第一课时实数的有关概念
- 格式:doc
- 大小:196.00 KB
- 文档页数:4
中职学校《数学》教案一、教学目标1. 知识点:本节课主要讲解中职数学的基本概念和运算规则,包括实数、整数、分数、小数等基础知识。
2. 能力点:培养学生掌握基本的数学运算能力,能够熟练运用数学知识解决实际问题。
3. 情感态度:激发学生对数学学科的兴趣,培养积极主动学习的态度。
二、教学内容1. 实数的概念和分类1.1 实数的概念1.2 实数的分类:有理数和无理数2. 整数和分数2.1 整数的概念和分类:正整数、负整数和零2.2 分数的概念和分类:正分数、负分数和零分数2.3 分数的运算:加、减、乘、除3. 小数3.1 小数的概念和分类:有限小数和无限小数3.2 小数的运算:加、减、乘、除三、教学重点与难点1. 教学重点:实数的概念和分类,整数、分数、小数的运算规则。
2. 教学难点:实数的分类,分数和小数的运算。
四、教学方法与手段1. 教学方法:采用讲授法、案例分析法、小组讨论法等。
2. 教学手段:多媒体课件、黑板、粉笔等。
五、教学过程1. 导入新课:通过生活中的实际例子,引发学生对数学知识的兴趣,导入实数的概念。
2. 知识讲解:讲解实数的分类,整数、分数、小数的定义和运算规则。
3. 案例分析:选取典型例题,进行分析讲解,让学生掌握运算方法。
4. 课堂练习:布置适量练习题,巩固所学知识。
5. 总结拓展:总结本节课的主要内容,布置课后作业,引导学生进行进一步学习。
6. 课后反思:对课堂教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:检验学生对实数、整数、分数、小数概念和运算规则的掌握程度。
2. 评价方法:课堂练习、课后作业、阶段测试等。
3. 评价内容:实数的分类、整数、分数、小数的运算。
4. 评价时间:在学习过程中,及时进行评价和反馈。
七、教学资源1. 教材:中职数学教材。
2. 辅助材料:教案、课件、练习题、测试题等。
3. 教学设备:多媒体课件、黑板、粉笔等。
八、教学进度安排1. 课时:本节课计划2课时。
八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。
2. 学会实数的运算方法,包括加、减、乘、除、乘方等。
3. 能够运用实数解决实际问题,提高学生的数学应用能力。
二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。
2. 实数的性质:实数的加减法、乘除法、乘方运算。
3. 实数的应用:解决实际问题,如长度、面积、体积等计算。
三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。
2. 难点:实数运算的灵活应用,解决实际问题。
四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。
2. 运用案例分析法,分析实际问题,引导学生运用实数解决。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。
2. 讲解实数的分类:有理数、无理数、实数。
3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。
4. 运用案例分析,让学生体会实数在实际问题中的应用。
5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。
6. 总结本节课内容,布置课后作业。
六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。
2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。
3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。
七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。
2. 探讨实数与生活中的实际问题,提高学生的数学素养。
八、教学资源:1. 教材:八年级数学上册,北师大版。
2. 教案:实数教案。
3. PPT:实数相关内容。
4. 练习题:实数运算练习题。
九、教学时间安排:1. 第一课时:实数的定义与分类。
2. 第二课时:实数的性质与运算。
3. 第三课时:实数的应用与拓展。
十、课后作业:1. 复习实数的定义、性质及运算方法。
2. 完成练习题,巩固所学知识。
知识点 1 实数的概念及分类1.整数和________统称为有理数;____________叫无理数;有理数和无理数统称为________.分类:(1)按定义分类 实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正分数负分数有限小数或 小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数 小数 (2)按正负分类实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧ ⎩⎪⎨⎪⎧正整数正分数正无理数⎩⎨⎪⎧负有理数⎩⎪⎨⎪⎧负整数负分数【名师提醒】1、任何分数都是有理数,如23,-45等;2、常见的几种无理数:①根号型,如5,8等开方开不尽的数;②构造型,如0.1010010001……;③π及含π的数,如π,π+4等.3、2π是 数,不是 数,722是 数,不是 数。
4、0既不是 数,也不是 数,但它是自然数.提分必练:下列各数:13,π,38,cos 60°,0,3,其中无理数的个数是( )A .1个B .2个C .3个D .4个 知识点2 实数的相关概念1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,互为相反数的两 个数(除0以外)分别位于数轴上原点的两侧, 且到原点的距离__________。
3、倒数:实数a 的倒数是 , 没有倒数,倒数是它本身的数是___,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离 的 距离叫做这个数的绝对值。
因为绝对值表示的是距离,所以一个数的绝对值是 数, 我们学过的非负数有三个: 、 、 。
