金属屈服强度 抗拉强度 硬度知识
- 格式:doc
- 大小:2.01 KB
- 文档页数:1
机械专业基础知识--金属屈服强度、抗拉强度、硬度知识 [日期:2005-03-28编] 来源:Jackyc 原创文稿作者:陈俊光 [字体:大中小]钢材机械性能介绍1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
金属材料的机械性能金属材料是人类使用最早、最广泛的材料之一,它们的强度、硬度、韧性等机械性能是评价其使用价值的重要指标。
机械性能是指材料在受力下表现出的变形和破坏过程。
下面,我们将从强度、硬度、韧性等方面介绍金属材料的机械性能。
一、强度强度是金属材料的最基本的机械性能之一,指的是材料在外力作用下抗拉、抗压、抗剪等方向上的承载能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度、剪切强度等。
屈服强度是指材料在受拉力作用下,开始发生塑性变形并出现显著的应力松弛时所承受的最大应力值。
抗拉强度是材料在拉伸过程中承受的最大应力值。
抗压强度是指材料在受压力作用下承受的最大压应力值。
剪切强度是指材料受到剪切应力时所承受的最大应力值。
强度的大小与金属材料的组织结构、成分、热处理等因素有关。
一般来说,金属材料的强度与其硬度成正比,而与其韧性成反比。
不同材料的强度有很大的差别,在选择材料时需要根据使用条件和要求进行合理选择。
二、硬度硬度是指材料抵抗表面受压痕的能力,是金属材料的另一个重要机械性能指标。
硬度可用于估计金属材料的抗划伤性、金属材料的耐磨性和其他机械性能。
硬度测试常用的方法有维氏硬度、布氏硬度、洛氏硬度等。
这些方法的基本原理都是利用不同直径和角度的硬度试验锥体或硬度试验球压入试样表面,测出不同深度下硬度的值。
金属材料的硬度与其晶粒大小、成分、组织结构、热处理等因素密切相关。
一般来说,材料的晶粒越小其硬度越大,成分和组织结构的变化也会影响材料的硬度。
三、韧性韧性是指金属材料在受力后发生变形后仍能够吸收能量的能力,它也是材料性能的重要指标之一。
韧性的大小决定了材料在受到冲击或重载作用下的抗破坏能力。
韧性可用塑性变形能或断裂韧性来表征。
塑性变形能是指材料在发生塑性变形过程中所吸收的能量,断裂韧性则是指材料在断裂点吸收的总能量。
金属材料的韧性可以通过控制材料的组织结构和成分来实现。
例如,通过加工和淬火的处理,可以使材料的晶粒细化和增强位错密度,从而提高材料的韧性。
金属材料的性能一、金属材料的力学性能任何机械零件工作时都会受到外力的作用,如行车吊运重物,钢丝绳会受到重物拉力的作用;柴油机连杆会受到拉力、压力、甚至交变外力和冲击力的作用等。
在这些外力作用下,材料所表现出来的一系列特性和抵抗的能力称力学性能。
按作用形式不同,外力常分为静载荷、冲击载荷和交变载荷等。
材料的力学性能也分为强度、塑性、硬度、冲击韧度和疲劳强度等。
1.强度和塑性强度是指材料在外力作用下抵抗永久变形和断裂的能力。
强度用应力表示,其符号为σ,单位为MPa,1MPa=1N/mm2。
常用来衡量金属材料强度的指标有屈服点(σs)和抗拉强度(σb)等。
金属材料的屈服点和抗拉强度是通过把材料做成标准试样,在材料试验机上进行拉伸试验测得的。
常用的拉伸试样如图4-1所示。
图中l0为试样的标距长度,d0为试样截面的直径。
按国家标准规第四章金属材料与热处理定,试样可以分为长试样和短试样两种,长试样l0=10 d0,而短试样l0=5 d0。
试验时,随着拉力的缓慢增加,试样的长度也逐渐增长,即产生变形。
在整个试验中,把拉力与试样的相应变形,画在以伸长量∆l为横坐标、拉力F为纵坐标的图上,所连成的曲线即为力—变形曲线,如图4-2所示。
图4-l 拉仲试样图4-2 低碳钢力—变形曲线图a)拉伸前b)拉伸后由图4-2可知,在开始的Oe阶段,试样在拉力作用下均匀伸长,伸长量与拉力保持正比关系。
这时若去掉拉力,试样将恢复原状,此时材料处于弹性变形阶段,弹性变形在e 点处达到最大极限。
因此,在e点处试样所承受的拉力与试样横截面积之比称为弹性极限,用σe表示。
当超过e点后,材料除弹性变形外,开始产生塑性变形,拉力与伸长量之间的正比关系不再保持。
当拉力增大到F s时,即使拉力不再增加,材料仍会继续伸长一定距离,这种现象称为“屈服”。
