复变函数总复习
- 格式:ppt
- 大小:2.83 MB
- 文档页数:49
复变函数总结完整版第一章 复数12i =-11-=i 欧拉公式z=x+iy实部Re z 虚部Im z2运算①2121Re Re z z z z =⇔≡21Im Im z z =②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z++±=±+±=±③()()()()1221212121122121221121y x y x i y y x x y y y ix yix x x iy x iy x z z ++-=-++=++=⋅④()()()()222221212222212122222211222121y x y x x y iy x y y x x iy x iy x iy x iy x z z z z zz+-+++=-+-+==⑤iy x z -= 共轭复数()()22y x iy x iy x z z +=-+=⋅ 共轭技巧运算律 P1页3代数,几何表示iyx z += z 与平面点()y x ,一一对应,与向量一一对应辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3…把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z4如何寻找arg z例:z=1-i4π-z=i 2π z=1+i 4π z=-1 π5极坐标: θcos r x =, θsin r y =()θθsin cos i r iy x z +=+=利用欧拉公式 θθθsin cos i e i += 可得到θi re z =()21212121212121θθθθθθ+=⋅=⋅=⋅i i i i i e r r e e r r e r e r z z6 高次幂及n 次方()θθθn i n r e r z z z z z n in n n sin cos +==⋅⋅⋅⋅⋅⋅⋅⋅=凡是满足方程zn=ω的ω值称为z 的n 次方根,记作 nz=ω ()nk i re z ωπθ==+2即nr ω=nr1=ωϕπθn k =+2nk πθϕ2+=第二章解析函数1极限 2函数极限① 复变函数对于任一D Z ∈都有E ∈W 与其对应()z f =ω 注:与实际情况相比,定义域,值域变化 例 ()z z f = ②()A =→z f z z 0limz z → 称()z f 当0z z →时以A 为极限 ☆当()0z f =A 时,连续例1 证明()z z f =在每一点都连续 证:()()00→-=-=-z z z z z f z f 0z z →所以()z z f =在每一点都连续3导数()()()()000limz z z z z z df z z z f z f z f =→=--='例2()Cz f = 时有 ()0'=C证:对z ∀有()()0lim lim 0=∆-=∆-∆+→∆→∆zCC z z f z z f z z 所以()0'=C例3证明()z z f =不可导 解:令0z z -=ω()()iyx iyx z z z z z z z z z z z f z f +-==--=--=--ωω000000当0→ω时,不存在,所以不可导。
《复变函数》 复习资料1一、判断题1. 把角形域映射为角形域用指数函数映射( )2.3.4.5.6.7. 分式线性映射在复平面上具有共形性、保圆性、保对称性。
( )8.9.10.二、解答题1.设)1()(2z z e z f z +=,求()f z 在1||0<<z 的洛朗展式(只写出含1z 到2z 各项).2.利用留数定理计算复积分I =21az z e dz =⎰+1()()n n z dzz a z b =--⎰ (01,01a b <<<<且,a b n ≠为自然数).3.利用留数定理计算实积分θθθπd ⎰-20cos 452cos 4.三、解答与证明题1.如果在1z <内,函数()f z 解析,且1()1f z z≤-,求()(0)n f 的最优估计值. 2.(1)函数211x +当x 为实数时,都有确定的值且在全实轴上有任意阶导数,但它的泰勒展开式: -+-=+422111x x x却只当1<x 时成立,试说明其原因; (2)利用惟一性定理证明:210(1)sin ,(21)!n n n z z n ++∞=-=+∑1z <. 3.设)(z ϕ在:1C z =内解析且连续到C,在C 上()1z ϕ<试证 在C内部2()3z z z ϕ=+只有一个根0z .4. 设D 为单连通区域,()f z 在D 内解析,C 在D 内一条周线,0D 为C 的内部.