【精选】七年级数学上册 代数式(培优篇)(Word版 含解析)
- 格式:doc
- 大小:820.50 KB
- 文档页数:13
七年级上册数学 期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab2.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .3.下列运算正确的是 A .325a b ab += B .2a a a +=C .22ab ab -=D .22232a b ba a b -=- 4.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab5.下列立体图形中,俯视图是三角形的是( )A .B .C .D .6.下列图形中,能够折叠成一个正方体的是( )A .B .C .D .7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个 8.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小9.如图所示的几何体的左视图是( )A .B .C .D .10.27-的倒数是( ) A .72 B .72-C .27D .27-11.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,712.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .13.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点 14.-3的相反数为( )A .-3B .3C .0D .不能确定15.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元二、填空题16.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________. 17.计算:3-|-5|=____________.18.已知23a b -=,则736a b +-的值为__________.19.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.20.列各数中:(5)+-,|2020|-,4π-,0,2019(2020)-,负数有________个. 21.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.22.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________. 23.如果方程21(1)20m m x --+=是一个关于x 的一元一次方程,那么m 的值是__________.24.若代数式2434x x +-的值为 1,则代数式2314x x --的值为_________. 25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).27.如图,直线AB 、CD 相交于点O ,已知∠AOC =75°,∠BOE :∠DOE =2:3.(1)求∠BOE 的度数;(2)若OF 平分∠AOE ,∠AOC 与∠AOF 相等吗?为什么? 28.解方程:(1)()()210521x x x x -+=+-(2)1.7210.70.3 x x--=29.解方程:(1)5(x﹣1)+2=3﹣x(2)21211 36x x-+=-30.下图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用块小正方体搭成的.31.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A=80°,则∠A的半余角的度数为;(2)如图1,将一长方形纸片ABCD沿着MN折叠(点M在线段AD上,点N在线段CD 上)使点D落在点D′处,若∠AMD′与∠DMN互为“半余角”,求∠DMN的度数;(3)在(2)的条件下,再将纸片沿着PM折叠(点P在线段BC上),点A、B分别落在点A′、B′处,如图2.若∠AMP比∠DMN大5°,求∠A′MD′的度数.32.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,若这样的几何体最少要个a小正方体,最多要b个小正方体,则+a b的值为___________.33.画图题:已知平面上点A B C D 、、、,用刻度尺按下列要求画出图形:(保留画图痕迹,不要求写画法)(1)画直线BD ,射线 C B(2)连结AD 并延长线段AD 至点 F ,使得DF AD =.四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.36.如图,数轴上点A、B表示的点分别为-6和3(1)若数轴上有一点P,它到A和点B的距离相等,则点P对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q从点P出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q点与B点的距离等于 Q点与A点的距离的2倍?若存在,求出点Q运动的时间,若不存在,说明理由.37.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______;(2)用合理的方法进行简便计算:1111 924233202033⎛⎫-++---+⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|.38.如图9,点O是数轴的原点,点A表示的数是a、点B表示的数是b,且数a、b满足()26120a b-++=.(1)求线段AB的长;(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A和点B都向同一个方向运动时,直接写出经过多少秒后,点A、B两点间的距离为20个单位.39.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C是线段AB上的一点,M是AC的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)40.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0n a b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论. 43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.2.D【解析】 【分析】根据余角、补角的定义计算. 【详解】根据余角的定义,两角之和为90°,这两个角互余. D 中∠1和∠2之和为90°,互为余角. 故选D . 【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.D解析:D 【解析】 【分析】根据整式的加减,合并同类项得出结果即可判断. 【详解】A. 32a b +不能计算,故错误;B. 2a a a +=,故错误;C. 2ab ab ab -=,故错误;D. 22232a b ba a b -=-,正确, 故选D. 【点睛】此题主要考察整式的加减,根据合并同类项的法则是解题的关键.4.A解析:A 【解析】 【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案. 【详解】A .﹣xy 与2yx ,所含字母相同,相同字母的指数也相同,是同类项.故选项A 符合题意;B .2ab 与2abc ,所含字母不相同,不是同类项.故选项B 不符合题意;C .x 2y 与x 2z ,所含字母不相同,不是同类项.故选项C 不符合题意;D .a 2b 与ab 2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D 不符合题意. 故选A . 【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同.5.C【解析】【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【详解】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.B解析:B【解析】【分析】根据正方体的表面展开图的常见形式即可判断.【详解】选项A、C 、D经过折叠均不能围成正方体;只有B能折成正方体.故选B.【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.7.B解析:B【解析】【分析】根据直角三角板可得第一个图形∠α+∠β=90°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α+∠β=90°,根据同角的余角相等可得第二个图形∠α=∠β,第三个图形∠α和∠β互补,根据等角的补角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有2个,故选B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3.【详解】解:∵3+m=m+3,m+3表示比m 大3,∴3+m 比m 大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.9.A解析:A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A . 10.B解析:B【解析】【分析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.11.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.12.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.13.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.14.