在s点处,试样承受的拉力与试样原始横截面积之比称为屈服点,用σs表示σs=F s/A0式中F s r——试样屈服时的拉力(N);A0——试样原始截面积(mm2)。
1、金属材料的机械性能的含义是什么?金属及合金的机械性能是指材料的力学性能,即受外力作用时所反映出来的性能。
它是衡量金属材料的重要指标。
2、金属材料的主要机械性能指标有哪些?金属材料的主要机械性能有:弹性、塑性、刚度、强度、硬度、冲击韧性、疲劳强度和断裂韧性。
3、什么是弹性和韧性?金属材料受外力作用时产生变形,当外力去掉后恢复原来的形状的性能,叫弹性;这种随着外力而消失得变形叫弹性变形,其大小与外力成正比。
金属材料在外力作用下,产生永久变形而不致引起破坏的性能,叫塑性。
外力消失时留下的这部分不可恢复得变形叫塑性变形,其大小与外力不成正比。
4、什么叫应力?什么叫应变?材料受到拉伸时单位截面上的拉力叫应力,用σ表示。
材料受到拉伸时单位长度上的伸长量叫应变,用ε表示。
5、什么叫弹性极限?材料所能承受的、不产生永久变形的最大应力叫做弹性极限,用σb表示。
6、什么叫屈服极限?金属材料开始出现明显的塑性变形的应力叫做屈服极限,用示。
有些材料屈服极限很难测定,通常规定产生0.2%塑性变形时的应力作为屈服极限,用σ0.2表示。
7、什么叫刚度?刚度用什么来衡量?金属材料在受力时抵抗弹性变形的能力叫刚度。
在弹性范围内,应力与应变的比值叫做弹性模数,弹性模数越大,刚度越大。
8、什么叫强度?强度是指金属材料在外力作用下抵抗塑性变形和断裂的能力。
9、表示材料强度的指标有哪些?表示材料强度的指标有:1)、屈服强度:金属材料发生屈服现象时的屈服极限。
σs=P s/F0 (Pa)P s—试样产生屈服现象时所承受的最大外力,N(牛顿);F0—试样原来的截面积,㎡。
2)、抗拉强度:金属材料在拉断前所承受的最大应力。
以σb表示。
σb=P b/F0 (Pa) P b—试样在断裂前的最大拉力,N(牛顿);F0—试样原来的截面积,㎡。
10、什么叫硬度?金属材料抵抗更硬的物体压入其内部的能力叫做硬度。
11、衡量材料的硬度的指标有哪些?衡量硬度的指标有:布氏硬度(HB)、洛氏硬度(HR)、维氏硬度(HV)。
金属的强度名词解释汇总金属是一类重要的材料,其强度是评估其力学性能的重要指标。
强度可以衡量金属材料在外部力作用下所能承受的程度。
本文将对金属的强度相关名词进行解释汇总。
1. 屈服强度屈服强度是金属材料在拉伸或压缩过程中发生塑性变形的临界点。
当金属材料受到外力拉伸或压缩时,最初会呈弹性变形,即应变与应力成正比。
然而,当应变逐渐增大到一定程度时,材料开始出现可见的塑性变形,此时对应的应力即为屈服强度。
屈服强度可以用来评估金属的可塑性。
2. 抗拉强度抗拉强度也称为极限抗拉强度,是金属材料在拉伸过程中抵抗破断的能力。
金属材料在受到拉力作用下,逐渐发生塑性变形,直至达到抗拉强度时发生破断。
抗拉强度可以用来评估金属材料的强度和韧性。
3. 抗压强度抗压强度是金属材料在受到压缩力作用下抵抗破碎的能力。
金属材料在受到压缩力作用下,逐渐产生塑性变形,当达到抗压强度时发生破碎。
抗压强度可以用来评估金属材料的抗压性能。
4. 弯曲强度弯曲强度是金属材料在受到弯曲载荷作用下抵抗破断的能力。
金属材料在受到弯曲载荷作用下,会经历拉应力和压应力变化,当应力达到弯曲强度时发生破断。
弯曲强度可以用来评估金属材料在弯曲工况下的承载能力。
5. 冲击强度冲击强度是金属材料在受到快速冲击载荷作用下抵抗破断的能力。
金属材料在受到冲击载荷作用下,会发生瞬时的塑性变形,其破断方式和机械性能与其它载荷情况有所不同。
冲击强度可以用来评估金属材料在特殊工况下的承受能力。
6. 硬度硬度是金属材料抵抗局部受力的能力,即抵抗表面被划伤或穿透的能力。
硬度测试常用于评估金属材料的耐磨性和划痕性能。
常见的硬度测试方法包括布氏硬度、洛氏硬度和维氏硬度等。
7. 拉伸强度拉伸强度也称为断裂强度或破断强度,是金属材料在拉伸过程中最终发生破断的能力。
拉伸强度是金属材料抵抗破断的极限,通常与抗拉强度相近。
8. 韧性韧性是金属材料抵抗外界冲击和振动作用下发生破断的能力,包括延展性和断裂性。
材料的强度和硬度材料的强度和硬度是两个不同的概念。
强度是材料在外力作用下抵抗产生塑性变形和断裂的特性。