化简绝对值的公式: |a|=⎩⎪⎨⎪⎧ (a ≥0),(a<0),一对相反数在数轴上的对应点到原点的距离相等,因此它们的绝对值__________。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】提分必练:1.-12的绝对值的相反数是( )A .12B .-12C .2D .-2 2.-2015的相反数是________. 3.|-8|的倒数是________.知识点 3 科学记数法 1.科学记数法:把一个数写成________或_______的形式(其中________≤|a|<________,n 为整数),这种记数法称为科学记数法.例如574000记作________,-0.000737记作________.2.精确度与近似数:近似数与准确数的接近程度通常用________表示:近似数一般由________取得,________到哪一位,就说这个近似数精确到哪一位,如5.3746精确到0.001或精确到千分位是________.4.46万是精确到________位.提分必练:已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )A .1.239×10-3g /cm 3 B .1.239×10-2g /cm 3C .0.1239×10-2g /cm 3D .12.39×10-4g /cm 3 【方法点拨】用科学记数法表示一个数时,需要从两个方面入手,关键是确定a 和n 的值. (1)a 值的确定:1≤|a|<10; (2)n 值的确定:A .当原数大于或等于10时,n 等于原数的整数位数减1;B .当原数大于0且小于1时,n 是负整数,它的绝对值等于原数左起第一位非零数字前所有零的个数(含小数点前的零);知识点 4 数的开方1、若x 2=a(a 0),则x 叫做a 的 ,记做±a ,其中正数a 的 平方根叫做a 的算术平方根,记做 ,正数有 个平方根,它们互为 ,0的平方根是 ,负数 平方根。
第一课时 实数的有关概念一、学习目标1. 使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
二、实数的有关概念 (1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 三、知识点填空1、 和 统称为有理数。
有理数还可以分为 、 和 三类。
2、数轴的三要素是: 、 、 。
3、一个数的绝对值是指在数轴上表示这个数的点到原点的 。
正数的绝对值是 ,负数的绝对值是 ,0的绝对值是 。
4、 相同、 不同的两个数互为相反数,0的相反数是 。
5、乘方运算:na 读作 ,它表示 相乘,它的运算结果叫做 ,底数是 ,指数是 。
6、科学记数法:把一个数表示成 na 10⨯ 的形式,其中a 的取值范围是 7、有理数混合运算的顺序是:先算 ,再算 ,最后算 。
四、【典型例题】例1.右图是我市2月份某天24 小时内的气温变化图,则该天的 最大温差是_____ ℃. (2006连云港)例2.2006年5月12日20时19分,我国单机容量最大的核电站———江苏田湾核电站的1号机组成功并网发电,它将为华东电网新增1060000千瓦的供电能力.“1060000”用科学记数法可表示为 .(2006连云港)例3.a 、b 两数在一条隐去原点的数轴上的位置如图所示,下列4个式子中一定成立..的是 .(只填写序号)(2006连云港) ①a -b <0;②a +b <0;③a b <0;④a b +a +b +1<0.例4.观察下列各等式中的数字特征:85358535⨯=-,1192911929⨯=-,17107101710710⨯=-,…… 将你所发现的规律用含字母a ,b 的等式表示出来: .(2006连云港)例5.计算:-22-[-5+(0.2×31-1)÷(57-)]例6.股民李明上星期六买进春兰公司股票1000股,每股27元,下表为本周内每日该股票的涨跌(1(2)本周内最高价是每股多少元?最低价每股多少元?(3)已知李明买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果李明在星期六收盘前将全部股票卖出,他的收益情况如何? 五、考查题型: 以填空和选择题为主。
第一课时 实数的有关概念
知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值
大纲要求:
1. 使学生复习巩固有理数、实数的有关概念.
2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小
4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:
1. 有理数、无理数、实数、非负数概念;
2.相反数、倒数、数的绝对值概念;
3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
实数的有关概念
(1)实数的组成
(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),
实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数,
(3)相反数
实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称.
(4)绝对值
从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离
(5)倒数
实数a(a ≠0)的倒数是
a
1(乘积为1的两个数,叫做互为倒数);零没有倒数. 考查题型:
以填空和选择题为主。
如
一、考查题型:
1. -1的相反数的倒数是
2. 已知|a+3|+b+1 =0,则实数(a+b )的相反数
3. 数-3.14与-Л的大小关系是
4. 和数轴上的点成一一对应关系的是
5. 和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是
6. 在实数中Л,-25 ,0, 3 ,-3.14, 4 无理数有( ) (A )1 个 (B )2个 (C )3个 (D )4个
7.一个数的绝对值等于这个数的相反数,这样的数是( )
(A )非负数 (B )非正数 (C )负数 (D )正数
8.若x <-3,则|x +3|等于( )
(A )x +3 (B )-x -3 (C )-x +3 (D )x -3
9.下列说法正确是( )
(A ) 有理数都是实数 (B )实数都是有理数
(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数
10.实数在数轴上的对应点的位置如图,比较下列每组数的大小:
(1) c-b 和d-a
(2) bc 和ad
二、考点训练:
1.判断题:
(1)如果a 为实数,那么-a 一定是负数;( )
(2)对于任何实数a 与b,|a -b|=|b -a|恒成立;( )
(3)两个无理数之和一定是无理数;( )
(4)两个无理数之积不一定是无理数;( )
(5)任何有理数都有倒数;( ) (6)最小的负数是-1;( )
(7)a 的相反数的绝对值是它本身;( )
(8)若|a|=2,|b|=3且ab>0,则a -b=-1;( )
2.把下列各数分别填入相应的集合里
-|-3|,21.3,-1.234,-227 ,0,sin60°º,-9 ,-3-18 , -Л2
,8 , ( 2 - 3 )0,3-2
,ctg45°,1.12......中
无理数集合{ } 负分数集合{ }
整数集合 { } 非负数集合{ }
3.已知1<x<2,则|x -3|+(1-x)2 等于( )
(A )-2x (B )2 (C )2x (D )-2
4.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?