若对于任意的0z D ∈都有1()Re 12C f d i z ξξπξ⎧⎫=⎨⎬-⎩⎭⎰,则在D 内恒有()f z 1ic =+,其中c 为实常数.答案一、1-5 FFTTF 6-10 TFFTF二、解答题1、设)1()(2z z e z f z+=,求()f z 在1||0<<z 的洛朗展式(只写出含1z 到2z 各项) 解:)1()(2z z e z f z+=211z e z z=+ =21(1)2!3!z z z ++++(2421(1)n n z z z -+-+-+)=215126z z z +--+(1||0<<z ).2、利用留数定理计算复积分I =21az z e dz =⎰+1()()n n z dzz a z b =--⎰ (01,01a b <<<<且,a b n ≠为自然数)解:因为 ||1a <,||1b <且a b ≠ 所以1||1()()n n z dzI z a z a ==--⎰=2i π[Re ()z a s f z =+Re ()z bs f z =] =12121(1)...(22)112(1)()0(1)!()()n n n n n n i n b a a b π---⎡⎤---+=⎢⎥---⎣⎦设2I =21az z e dz =⎰,因为在单位圆周1z =内2az e 只有一个本质奇点0z =,在该点的去心领域内有洛朗展式:2az e =22412!a az z+++所以2Re 0az z s e ==,故20I =,因此原积分值为零。
(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. ①两个复数相等,当且仅当它们的实部与虚部分别相等。
②一个复数等于零,当且仅当它的实部与虚部同时等于零。
③称复数x+iy 和x-iy 互为共轭复数。
2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于[)π2,0中的幅角。
(()Arg z 有无穷个值,()arg z 是复数z 的辐角的主值()Arg z =()arg z +2k π3)()arg z 与arctan y x之间的关系如下: 当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:)sin (cos z θθi r +=,其中)(r z g A =θ;注:中间一定是“+”号。
(r=|z|)5)指数表示:θi re =z ,其中)(r z g A =θ。
(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±··2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
《复变函数与积分变换》总复习题一、填空1. =+-4)i1i 1(。
2. 2z 1lim 1+z →∞= 。
3. 已知虚数8z 3=,则=+++22z z z 23 。
4. i 31z 1+-=,i 1z 2+-=,=21z argz 。
5. =+3)i 31( 。
6. 区域就是 。
7. 函数)y ,x (iv )y ,x (u )z (f +=在区域D 内解析的充分必要条件是:)y ,x (u 和)y ,x (v 在D 内任一点iy x z +=可微,而且满足柯西—黎曼方程即 。
8. 如果函数)z (f 在0z 及其邻域内处处可导,则称)z (f 在0z 。
9. 没有重点的连续曲线C ,称为 曲线(或若尔当曲线)。
10. 复平面加上无穷远点称为 。
11. 若()f z 在0z 不解析,则称0z 为()f z 的 。
12. 如果函数()f z 在单连通域D 内处处解析,那么()f z 沿D 内的任意一条封闭曲线C 的积分()Cf z dz =⎰ 。
13.+=lnz Lnz 。
14. 如果二元实函数)y ,x (ϕ在区域D 内有二阶连续偏导数,且满足二维拉普拉斯方程0yx 2222=∂∂+∂∂ϕϕ,则称)y ,x (ϕ为区域D 内的 。
15. 复变函数)y ,x (iv )y ,x (u )z (f +=在区域D 内解析的充要条件为:在区域D内,)z (f 的虚部)y ,x (v 是实部)y ,x (u 的 。
16. 3i2e-的辐角主值为 。
17. 一个解析函数在圆心处的值等于它在 上的平均值。
18. 如果函数)z (f 在单连通域B 内处处解析,那么函数)z (f 沿B 内的任何一条封闭曲线C 的积分为_____________________。
19. 设函数)z (f 在区域D 内解析,且)z (f 不是常数,则在D 内)z (f 最大值。
20. 在区域D 内解析的函数,若其模在D 的内点达到最大值,则此函数必恒为 。