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.15.B解析:B【解析】【分析】科学记数法的一般形式为:a×10n,在本题中a应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可. 【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a解析:-4,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a=-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.17.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.18.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.19.【解析】【分析】设输入的数是x ,根据题意得出方程(x2-1)÷3=1,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x2-1)÷3=1,x2-1=3,x=±2,故答案为:±解析:2±【解析】【分析】设输入的数是x ,根据题意得出方程(x 2-1)÷3=1,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x 2-1)÷3=1,x 2-1=3,x=±2,故答案为:±2.【点睛】本题考查平方根的意义及求一个数的平方根,解题关键是能根据题意得出方程. 20.3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:,,负数有:,,,共3个故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次 解析:3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:(5)5+-=-,20202020-=,负数有:(5)+-,4π-,2019(2020)-,共3个 故答案为:3【点睛】 本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次幂是负数,掌握相关法则是本题的解题关键.21.58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2= (180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=(18解析:58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12 (180°-64°)=58°. 【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°, 故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.23.-1【解析】【分析】根据一元一次方程的定义可得出,,求解即可.【详解】解:由题意可得,,,解得,m=-1.故答案为:-1.【点睛】本题考查的知识点是一元一次方程的定义,熟记方程定义解析:-1【解析】【分析】 根据一元一次方程的定义可得出2m 11-=,m 10-≠,求解即可.【详解】 解:由题意可得,2m 11-=,m 10-≠,解得,m=-1.故答案为:-1.【点睛】本题考查的知识点是一元一次方程的定义,熟记方程定义是解此题的关键.24.【解析】【分析】根据题意表达出,将其代入计算即可.【详解】解:∵代数式的值为 1∴∴∴∴故答案为:【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键.解析:1-4【解析】【分析】 根据题意表达出235=44x x +,将其代入2314x x --计算即可. 【详解】解:∵代数式2434x x +-的值为 1∴2434=1x x +-∴243=5x x + ∴235=44x x + ∴23511=1-=-444x x -- 故答案为:1-4 【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键.25.30°.【解析】【分析】观察图形可得:所求∠BOC 的度数恰好是三角板的两个直角的和减去∠AOD 的度数,据此求解即可.【详解】解:因为∠AOB=90°,∠COD=90°,∠AOD=150°,解析:30°.【解析】【分析】观察图形可得:所求∠BOC 的度数恰好是三角板的两个直角的和减去∠AOD 的度数,据此求解即可.【详解】解:因为∠AOB =90°,∠COD =90°,∠AOD =150°,所以∠BOC =∠AOB +∠COD -∠AOD =30°. 故答案为:30°.【点睛】本题以学生常见的三角板为载体,主要考查了角的和差关系,解答的关键是通过观察发现图形中所求角与已知各角的关系.三、解答题26.(1)908t ;-(2)152744t t ==,(3)①5或10,②3∠NOD +4∠BOM =270°. 【解析】【分析】 (1)把旋转前∠NOD 的大小减去旋转的度数就是旋转后的∠NOD 的大小.(2)相对MO 与CO 的位置有两种情况,所以要分类讨论,然后根据∠NOD =4∠COM 建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO 没有追上CO 与MO 超过CO 两种情况,然后分别列方程即可.②分别用t 的代数式表示∠NOD 和∠BOM ,然后消去t 即可得出它们的关系.【详解】(1)∠NOD 一开始为90°,然后每秒减少8°,因此∠NOD =90﹣8t .故答案为90﹣8t .(2)当MO 在∠BOC 内部时,即t 458<时,根据题意得: 90﹣8t =4(45﹣8t )解得:t 154=; 当MO 在∠BOC 外部时,即t 458>时,根据题意得: 90﹣8t =4(8t ﹣45)解得:t 274=. 综上所述:t 154=或t 274=. (3)①当MO 在∠BOC 内部时,即t 458<时,根据题意得: 8t ﹣2t =30解得:t =5;当MO 在∠BOC 外部时,即t 458>时,根据题意得: 8t ﹣2t =60解得:t =10.故答案为5或10. ②∵∠NOD =90﹣8t ,∠BOM =6t ,∴3∠NOD +4∠BOM =3(90﹣8t )+4×6t =270°. 即3∠NOD +4∠BOM =270°.【点睛】本题一元一次方程和图形变换相结合的题目,考查了一元一次方程的应用,渗透了分类的思想方法.27.(1)30°;(2)相等,理由见解析【解析】【分析】(1)根据对顶角相等求出∠BOD的度数,设∠BOE=2x,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF的度数即可.【详解】(1)设∠BOE=2x,则∠EOD=3x,∠BOD=∠AOC=75°,∴2x+3x=75°,解得,x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF平分∠AOE,∴∠AOF=75°,∴∠AOF=∠AOC,【点睛】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.28.(1)x=−43;(2)x=1417.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)去括号得:2x−x−10=5x+2x−2,移项合并得:-6x=8,解得:x=−43;(2)方程整理得:101720173x x--=,去分母得:30x-21=7(17-20x),移项合并得:170x=140,解得:x=14 17.【点睛】此题考查了解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.29.(1)x =1;(2)x =32-. 【解析】【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)先左右两边同时乘以6去掉分母,然后再按照去括号,移项,合并同类项,系数化为1的步骤求解即可.【详解】解:(1)去括号得:5x ﹣5+2=3﹣x ,移项得:5352x x +=+-合并同类项得:6x =6,系数化为1得:x =1;(2)去分母得:2(2x ﹣1)=2x +1﹣6,去括号得:4x ﹣2=2x +1﹣6,移项得:42162x x -=-+合并同类项得:2x =﹣3,系数化为1得:x =32-. 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.30.(1)见解析;(2)9【解析】【分析】(1)根据主视图、左视图和俯视图的定义和几何体的特征画出三视图即可;(2)根据三视图的特征分析该几何体的层数和每层小正方体的个数,然后将每层小正方体的个数求和即可判断.【详解】解:(1)根据几何体的特征,画三视图如下:(2)从主视图看,该几何体有3层,从俯视图看,该几何体的最底层有6个小正方体;结合主视图和左视图看,中间层有2个或3个小正方体,最上层只有1个小正方体,故该几何体有6+2+1=9个小正方体或有6+3+1=10个小正方体,如果只看三视图,这个几何体还有可能是用9块小正方体搭成的,故答案为:9.【点睛】此题考查的是画三视图和根据三视图还原几何体,掌握三视图的定义、三视图的特征和几何体的特征是解决此题的关键.31.(1)35°或125°;(2)45°或75°;(3)10°或130°.【解析】【分析】(1)设∠A的半余角的度数为x°,根据半余角的定义列方程求解即可;(2)设∠DMN为x°.根据折叠的性质和半余角的定义解答即可;(3)分两种情况讨论:①当∠DMN=45°时,∠DMD'=90°,∠AMP=50°,∠DMA'=80°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.②当∠DMN=75°时,∠DMD'=150°,∠AMP=80°,∠DMA'=20°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.【详解】(1)设∠A的半余角的度数为x°,根据题意得:|80°-x|=45°80°-x=±45°∴x=80°±45°,∴x=35°或125°.(2)设∠DMN为x°,根据折叠的性质得到∠D'MN=∠DMN=x°.∴∠AMD'=180°-2x.