硬度是指金属材料表面上不大体积内抵抗其他更硬物体压入表面发生变形或破裂的能力;或在外力作用下,材料抵抗局部变形,尤其是抵抗塑性变形、压痕或划痕的能力。
1.强度常用的强度指标有屈服点和抗拉强度等。
(1)屈服点金属材料承受载荷作用,当载荷不再增加或缓慢增加,金属材料仍继续发生明显的塑性变形,这种现象成为“屈服”。
发生屈服现象时的应力,即开始出现塑性变形时的应力成为“屈服点”。
它代表金属材料抵抗产生塑性变形的能力。
工程上规定发生0.2%残余伸长时的应力为“条件屈服点”,成为屈服强度。
(2)抗拉强度金属材料在拉伸条件下,从开始加载到发生断裂所能承受的最大应力值,叫做抗拉强度。
抗拉强度是压力容器设计常用的性能指标,它是试件拉断前最大载荷下的应力。
工程上所用的金属材料,不仅希望有较高的屈服点,还希望具有一定的“屈强比”,即屈服点/抗拉强度。
屈强比愈小,材料的塑性储备就愈大,愈不容易发生塑性变形。
但是屈强比太小,材料的强度水平就不能充分发挥。
反之,屈强比愈大,材料的强度水平就愈能得到充分发挥,但塑性储备愈小。
实际上,要保证一定的较高的屈强比。
2.硬度硬度是衡量材料软硬的指标,它不是一个单纯的物理量,而是反映材料弹性、强度、塑性和韧性的综合性能指标。
常用的硬度测量方法是用一定载荷把一定的压头压入金属表面,然后测定压痕的面积或深度。
当压头和压力一定时,压痕愈深或面积愈大,硬度就愈低。
根据压头和压力的不同,常用的硬度指标可分为布氏硬度(HBS、HBW)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV)和肖氏硬度(HS)等。
布氏硬度比较准确,因此用途很广,但不能测量硬度很高的材料,而且其压痕较大,易损坏表面。
金属的强度名词解释引言:金属是一类常见的材料,它们具有许多独特的性质,其中之一就是强度。
强度是指材料抵抗外部力量的能力,对于金属来说,强度是评估其结构是否能够承受外部压力和负载的重要指标。
本文将深入探讨金属的强度,并解释与之相关的一些重要名词。
一、屈服强度屈服强度是指金属在受到应力作用后开始发生塑性变形的应力水平。
一般来说,金属在应力逐渐增大的过程中会先达到屈服强度,之后开始塑性变形。
屈服强度是金属的一个重要指标,能够反映金属抵抗塑性变形的能力。
不同金属的屈服强度各不相同,常用的测量方法是在试样上施加拉伸力,通过测量应变和应力的关系来确定屈服强度。
二、抗拉强度抗拉强度是金属材料在受到拉伸力作用时能够承受的最大应力。
金属材料在受到拉伸力作用时会发生断裂,抗拉强度可以衡量金属材料的抗拉性能。
高抗拉强度意味着金属具有较好的拉伸性能,可以在受到较大拉伸力时不易断裂。
抗拉强度通常用来评估金属材料在结构设计中的可靠性。
三、屈服比强度屈服比强度是指金属材料的屈服强度与其密度的比值。
这一参数可以用来比较不同材料的强度性能。
较高的屈服比强度意味着该金属具有较高的强度和轻质化的特点。
工程中,屈服比强度常常用来选择合适的材料,以满足结构强度和重量限制的要求。
四、塑性塑性是指金属材料在受到应力作用后经历的可逆变形。
与其他材料相比,金属具有较高的塑性,可以在外部力作用下发生可逆性的形变。
这使得金属材料在工程设计中具有广泛的应用。
塑性是金属强度的重要特性之一,也是人们对金属材料进行加工和成形的基础。
五、韧性韧性是指金属材料在受到应力作用后能够吸收能量并发生断裂之前的能力。
高韧性的金属具有较好的抗冲击和抗疲劳性能,可以在承受外部冲击和变形时不易破裂。
韧性与金属的强度紧密相关,通过调整金属的化学成分和结构来提高金属的韧性。
六、硬度硬度是指金属材料在受到压力或切割作用时抵抗形变或破裂的能力。
硬度可以反映金属材料的抗划伤性和抗变形性能。
材料的力学性能在一定的温度条件和外力作用下,材料的抗变形和抗断裂能力称为材料的力学性能。
锅炉和压力容器材料的常规力学性能主要包括强度、硬度、塑性和韧性。
(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。
强度指标是设计中确定许用应力的重要依据。
常用的强度指标为:屈服强度为s,或强度为0.2,抗拉强度为b。
高温工作时,应考虑蠕变极限为N,断裂强度为D。
(2)塑性是指金属材料在断裂前产生塑性变形的能力。