-3, 2 -1, 3, - 0.3, 3-1, 1 + 2 , 313
互为相反数: 互为倒数: 互为负倒数:
5.已知x、y是实数,且(X - 2 )2和|y+2|互为相反数,求x,y 的值
6.a,b 互为相反数,c,d 互为倒数,m 的绝对值是2,求|a+b|2m 2+1
+4m-3cd= 。
7.已知(a-3b)2+|a2-4|a+2
=0,求a+b= 。
三、解题指导:
1.下列语句正确的是( )
(A )无尽小数都是无理数 (B )无理数都是无尽小数
(C )带拫号的数都是无理数 (D )不带拫号的数一定不是无理数。
2.和数轴上的点一一对应的数是( )
(A )整数 (B )有理数 (C )无理数 (D )实数
3.零是( )
(A ) 最小的有理数 (B )绝对值最小的实数
(C )最小的自然数 (D )最小的整数
4.如果a 是实数,下列四种说法:(1)a2和|a|都是正数,
(2)|a|=-a,那么a一定是负数,(3)a的倒数是1a ,(4)a和-a的两个分别在原点的两侧,其中正确的是( ) (A )0 (B )1 (C )2 (D )3 5.比较下列各组数的大小: (1) 34 45 (2) 32
3 12 (3)a<b<0时, 1a 1b 6.若a,b 满足|4-a 2|+a+b a+2 =0,则2a+3b a
的值是 7.实数a,b,c 在数轴上的对应点如图,其中O 是原点,且|a|=|c|
(1) 判定a+b, a+c, c-b 的符号
(2) 化简|a|-|a+b|+|a+c|+|c-b|
8.数轴上点A 表示数-1,若AB =3,则点B 所表示的数为
9.已知x<0,y>0,且y<|x|,用"<"连结x ,-x ,-|y|,y 。
10.最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么?
11.绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么?
12.把下列语句译成式子:
(1)a 是负数 ;(2)a 、b 两数异号 ;(3)a 、b 互为相反数 ;
(4) a 、b 互为倒数 ;(5)x 与y 的平方和是非负数 ;
(6)c 、d 两数中至少有一个为零 ;(7)a 、b 两数均不为0 。
13.数轴上作出表示 2 , 3 ,- 5 的点。
四.独立训练:
1.0的相反数是 ,3-л的相反数是 ,3-8 的相反数是 ;-л的绝对值
是 ,0 的绝对值是 , 2 - 3 的倒数是
2.数轴上表示-3.2的点它离开原点的距离是 。
A 表示的数是-12 ,且A
B =13
,则点B 表示的数是 。
3 -33 ,л,(1- 2 )º,-227
,0.1313…,2cos60º, -3-1 ,1.0… (两1之间依次多一个0),中无理数有 ,整数有 ,负数有 。
4. 若a 的相反数是27,则|a|= ;5.若|a|= 2 ,则a=
5.若实数x ,y 满足等式(x +3)2
+|4-y |=0,则x +y 的值是
6.实数可分为( )
(A )正数和零(B )有理数和无理数(C )负数和零 (D )正数和负数
7.若2a 与1-a 互为相反数,则a 等于( )
(A )1 (B )-1 (C )12 (D )13
8.当a 为实数时,a 2 =-a 在数轴上对应的点在( )
(C ) 原点右侧(B )原点左侧(C )原点或原点的右侧(D )原点或原点左侧 *9.代数式a|a| +b|b| +ab|ab|
的所有可能的值有( ) (A )2个 (B )3个 (C )4个 (D )无数个
10.已知实数a 、b 在数轴上对应点的位置如图
(1)比较a -b 与a+b 的大小
(2)化简|b -a|+|a+b|
11.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|
试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|
12.已知等腰三角形一边长为a,一边长b,且(2a-b)2+|9-a2
|=0 。
求它的周长。
*13.若3,m,5为三角形三边,化简:(2-m)2 -(m-8)2。