∵∠AMD′与∠DMN互为“半余角”,∴|180°-2x-x|=45°,∴|180°-3x|=45°,∴180°-3x=45°或180°-3x=-45°,解得:x=45°或x=75°.(3)分两种情况讨论:①当∠DMN=45°时,∠D'MN=45°,∴∠DMD'=90°,∠AMP=∠A'MP=45°+5°=50°,∴∠DMA'=180°-2∠AMP=80°,∴∠A′MD′=∠DMD'-∠DMA'=90°-80°=10°.②当∠DMN=75°时,∠D'MN=75°,∴∠DMD'=150°,∠AMP=∠A'MP=75°+5°=80°,∴∠DMA'=180°-2∠AMP=20°,∴∠A′MD′=∠DMD'-∠DMA'=150°-20°=130°.综上所述:∠A′MD′的度数为10°或130°.【点睛】本题考查了一元一次方程的应用以及折叠的性质.理解“半余角”的定义是解答本题的关键. 32.(1) 10; (2) 主视图、左视图和俯视图见解析;(3) 22.【解析】【分析】(1)有规律的根据组合几何体的层数来数即可;(2) 根据主视图、左视图、俯视图的定义画出图形即可(3)根据保持这个几何体的主视图和俯视图不变,利用俯视图计算搭这一几何体最少要个a小正方体,最多要b个小正方体,即可算出a+b的值.【详解】解:(1)这个组合几何体小正方体个数为:6+3+1=10(个)故答案为:10.(2) 主视图、左视图和俯视图如图所示:(3)这样的几何体最少如图:∴a=3+1+2+1+1+1=9(个)这样的几何体最多需要如图:∴b=3+1+2+3+1+3=13(个)∴a+b=9+13=22故答案为22.【点睛】本题主要考查了作图的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.33.(1)图见解析;(2)图见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)根据题意,画图即可.【详解】解:(1)根据直线和射线的定义:作直线BD和射线C B,如图所示:直线BD和射线C B即为所求;,如下图所示,AD和DF即为所(2)连结AD并延长线段AD至点F,使得DF AD求.【点睛】此题考查的是画直线、射线和线段,掌握直线、射线和线段的定义及画法是解决此题的关键.四、压轴题34.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b 是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x )+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.35.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.36.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论;【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3;∴AB=9;∵P 到A 和点B 的距离相等,∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t -分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是。
七年级数学上册上册数学压轴题(培优篇)(Word版含解析)一、压轴题1.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B.对于任何正整数n,()111n--=-C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______615⎛⎫=⎪⎝⎭______(4)想一想,将一个非零有理数a的n次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2.如图9,点O是数轴的原点,点A表示的数是a、点B表示的数是b,且数a、b满足()26120a b-++=.(1)求线段AB的长;(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A和点B都向同一个方向运动时,直接写出经过多少秒后,点A、B两点间的距离为20个单位.3.如图,数轴上A,B两点对应的数分别为4-,-1(1)求线段AB长度(2)若点D在数轴上,且3DA DB=,求点D对应的数(3)若点A的速度为7个单位长度/秒,点B的速度为2个单位长度/秒,点O的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =4.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.5.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 6.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.7.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD的中点,若PE=QF,求t的值.8.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n个点,线段共有条.(3)拓展探究:具有公共端点的两条射线OA、OB形成1个角∠AOB(∠AOB<180°);在∠AOB内部再加一条射线OC,此时具有公共端点的三条射线OA、OB、OC共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?9.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=_______;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.10.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?11.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.12.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】 (1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14;(2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯-21()3=-;611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭15555=⨯⨯⨯⨯45=;故答案为:21()3-,45; (4)由(3)得到规律:21()n n a a-=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a-,故答案为:21()n a-;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭11186=-- 29=-.【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序. 2.(1)18;(2)6或18秒;(3)2或38秒 【解析】 【分析】(1)根据偶次方以及绝对值的非负性求出a 、b 的值,可得点A 表示的数,点B 表示的数,再根据两点间的距离公式可求线段AB 的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A 、B 两点间的距离为20个单位分别列出方程即可求解. 【详解】解:(1)∵|a ﹣6|+(b +12)2=0, ∴a ﹣6=0,b +12=0, ∴a =6,b =﹣12,∴AB =6﹣(﹣12)=18;(2)设点A 、B 同时出发,运动时间为t 秒,点A 、B 能够重合时,可分两种情况: ①若相向而行,则2t+t =18,解得t =6; ②若同时向右而行,则2t ﹣t =18,解得t =18. 综上所述,经过6或18秒后,点A 、B 重合;(3)在(2)的条件下,即点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动,设点A 、B 同时出发,运动时间为t 秒,点A 、B 两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t )-(-12-2t )=20,解得:t=2; ②若两点均向右,则(-12+2t )-(6+t )=20,解得:t=38; 综上,经过2或38秒时,A 、B 相距20个单位. 【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用. 3.(1)3;(2)12或74-;(3)13秒或79秒 【解析】 【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法. 4.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a-. 【解析】 【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a bMN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论. 【详解】(1)6AC cm =,M 是AC 的中点, ∴132CM AC ==(cm ),4BC cm =,N 是CB 的中点,∴122CN CB ==(cm ),∴325MN CM CN =+=+=(cm ); (2)由AC a =,M 是AC 的中点,得1122CM AC a ==,由BC b =,N 是CB 的中点,得1122CN CB b ==,由线段的和差,得222a b a bMN CM CN +=+=+=;(3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知2a bMN +=,当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==,BC b =,点N 是CB 的中点,∴1122CN BC b ==,∴222a b a bMN CM CN -=-=-=当点C 在线段BA 的延长线时,如图:则AC a BC b =<= , 同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b aMN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a-. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大. 5.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或10114【解析】 【分析】(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可; 【详解】解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线,∴∠BOD=90°,∠BOE=∠DOE=12∠BOD =45° ∵85AOE ∠=∴∠AOB=∠AOE +∠BOE=130° ∵OC 是AOB ∠的角平分线,∴∠AOC=∠BOC=12AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20°(2)由原图可知:∠COD=∠DOE -∠COE=25°,故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ; ①当05t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20° ∴∠AOD ≠∠COE∴∠AOD +∠COD ≠∠COE +∠COD ∴此时AOC DOE ∠≠∠; ②当59t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20° ∴∠AOD ≠∠COE∴∠AOD -∠COD ≠∠COE -∠COD ∴此时AOC DOE ∠≠∠; ③当913t <<时,如下图所示:OC 和OE 旋转的角度均为5t此时∠AOC=65°-5t ,∠DOE=5t -45°∵AOC DOE ∠=∠∴65-5t=5t -45解得:t=11综上所述:当t =11时,AOC DOE ∠=∠.(3)OE 与OB 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷10°=6.5s ; OC 为OA 的反向延长线时运动时间为(180°+65°)÷10=24.5s ;OE 为OB 的反向延长线时运动时间为(180°+45°)÷5=45s ;①当0 6.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=65°-10m ,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴65-10m =45(45-5m ) 解得:m =296; ②当6.59m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴10m -65=45(45-5m ) 解得:m =10114; ③当924.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=5m -45°∵45AOC EOB ∠=∠ ∴10m -65=45(5m -45) 解得:m =296,不符合前提条件,故舍去; 综上所述:m=296或10114. 【点睛】此题考查的是角的和与差和一元一次方程的应用,掌握各角之间的关系、用一元一次方程解动角问题和分类讨论的数学思想是解决此题的关键.6.13t =,233AP =或t =3,AP =11. 【解析】【分析】 根据题意可以分两种情况:①当P 向左、Q 向右运动时,根据PQ=OP+OQ+BO 列出关于t 的方程求解,再求出AP 的长;②当P 向右、Q 向左运动时,根据PQ=OP+OQ-BO 列出关于t 的方程求解,再求出AP 的长.【详解】解:∵12AB =,4OB =,∴8OA =.根据题意可知,OP=t ,OQ=2t .①当P 向左、Q 向右运动时,则PQ=OP+OQ+BO ,∴245t t ++=,∴13t =. 此时OP =13,123833AP AO OP =-=-=; ②当P 向右、Q 向左运动时,PQ=OP+OQ-BO ,∴245t t +-=,∴3t =.此时3OP =,8311AP AO OP =+=+=.【点睛】本题考查数轴、线段的计算以及一元一次方程的应用问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.7.(1)MN =40;(2)EF=35;(3)509=t 或t =12. 【解析】【分析】 (1)由MN =BM+BN =1122AB BD +即可求出答案; (2)根据EF =AD ﹣AE ﹣DF ,可求出答案;(3)可得PE =AE ﹣AB ﹣BP =52t +,DF =752t -,则QF =55722t -或75522t -,由PE =QF 可得方程,解方程即可得出答案.【详解】解:(1)∵M 为AB 的中点,N 为BD 的中点, ∴12BM AB =,12BN BD =, ∴MN =BM+BN =1122AB BD +=11804022AD =⨯=; (2)∵E 为AC 的中点,F 为BD 的中点, ∴12AE AC =,12DF BD =, ()()1111352222EF AD AE DF AD AC BD AD AD BC AD BC =--=-+=-+=-=∴ (3)运动t 秒后,AQ =AC+CQ =15+4t ,∵E 为AQ 的中点, ∴115222AE AQ t ==+, ∴1552522PE AE AB BP t t t =--=+--=+, ∵DP =DB ﹣BP =75﹣t ,F 为DP 的中点,∴175222t DF DP ==-, 又DQ =DC ﹣CQ =65﹣4t , ∴755576542222t QF DQ DF t t =-=--+=-, 或75522QF DF DQ t =-=-, 由PE =QF 得:52t +=55722t -或52t +=55722t - 解得:509=t 或t =12. 【点睛】本题考查了一元一次方程的应用以及线段的中点,找准等量关系,正确列出一元一次方程是解题的关键.8.(1)45;(2)(1)2n n -;(3)(1)2n n -;(4)共需拍照991张,共需冲印2025张纸质照片【解析】【分析】(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.【详解】解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).故答案为:45;(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条. 故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成(1)2n n -个角; 故答案为:(1)2n n -; (4)解:4545-119912+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.9.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t ,3t 2= 【解析】【分析】(1)根据角平分线的定义即可得出答案;(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF ,再减去旋转角度即可得到∠DCF ;②先由补角的定义表示出∠BCE ,再根据旋转和角平分线的定义表示出∠DCF ,即可得出两者的数量关系;(3)根据α=∠FCA-∠DCA ,β=∠AC 1D 1+∠AC 1F 1,可得到表达式,再根据|α-β|=45°建立方程求解.【详解】(1)∵∠ACE=90°,CF 平分∠ACE∴∠AOF=12∠ACE=45° 故答案为:45°; (2)①当t=1时,旋转角度为30°∴∠ACE=90°+30°=120°∵CF 平分∠ACE∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°故答案为:30°;②∠BCE=2α,证明如下:旋转30t 度后,∠ACE=(90+30t)度∴∠BCE=180-(90+30t)=(90-30t)度∵CF 平分∠ACE∴∠ACF=12∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度∴2∠DCF=2(45-15t)= 90-30t=∠BCE即∠BCE=2α(3)α=∠FCA-∠DCA=12(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+12(90-30t)=45+15t ||45βα-=︒∴3t 2=【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.10.(1)t 的值为1秒或52651秒; (2)当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOC MON∠-∠+∠∠不是定值. 【解析】【分析】(1)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t <12时,分别根据已知条件列等式可得t 的值;(2)分两种情况,分别计算∠COM 、∠BON 和∠MON 的度数,代入可得结论.【详解】(1)当ON 与OA 重合时,t=90÷12=7.5(s )当OM 与OA 重合时,t=180°÷15=12(s )①如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(90-12t )-69,解得t=1;②如图所示,当7.5<t <12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(12t-90)-69,解得t=52651, 综上,t 的值为1秒或52651秒; (2)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t+90+12t=180,解得t=103, ①如图所示,当0<t <103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°=02790t +, ∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)902790t t t +--++=000027902790t t ++=1(是定值),②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON )=360°-(15t°+90°+12t°)=270°-27t°,∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)9027027t t t +--+-=0000902727027t t+-(不是定值),综上所述,当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOC MON∠-∠+∠∠不是定值. 【点睛】本题主要考查了角的和差关系的计算,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.11.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.12.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。
