例4.1若函数f x ax21 bx 3x b是偶函数,定义域
a 1,2a,则实数a _3__,b _-_3_.
2已知函数f x x 1x a为奇函数,则实数a _-_1_.
x
例5.已知函数y=f(x) 在R上是奇函数,而且在 (0,+∞)上是增函数,判断y=f(x)在(-∞,0)的单调 性,并证明你的判断.
观察函数f(x)=x和f(x)=1/x的图像回答问题
(1)这两个函数图象有什么共同特征? (2)填函数值对应表
x f(x)=x
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x
-3 -2 -1 1 2 3
f(x)=
1 x
13
1 2
-1
1
11 23
2.奇函数的概念
如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
练习:已知函数y=f(x)是偶函数,它在y 轴右边的图象如图,画出y=f(x)在 y轴左 边的图象.
解:
y
O
x
变式:若f(x)是奇函数呢?
例2. 判断下列函数的奇偶性
(1) y x2(2 x 3);
2 f x x3 2x
3 f x 2x4 3x2
4 f x x 2
(5)
f
x
x x
1, 1,
x x
0 0
注:奇、偶函数的定义域一定关于原点对称,
若函数的定义域不关于原点对称,则不具有奇偶性。
判断函数奇偶性的两种方法: (1)定义法:
(2)图象法:
利用函数的奇偶性求解析式
课堂篇 究学习
例3. 已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,