塑性指标包括:断裂伸长率,断裂后试样的相对伸长率;面积圆的减少,断裂点上横截面积的相对减少;和冷弯(角)α,即角测量标本时第一个裂纹在拉伸弯曲表面。
(3)韧性是指金属材料抵抗冲击载荷的能力。
韧性通常表达的冲击能量AK和冲击韧性值αk . k值或αk值不仅反映了材料的耐冲击,但也有些敏感材料的缺陷,可以敏感地反映材质的细微变化,宏观缺陷和微观结构。
而且AK对材料的脆性转变非常敏感,可以通过低温冲击试验来测试钢的冷脆性。
断裂韧度是衡量材料韧性的一个新的指标,它反映了材料的抗裂纹扩展能力。
(4)硬度,硬度是衡量材料硬度和柔软度的性能指标。
硬度测试的方法很多,原理不一样,硬度值和意义也不完全相同。
最常用的是静载荷压痕硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值代表材料表面抵抗坚硬物体冲击的能力。
肖氏硬度(HS)属于回弹硬度试验,其值代表金属的弹性变形功。
因此,硬度不是一个简单的物理量,而是反映材料的弹性、塑性、强度和韧性的综合性能指标。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
有色金属材料硬度与强度换算标准1. 概述有色金属材料是一类重要的工程材料,具有良好的导电、导热、耐腐蚀等特性,因此在航空航天、汽车制造、电子设备等领域广泛应用。
而有色金属材料的硬度和强度是评价其性能的重要指标之一。
2. 有色金属材料硬度与强度的概念有色金属材料的硬度是指其抗外力(例如压缩、弯曲、切割等)的能力,通常用洛氏硬度(HB)、维氏硬度(HV)等指标来表示。
而有色金属材料的强度是指其抵抗变形、破坏的能力,通常用抗拉强度、屈服强度、延伸率等指标来表示。
硬度和强度是两个不同的概念,但在有色金属材料的应用中经常需要进行相互转换。
3. 有色金属材料硬度与强度之间的关系有色金属材料的硬度和强度之间存在一定的关系。
一般来说,硬度高的材料通常具有较高的强度,但并不是绝对的。
铝合金和铜合金都属于有色金属材料,但其硬度和强度并不完全成正比关系。
对于不同种类的有色金属材料,需要根据具体情况进行合理的硬度与强度换算。
4. 有色金属材料硬度与强度换算的标准针对有色金属材料的硬度与强度换算,国际上制定了一系列的标准和规范,以便工程师和研究人员在实际工作中进行准确的换算和评估。
4.1 美国标准美国材料和试验协会(ASTM)制定了一系列有色金属材料的硬度与强度换算标准,例如ASTM E140-12标准,该标准规定了洛氏硬度(HB)、布氏硬度(HB)等硬度值与抗拉强度、屈服强度等强度值的换算公式和方法。
4.2 欧洲标准欧洲标准化委员会(CEN)和欧洲材料研究协会(ECCA)也制定了有色金属材料硬度与强度换算的标准,例如EN xxx-1:2000标准,该标准规定了一系列有色金属材料的硬度与强度换算的公式和计算方法。
4.3 我国标准我国国家标准化委员会(SAC)和我国材料研究协会(CMRA)也针对有色金属材料硬度与强度换算制定了一系列的国家标准,例如GB/T 3217-2005标准,该标准规定了有色金属材料的硬度值与抗拉强度、屈服强度等强度值的换算关系。
金属屈服强度、抗拉强度、硬度知识
钢材机械性能介绍
1.屈服点(σs)
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)
2.屈服强度(σ0.2)
有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)
材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)
材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度
硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
⑵洛氏硬度(HR)
当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的标度来表示:
HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
⑶维氏硬度(HV)
以120kg以内的载荷和支持角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。