第3讲:代数式(一)一、建构新知1. 阅读教材中的本节内容后填写:写出下面各式的简略形式5×b = c ×a = x ×6= 1×a = x ×x = c ÷4=规范:(1) 或 相乘时,乘号可省略不写,或者用“ ”.(2)数和字母相乘,在省略乘号时,要把 写在 前面. (3)带分数与字母相乘时,带分数要写成 的形式. (4)除法运算要写成 形式,除号改为 . 2. 下列各式书写规范的是( )A.c ab ÷ B.)32(2⨯-a C.ab 411 D.73+-xy3. 一隧道长l 米,一列火车长180米,如果该列火车穿过隧道所花的时间为t 分钟,则列车的速度怎么表示? .(课本引例) 再描述式子中的字母和数字所代表的意义?4. 代数式由 组成, 单独一个 或 也称代数式.代数式中可以含有的运算是 .5. 用代数式表示“a 与比b 小10的数的积”是 ( )A.10ab - B.10ab- C.(10)a b - D.(10)a b + 6.阅读教材中的本节内容后填写下表,并观察下列两个代数式的值的变化情况:⑴如何求得代数式的值: ⑵随着n 的值逐渐变大,两个代数式的值变化为 . ⑶估计一下,代数式 的值先超过100.二、经典例题例1. (1)当x 分别等于-1、0、1、2、3、4、5时,求代数式342+-x x 的值,请用表格的形式解答;(2)通过观察,你能找出342+-x x 的值随x 的变化规律吗?(3)你能通过上述方法归纳出322++-x x 的值随x 的变化规律吗?例2怎样的两个数,它们的和等于它们的积呢?你大概马上会想到2+2=2×2,其实这样的两个数还有很多,例如:3+23=3×23(1)你还能写出一些这样的两个数吗?(2)你能从中发现什么规律吗?把它用字母n 表示出来.例3.甲、乙两人从同一地点出发,甲每小时走5km ,乙每小时走3km ,用代数式表示: (1)反向行走t 时,两人相距多少千米?(2)同向行走t 时,两人相距多少千米?(3)反向行走,甲比乙早出发m 时,乙 走n 时,两人相距多少千米?(4)同向行走,甲比乙晚出发m 时,乙 走n 时(n >m ),两人相距多少千米?例4. 当x =1时,代数式ax 3+bx -6的值为8,试求当x = -1时,代数式ax 3+bx -6的值.例5. 已知a +19=b +9=c +8,求代数式(b -a )2+(c -b )2+(c -a )2的值.例6.有理数a ,b ,c 均不为0,设cc bb aa x ++=,求代数式 2013992++x x 的值三、基础演练1. 甲数比乙数的3倍大2,若甲数为x ,则乙数为( ) A . 3x -2 B . 3x +2 C .32+x D . 32-x 2. 一个正方形的边长为a ,把这个正方形的边长增加2后得到的正方形的面积是( ) A . a 2+4 B . a +2 C . (a +2)2 D . a 2+2 3. 下列说法正确的是( ) A . -a 一定是负数 B . a 的倒数是a 1 C . 2a一定是分数 D . a 2一定是非负数 4. 某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a ,n 和m 之间的关系为 . 5. 观察下面一列数的规律并填空:0、3、8、15、24、…,则它的第2005个数是 ,第n 个数是 (用含正整数n 的式子表示). 6. “a 的相反数与a 的2倍的差”,用代数式表示为( )A . a -2aB . -a -2aC . a +2aD . -a +2a 7. 代数式a +b 2的意义是( )A . a 与b 的和的平方B . a 、b 两数的平方和C . a 与b 的平方的和D . a 与b 的平方8. 下列各式:⑴132ab ⑵ x ﹒2 ⑶ 30%a ⑷ m -2℃ ⑸ 232y x -⑹ a -b ÷c ,其中不符合代数式书写要求的有( )A . 5个B . 4个C . 3个D . 2个9. 今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克( )元A .(1+20%)aB . (1-20%)aC .%201+a D .%201-a10. 一项工程,甲队单独完成需a 天,乙队单独完成需b 天,那么两队合作要天完成.11.已知2x -3y =1,则10-2x +3y =___________. 12. 若y x -=+53,a ,b 互为倒数,则代数式21(x +y )+5ab = . 13. 甲、乙两品牌服装的单价分别为a 元和b 元,现实行打折销售,甲种服装按8折(即原价的80%)销售,乙种服装按7折销售,若购买两种品牌服装各一件,共需多少元?14. 小明由于粗心,计算25+a 的值时,误将“+”看成“-”,结果得65,试求25+a 的值.15. 已知x -5y =0 (y ≠0),求代数式y x y x 3263-+的值.四、直击中考1.(2013山东)若m-n = -1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-12.(2013重庆)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()A.51B.70C.76D.813. (2013江苏)已知x-1x=3,则4-12x2+32x的值为()A.1 B.32C.52D.724. (2013福建)已知实数a、b满足:a+b=2,a-b=5,则(a+b)3·(a-b)3的值是___________.5. (2013山东)观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…… ……请猜测,第n个算式(n为正整数)应表示为____________________________.6. (2013江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n的代数式表示).7. (2013湖南)定义a bc d为二阶行列式,规定它是运算法则为a bc d=ad-bc,那么当x =1时, 二阶行列式1101x x +-的值为 .8. (2013福建)有一数值转换器,原理如图所示,若开始输入 x 的值是7,可发现第 1 次输出的结果是 12,第2次输出 的结果是6,第3次输出的结果是 ,依次继续下去…,第2013次输出的结果是 .9. (2013浙江义乌)如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1、S 2;(2)请写出上述过程所揭示的乘法公式.图1 图2五、挑战竞赛1.如果实数a ,b ,c 在数轴上的位置如图所示,那么代22()a a b c a b c +-+可以化简为( )A .2c a -B .22a b -C .a -D .a2.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ) A .1 B .2 C .3 D .43.某市道路改造工程,如果让甲工程队单独工作,需要30天完成,如果让乙工程队单独工作,则需要60天方可完成;甲工程队施工每天需付施工费2.5万元,乙工程队施工每天需付施工费1万元.请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作10天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65万元,甲、乙两个工程队最多能合作几天? (4)如果工程必须在24天内(含24天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.六、每周一练1.如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,试求a b cb c c a a b+++++的值.2. 2=-,试求221x x -的值.。
