫割补平移为宽1米的路,路的总面积和以前迷宫的面积一样,那么路有多长在迷宫里就走了多远, 22×18÷2=198(米)答:在迷宫里所走的路线的长度是198米。
第四讲巧算面积计算长方形、正方形的面积,知道长方形的面积=yx宽,正方形的面积=边长X边长。
利用这些知识我们能解决许多有关面积的问题。
在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。
因此,敏锐的观察力和灵活的思维在解题中十分重要。
例如,对左下图,我们无法直接求出它的面积,但是通过将它分割成几块,其中每一块都是正方形或长方形(见右下图),分别计算出各块面积再求和,就得出整个图形的面积。
或例1 把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。
这个正方形木板的面积是多少平方米举一反三将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少例2 求下面图形的面积。
(单位:厘米)132举一反三计算下面图形的面积。
(单位:厘米)2⑵3020315例3 有两个相同的长方形,长是8厘米,宽是3厘米。
如果把它们按下图叠放,这个图形的面积是多少举一反三求下图中阴影部分的面积。
(单位:分米)7例4 一个长方形若长增加2厘米,面积就增加10平方厘米,若宽减少3厘米,面积就减少18平方厘米。
求原来长方形的面积。
举一反三一个长方形,若长减少5厘米,面积就减少50平方厘米,若宽增加7厘米,面积就增加28平方厘米。
原来长方形的面积是多少平方厘米例5 右图为一个长50米、宽25米的标准游泳池。
它的四周铺设了宽2米的白瓷地砖(阴影部分)。
求游泳池面积和地砖面积。
举一反三有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少例6 一个边长为10米的正方形花坛,依次连接四边中点得到一个小正方形的喷泉,求小正方形喷泉的面积。
<1例7 一个长方形,如果宽增加2厘米,或长增加3厘米,他们的面积都增加120平方厘米,原来长方形的面积是多少举一反三 有一个长方形,如果宽不变,长增加 4米,面积就增加24平方米, 如果长不变,宽增加3米,面积就增加36平方米,求原来长方形的面积。
巧算图形面积(二)
【巩固复习】
1、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?
2、一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不变,长应减少多少米?
3、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?
4、用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用着墙。
如果每边的长度都是整数,怎样才能使围成的面积最大?
解题策略:用好割补法
【经典例题1】
1、街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?
【思路导航】把水泥路分成四个同样大小的长方形(如下图)。
因此,一个长方形的面积是12÷4=3平方米。
因为水泥路宽
1米,所以小长方形的长是3÷1=3米。
从图中可以看出正方
形花坛的边长是小长方形长与宽的差,所以小正方形的边长是
3-1=2米。
中间花坛的面积是2×2=4平方米。
经典练习1
1、有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。
2、四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图),大正方形的面积是64平方米,小正方形的面积是4平方米,长方形的短边是多少米?
3、已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如下图)。
问大小正方形的面积各是多少?
【经典例题2】
一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图),面积比原来的正方形减少181平方分米。
原正方形的边长是多少?
【思路导航】把阴影部分剪下来,并把剪下的两个小长方形拼起来(如图),再被上长、宽分别是8分米、5分米的
小长方形,这个拼合成的长方形的面积是
181+8×5=221平方分米,长是原来正方形的
边长,宽是8+5=13分米。
所以,原来正方形
的边长是221÷13=17分米。
经典练习2
1、一个正方形一条边减少6分米,另一条边减少10分米后变为一个长方形,这个长方形的面积比正方形的面积少260平方米,求原来正方形的边长。
2、一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形。
求原来长方形的面积。
3、一块正方形的的玻璃,长、宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?。