高等代数(丘维声著)PPT模板
- 格式:pptx
- 大小:1.12 MB
- 文档页数:35
第八章 线性空间代数系统 n Km n K ×[]K xV非空集合 n 元向量m ×n 矩阵一元多项式任意元素数域 一般数域K 一般数域K 一般数域K 一般数域K 代数运算向量加法 向量数乘矩阵加法 矩阵数乘多项式加法 多项式数乘?性质 (1)~(8)(1)~(8)(1)~(8)?§1.1 线性空间的结构一、线性空间的定义与性质定义 设V 是一个非空集合,K 为数域。
在V 上定义了一个称为加法的代数运算:对,V αβ∀∈,在V 中都有唯一的一个元素γ与它们对应,称之为α与β的和,记作 γαβ=+;在K 与V 之间定义了一个称为数量乘法的运算:对V α∀∈及k K ∀∈,在V 中都有唯一的一个元素β与它们对应,称之为k 与α的数量乘积,记作k βα=。
如果上述两种运算满足以下八条运算规律:对,,,,V k l K αβγ∀∈∀∈(1)α +β = β +α(2)(α + β)+ γ = α +(β + γ)(3)V 中存在元素,记为θ 或0 ,使α + θ = α,V α∀∈称θ 为V 的零元素(4)对V α∀∈,V 中存在元素β,使 α +β = θ 称β为α的负元素(5)1α = α(6)(kl ) α = k (l α)(7)(k + l )α = k α + l α(8)k (α + β)= k α + k β则称V 构成数域K 上的一个线性空间。
例 数域K 上全体n 元向量的集合n K 对向量的加法及数量乘法,构成K 上的线性空间(称为数组向量空间)。
例 数域K 上全体m n ×矩阵的集合m nK×(也记为()m n M K ×)对矩阵的加法及数量乘法,构成K 上的线性空间(称为矩阵空间)。
例 数域K 上全体一元多项式的集合[]K x 对多项式的加法及数量乘法,构成K 上的线性空间。
对正整数n ,令{}[]()|()[],deg ()n K x f x f x K x f x n =∈<则[]n K x 对多项式的加法及数量乘法也作成K 上的线性空间。