2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)专题02 代数式【题型1】代数式表示数、图形的规律1.(2022·河北廊坊·七年级期末)如图.用棋子按规律摆出下列一组图形,据此规律,第2022个,图形棋子的枚数为( )A.6065B.6068C.6069D.6071【答案】B【分析】由所给的图形不难看出第n个图形所棋子枚数是:3n+2,从而可求解.【详解】解:∵第1个图形棋子枚数为:5=3×1+2,第2个图形棋子枚数为:5+3=3×2+2,第3个图形棋子枚数为:5+3+3=3×3+2,∴第n 个图形棋子枚数为:3n +2,∴第2022个图形棋子枚数为:3×2022+2=6068,故B 正确.故选:B .【点睛】此题考查图形的变化规律,找出图形之间的联系,得出规律是解题的关键.【变式1-1】2.(2022·黑龙江大庆·期中)观察下面一系列等式:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,并用含有a 的字母表示这个规律__________.【答案】()()2221218a a a+--=【分析】根据题意观察式子,发现等式的左边为连续的两个奇数的平方差,右边为8与从1开始的自然数的乘积,据此用代数式表示即可求解.【详解】解:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,可得()()2221218a a a +--=.故答案为:()()2221218a a a +--=.【点睛】本题考查了用代数式表示式子的规律,发现规律是解题的关键.【题型2】代数式的书写方法1.(2021·福建·晋江市磁灶中学七年级期中)下列代数式书写规范的是( )A .2m n ´B .526abC .a b ¸D .3xD、该选项正确.故选D.【点睛】本题考查了代数式的书写要求,解决本题的关键是掌握代数式的书写要求.要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式.【变式2-1】2.(2022·全国·七年级课时练习)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)123a a b´´-´,应写成______;(4)413x, 应写成______.【题型3】代数式表示的实际意义1.(2022·内蒙古通辽·七年级期末)下列赋予4m实际意义的叙述中不正确的是()A.若一个两位数中的十位数字和个位数字分别为4和m,则4m表示这个两位数B.若正方形的边长为m厘米,则4m表示这个正方形的周长(单位:厘米)C.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额(单位:元)D.若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程(单位:千米)【答案】A【分析】根据两位数的表示=十位数字×10+个位数字;正方形周长=边长×4;金额=单价×重量;路程=速度×时间进行分析即可.【详解】解:A、若一个两位数中的十位数字和个位数字分别为4和m,则(4×10+m)表示这个两位数,原说法不正确,故此选项符合题意;B、若正方形的边长为m厘米,则4m表示这个正方形的周长,原说法正确,故此选项不符合题意;C、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,原说法正确,故此选项不符合题意;D、若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程,原说法正确,故此选项不符合题意;故选:A.【点睛】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.【变式3-1】2.(2022·江苏·七年级)某超市的苹果价格如图,试说明代数式100﹣9.8x的实际意义__.【答案】用100元买每斤9.8元的苹果x斤余下的钱【分析】根据题意结合图片得出代数式100﹣9.8x的实际意义.【详解】解:代数式100﹣9.8x 的实际意义为:用100元买每斤9.8元的苹果x 斤余下的钱.故答案为:用100元买每斤9.8元的苹果x 斤余下的钱.【点睛】此题主要考查了代数式,结合题意利用图片得出是解题关键.【题型4】求代数式的值1.(2021·湖北·公安县教学研究中心七年级阶段练习)已知|2|a =-,则a -5=( )A .3-B .3C .7-D .7【答案】A【分析】由绝对值的意义求出a 的值,再代入a -5中计算即可.【详解】∵|2|a =-,∴2a =,∴a -5=2-5=-3.故选A .【点睛】本题考查求一个数的绝对值,代数式求值.掌握正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题关键.【变式4-1】2.(2021·江西·宜春九中七年级阶段练习)已知150y x -++--=,则x y +=__________.一.选择题1.(2022·全国·七年级专题练习)某商店促销的方法是将原价x 元的衣服以(0.8x ﹣10)元出售,意思是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【答案】B【分析】根据先算乘法可知先打折,再减价.【详解】解:将原价x 元的衣服以(0.8x ﹣10)元出售,意思是原价打8折后再减去10元,故选:B .【点睛】本题考查代数式的实际意义.理解运算中乘为打折,减是减价是解题关键.2.(2021·湖南·宁远县教研室七年级期中)下列式子中不是代数式的是( )A .32a b +B .52+C .1a b +=D .1b a +【答案】C【分析】根据代数式的定义:用基本运算符号(基本运算包括加减乘除、乘方和开方)把数或表示数的字母连接起来的式子,由此可排除选项.【详解】解:A 、是代数式,故不符合题意;B 、是代数式,故不符合题意;C 、中含有“=”,不是代数式,故符合题意;D 、是代数式,故不符合题意;故选C .【点睛】本题主要考查代数式的定义,熟练掌握代数式的定义是解题的关键.3.(2022·全国·七年级专题练习)下列各式中,符合整式书写规则的是( )A .5x ´B .72xyC .124xyD .1x y-¸【答案】B【分析】利用代数式的书写要求分别判断得出答案.【详解】解:A 、5x ´不符合代数式的书写要求,应为5x ,故此选项不符合题意;4.(2022.湖北.利川市思源实验学校七年级阶段练习)小王利用计算机设计了一个程序,输入和输出的数据如下表:输入 (1)2345…输出…1225310417526…那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .8675.(2021·全国·七年级单元测试)已知3257x y -+=,那么多项式15102x y -+的值为( )A .8B .10C .12D .35【答案】C【分析】由多项式3257x y -+=,可求出322x y -=,从而求得1510x y -的值,继而可求得答案.【详解】解:∵3257x y -+=∴322x y -=∴151010x y -=∴1510+2x y -10+212==故选C .【点睛】本题考查了求多项式的值,关键在于利用“整体代入法”求代数式的值.6.(2019·海南·中考真题)当m =-1时,代数式2m+3的值是( )A .-1B .0C .1D .2【答案】C【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=´-+=;故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.二、填空题7.(2018·上海·中考真题)某商品原价为a 元,如果按原价的八折销售,那么售价是_____元.(用含字母a 的代数式表示).【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.8.(2020·河北·模拟预测)若4x y +=,a ,b 互为倒数,则1()52x y ab ++的值是_________9.(2019·广东·中考真题)已知23x y =+,则代数式489x y -+的值是_____.【答案】21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∴x-2y=3,∴4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.10.(2022·全国·七年级课时练习)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510´本甲种书及3310´本乙种书,Q =______(用科学记数法表示).【答案】 4m +5n 43.510´【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510´+5×3310´=20×310+15×310=35×310=43.510´.故答案为:4m +5n ,43.510´.【点睛】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.三、解答题11.(2021·全国·七年级单元测试)如图所示,有长为l 的篱笆,利用它和一面墙围城长方形园子,在园子的长边上开了1米的门,园子的宽为t .(1)用关于l ,t 的代数式表示园子的面积.(2)当l =100m ,t =30m 时,求园子的面积.【答案】(1)()12S l t t =+-;(2)21230m 【分析】(1)表示出长,利用长方形的面积列出算式即可;(2)把l =100m ,t =30m 代入(1)求得答案即可;【详解】解:(1)宽为t,长为:l +1-2t 面积为:()12S l t t =+-(2)当l =100m ,t =30m 时S=()()12100123030l t t +-=+-´´=1230故园子的面积为21230m 【点睛】本题考查根据实际,列出代数式,再代入求值,关键在于找到等量关系.12.(2022·全国·七年级专题练习)(1)观察下面的点阵图与等式的关系,并填空:第1个点阵2213112++=+第2个点阵13531++++=______+______第3个点阵++++++=______+______.1357531(2)通过猜想,写出第n个点阵相对应的等式.【答案】(1)22,32,32,42(2)1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2【分析】(1)根据点阵图即可求解;(2)根据(1)中的3个等式得出规律,进而写出第n个点阵相对应的等式.【详解】(1)第1个点阵1+3+1=12+22,第2个点阵1+3+5+3+1=22+32,第3个点阵1+3+5+7+5+3+1=32+42.故答案为22,32,32,42;(2)根据(1)中的3个等式,可以发现,第n个点阵的对角点最多有2n+1个,而且等号右侧是22++,n n(1)∴第n个点阵相对应的等式为:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2.【点睛】本题考查了规律型:图形的变化类,要求学生通过观察,分析、归纳发现其中的规律.13.(2022·全国·七年级专题练习)用同样大小的两种不同颜色(白色.灰色)的正方形纸片,按如图方式拼成长方形.[观察思考]第(1)个图形中有212=´张正方形纸片;´+==´张正方形纸片;第(2)个图形中有2(12)623´++==´张正方形纸片;第(3)个图形中有2(123)1234第(4)个图形中有2(1234)2045´+++==´张正方形纸片;……以此类推(1)[规律总结]第(5)个图形中有__________张正方形纸片(直接写出结果).(2)根据上面的发现我们可以猜想:123n ++++=L __________.(用含n 的代数式表示)(3)[问题解决]根据你的发现计算:101102103200++++L .14.(2022·全国·七年级专题练习)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则:①取0x =时,直接可以得到00a =;②取1x =时,可以得到432106a a a a a ++++=;③取1x =-时,可以得到432106a a a a a -+-+=-;④把②,③的结论相加,就可以得到4222a a +020+=a ,结合①00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4(2)8(3)0【分析】(1)观察等式可发现只要令x =1即可求出a 0;(2)观察等式可发现只要令x =2即可求出a 6+a 5+a 4+a 3+a 2+a 1+a 0的值;(3)令x =2即可求出等式①,令x =0即可求出等式②,两个式子相加即可求出来.(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =´=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.15.(2019·贵州贵阳·中考真题)如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.【答案】(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)S =ab ﹣a ﹣b +1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;【点睛】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键.。
一、初一数学代数式解答题压轴题精选(难)1.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
(4)解:一次性购物能更省钱。
【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.2.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.3.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。
一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.电话费与通话时间的关系如下表:通话时间a(分)电话费b(元)10.2+0.820.4+0.830.6+0.840.8+0.8……;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
苏科版七上第三章《代数式》解答题培优训练(三)班级:姓名:得分:一、解答题1.已知,A在数轴上表示的数是单项式-5秒的系数,B表示的数是多项式x2y + 15的常数项.~40~0 5 W~15~20*(1)数轴上点A表示的数是,点B表示的数是;(2)若一动点F从点A出发,以3个单位长度/秒速度由A向B运动;动点。
从原点。
出发,以1个单位长度/秒速度向B运动,点P、Q同时出发,点Q运动到B 点时两点同时停止.设点。
运动时间为I秒.%1若尸从人到B运动,则F点表示的数为,。
点表示的数为.(用含£ 的式子表示) %1当f为何值时,点F与点。
之间的距离为2个单位长度。
2,已知整式M = x 2 + Sax-x- 1,整式M与整式N之差是3x 2 + 4ctx-x(l)求出整式N;⑵若a是常数,且2M + N的值与x无关,求。
的值.3.“冏” Song)是中文地区网络社群间一种流行的表情符号,像一个人脸郁闷的神情,被赋予“郁闷、悲伤、无奈”之意.如图所示,一张边长为10的正方形的纸片, 剪去两个一样的小直角三角形和一个长方形得到一个“冏”字图案(阴影部分).设剪去的小长方形长和宽分别为x, y,剪去的两个小直角三角形的两直角边长也分别为 x, y.(1)用含有X,y的代数式表示图中“冏"的面积;(2)若|x — 4| + (y — 3尸=0时,求此时"冏"的面积.4.阅读材料,解答下列问题:例:当a = 5,则\a\ = |5| = 5,故此时“的绝对值是它本身;当a = 0时,|a| = 0, 故此时a 的绝对值是0;当a <。
时,如a = -5,则|a| = |5| = -(5) = 5,故此时a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即(> 0)|a| = {0(a = 0)这种分析方法涌透了数学中的分类讨论思想.请仿照例中的分类(-a(a < 0)讨论,解决下面的问题:(1)|-4+5|=—;|-|-3| =—;(2)如果|% + 1| = 2,求X的值;(3)若数轴上表示数a的点位于-3与5之间,求|ct + 3| + |a - 5|的值;(4)当£1=时,|a — l| + |a + 5| + |a — 4|的值最小,最小值是—5.嘉淇准备完成题目:化简:(口/ + 8* + 6) —(8X + 5/ + 2),发现系数“口”印刷不清楚.(1)他把“口”猜成3,请你化简:(3濯+ 8x + 6)- (8x + 5%2 + 2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“口”是几?6.已知A = 3a2b-2ab2 + abc,小明错将“24 — B”看成“2A + B”,算得结果为4a2b — 3ab2 + 4abc.(1)计算B的表达式;(2)求2A-B的结果;(3)小强说(2)中的结果的大小与c的取值无关,对吗?7.观察算式.12=-X1X2X36l2 + 22=ix2x3x5612+22+32=-X3X4X76我们称这样的式子为连等式.(1)请写出一个式子:I2 + 22 + 32 + 42 =;(2)请用n表示式子的规律:* + 22 + 32 + 42 + ... + n2 =(3)根据你所得的规律求:II2 + 122 + 132 + 142 + - + 182 + 192的值.8.【问题】若a + b = 10,则沥的最大值是多少?【探究】探究一:当a - b = 0时,求沥值.显然此时,a = b = 5,贝ijab = 5 x 5 = 25探究二:完成下表:探究三:设a = 5 + x,贝阳 =, ab =, 11:匕时当x=时,,活最大;【结论】若a + b = 10,则ab的最大值是【拓展】(1)若“、力为两个正数,且满足a + b = m,则沥的最大值是;⑵a、b、c为三个正数,且满足a + b + c = m,则沥c的最大值是。
专题4.3 代数式的值模块一:知识清单代数式的值:用具体数值代替代数式中的字母,就可以得到代数式的值。
注意:求代数式的值的步骤:(1)代入数值; (2)计算结果.整体思想是一种重要的数学思想,它抓住了数学问题的本质,是直接思维和逻辑思维的和谐统一。
有些数学问题在解题过程中,如果按照常规解法运算较繁,而且容易出错;如果我们从整体的高度观察、分析问题的整体形式、整体结构、整体与局部之间的关系、联想相关的知识,就能寻求捷径,从而准确、合理地解题。
模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•浙江七年级期末)若x ﹣2y =3,则2(x ﹣2y )﹣x +2y ﹣5的值是( ) A .﹣2B .2C .4D .﹣4【分析】直接利用合并同类项法则计算,再把已知数据代入得出答案. 【解答】解:∵x ﹣2y =3,∴2(x ﹣2y )﹣x +2y ﹣5=2(x ﹣2y )﹣(x ﹣2y )﹣5=x ﹣2y ﹣5=3﹣5=﹣2.故选:A .2.(2022•丹阳市期末)若代数式x 2的值和代数式2x +y ﹣1的值相等,则代数式9﹣2(y +2x )+2x 2的值是( ) A .7B .4C .1D .不能确定【分析】由题意可得2x +y =1+x 2,代入所求的式子即可解决问题.【解答】解:∵代数式x 2的值和代数式2x +y ﹣1的值相等,∴x 2=2x +y ﹣1;∴2x +y =1+x 2; ∴9﹣2(y +2x )+2x 2=9﹣2(1+x 2)+2x 2=9﹣2﹣2x 2+2x 2=9﹣2=7.故选:A .3.(2022·江苏苏州草桥中学九年级一模)已知25x y -=,那么代数式836x y -+的值是( ) A .7- B .0C .23D .3【答案】A【分析】将8-3x +6y 变形为8-3(x -2y ),然后代入数值进行计算即可. 【详解】解:∵x -2y =5,∴8-3x +6y =8-3(x -2y )=8-3×5=-7;故选A . 【点睛】本题主要考查的是求代数式的值,将x -2y =5整体代入是解题的关键.4.(2022•浙江七年级期末)当x =2时,整式ax 3+bx ﹣1的值等于﹣100,那么当x =﹣2时,整式ax 3+bx ﹣1的值为( )A .100B .﹣100C .98D .﹣98【分析】将x =2代入整式,使其值为﹣100,列出关系式,把x =﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x =2时,整式ax 3+bx ﹣1的值为﹣100,∴8a +2b ﹣1=﹣100,即8a +2b =﹣99, 则当x =﹣2时,原式=﹣8a ﹣2b ﹣1=99﹣1=98.故选:C . 5.(2022·江苏·七年级期末)已知2018,2020a b b c +=+=,则4()a c -=( )A .8B .8-C .16D .16-【答案】C【分析】已知两等式相减求出a -c 的值,代入原式计算即可得到结果. 【详解】解:∵2018,2020a b b c +=+=,∴()()201820202a c a b b c -=+-+=-=-,∴()44()216a c -=-=,故选C .【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6. (2021绵阳市七年级期末) 已知a ﹣2b =﹣5,b ﹣c =﹣2,3c +d =6,求(a +3c )﹣(2b +c )+(b +d )的值.【分析】原式去括号整理后,把已知等式代入计算即可求出值. 【解答】解:∵a ﹣2b =﹣5,b ﹣c =﹣2,3c +d =6∴原式=a +3c ﹣2b ﹣c +b +d =(a ﹣2b )+(b ﹣c )+(3c +d )=﹣5﹣2+6=﹣1. 7.(2022·浙江七年级期中)已知2510a a ,则,1a a+的值为( ) A .3 B .5C .7D .9【答案】B【分析】方程a 2-5a +1=0,两边除以a ,即可解决问题; 【详解】解:∵a 2-5a +1=0,两边除以a 得到,a -5+1a =0,∴a +1a=5,故选:B . 【点睛】本题考查代数式求值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 8.(2022·宁夏回族自治区初一期末)按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==【答案】C【分析】由题可知,代入x 、y 值前需先判断y 的正负,再进行运算方式选择,据此逐项进行计算即可得.【解析】A 选项0y ≥,故将x 、y 代入22x y +,输出结果为15,不符合题意;B 选项0y ≤,故将x 、y 代入22x y -,输出结果为20,不符合题意;C 选项0y ≥,故将x 、y 代入22x y +,输出结果为12,符合题意;D 选项0y ≥,故将x 、y 代入22x y +,输出结果为20,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行y 的正负判断,选择对应运算方式,然后再进行计算.9.(2022·河北省初一期中)5a b -=,那么13756()3a b a b ++-+等于( ) A .7- B .10C .9-D .8-【答案】D【解析】原式=3a +7+5b ﹣6a ﹣2b =3b ﹣3a +7=﹣3(a ﹣b )+7=﹣8.故选D .点睛:将整式的加减与代数式变形相结合解题是中考中经常考查的知识点.先把此代数式变形为a ﹣b 的形式,代入数值即可.10.(2022·河南七年级期末)当x 分别取值12019,12018,12017,⋯,12,1,2,⋯,2017,2018,2019时,计算代数式22122x x -+的值,将所得结果相加,其和等于( )A .1B .20192C .1009D .0【答案】D【分析】先把x=n 和1x=n代入代数式,并对代数式化简求值,得到它们的和为0,然后把x=1代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】解:设22x -1f (x)=2x +2,将x=n 和1x=n 代入代数式,222222221()-11n -1n -11-n n f (n)f ()===01n 2n +22n +22n +22()+2n+++, ∴111f()+f()+f()+f(2)+f(2018)+f(2019)=020*******…+?+,则原式=221-1f (1)==02+2,故选:D .【点睛】本题考查的是代数式的求值,本题的x 的取值较多,并且除x=1外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为0,原式即为x=1代入代数式后的值. 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·云南曲靖市·九年级二模)已知32021x -=,则()()23202131x x ---+的值为__________. 【答案】1【分析】把32021x -=直接代入即可解答.【详解】解:∵32021x -=,∴()()223202131=2021202120211x x ---+-⨯+, ∴()()23202131=1x x ---+.故答案为1.【点睛】本题主要考查了代数式求值,利用整体思想是解题关键.12.(2022·江苏九年级一模)若2320a a --=,则2726a a +-=______. 【答案】3【分析】知道2320a a --=,可以得到232a a -=,变形得到()223a a --,最后用整体法代入即可.【详解】∵2320a a --=,∴232a a -=,则2726a a +-()2237a a =--+227=-⨯+47=-+3=,故答案为:3. 【点睛】此题考查的是代数式求值,掌握整体法是解题的关键.13.(2022·浙江杭州市·七年级期末)当2020x =-时,代数式531ax bx +-的值为3,则当2020x =时,代数式532ax bx ++值为_______. 【答案】-2【分析】把x =-2020代入代数式ax 5+bx 3-1使其值为3,可得到-20205a -20203b =4,再将x =-2020代入ax 5+bx 3+2后,进行适当的变形,整体代入计算即可. 【详解】解:当x =-2020时,代数式ax 5+bx 3-1的值为3, 即-a ×20205-20203b -1=3,也就是:-20205a -20203b =4, ∴当x =2020时,ax 5+bx 3+2=20205a +20203b +2=-(-20205a -20203b )+2=-4+2=-2,故答案为:-2. 【点睛】本题考查代数式求值,代入是常用的方法,将代数式进行适当的变形是解决问题的关键.14.(2021•常州期末)已知(x ﹣1)2021=a 0+a 1x 1+a 2x 2+a 3x 3+…+a 2021x 2021,则a 1+a 2+…+a 2021= .【分析】令x =1代入求值可得a 0+a 1+a 2+a 3+…+a 2021=0,令x =0可得a 0=﹣1,易得结果. 【解答】解:当x =1时,a 0+a 1+a 2+a 3+…+a 2021=(1﹣1)2021=0; 当x =0时,a 0=(0﹣1)2021=﹣1,a 1+a 2+a 3+…+a 2021=0﹣(﹣1)=1,故答案为:1.15.(2022·射洪县七年级月考)已知:3a b -=,2c d +=,则()()221b c a d +--+的值为______. 【答案】-5【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】解:∵a -b =3,c +d =2,∴原式=2b -2a +c +d -1=-2(a -b )+(c +d )-1=-6+2-1=-5.故答案为:-5. 【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.(2022·山东七年级期末)如果代数式4y 2﹣2y +5的值为1,那么代数式2y 2﹣y +1的值为 ___. 【答案】1-【分析】先根据已知代数式的值可得22y y -的值,再将其作为整体代入求值即可得.【详解】解:由题意得:24512y y +=-,整理得:222y y -=-,则221211y y +=-+=--,故答案为:1-.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题关键.17.(2022·北京北理工附中七年级期末)历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.【答案】6【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值. 【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=, ∴()216425336f m n -=+-+=+=.故答案是:6.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.18.(2022·福建泉州·七年级期末)“整体思想”是数学中的一种重要的思想方法,它在数学运算、推理中有广泛的应用.如:已知2m n +=-,3=-mn ,则()()22234m n mn +-=--⨯-=.利用上述思想方法计算:已知22m n -=,1mn =-.则()()2m n mn n ---=______. 【答案】3【分析】先将原式去括号、合并同类项,然后利用整体代入法求值即可. 【详解】解:∵22m n -=,1mn =- ∴()()2m n mn n --- =22+m n mn n -- =2m n mn -- =2-(-1) =3故答案为:3.【点睛】此题考查的是整式的化简求值,掌握去括号法则、合并同类项法则和整体代入法是解题关键. 三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2021•大兴区期末)已知:m 2+mn =30,mn ﹣n 2=﹣10,求下列代数式的值: (1)m 2+2mn ﹣n 2;(2)m 2+n 2﹣7.【分析】(1)把m 2+mn =30,mn ﹣n 2=﹣10两个算式左右两边分别相加,求出m 2+2mn ﹣n 2的值是多少即可.(2)把m 2+mn =30,mn ﹣n 2=﹣10两个算式左右两边分别相减,求出m 2+n 2﹣7的值是多少即可.【解答】解:(1)∵m 2+mn =30,mn ﹣n 2=﹣10, ∴m 2+2mn ﹣n 2=(m 2+mn )+(mn ﹣n 2)=30+(﹣10)=20(2)∵m 2+mn =30,mn ﹣n 2=﹣10,∴m 2+n 2﹣7=(m 2+mn )﹣(mn ﹣n 2)﹣7=30﹣(﹣10)﹣7=3320.(2021春•三明期末)已知a ﹣3b =2,m +2n =4,求代数式2a ﹣6b ﹣m ﹣2n 的值. 【分析】先将原式分为两组后,进行变形,再将已知的a ﹣3b =2,m +2n =4,整体代入即可. 【解答】解:∵a ﹣3b =2,m +2n =4,∴2a ﹣6b ﹣m ﹣2n =2(a ﹣3b )﹣(m +2n )=2×2﹣4=0.21.(2022·河南周口·七年级期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()3a b +看成是一个整体,则()()()()()()332353325363a b a b a b a b a b +-+++=-++=+.尝试应用:(1)把()22a b -看成一个整体,合并()()()222225262a b a b a b ---+-的结果是____________.(2)已知2320x y +-=,求2392016x y ++的值;(3)已知21a b -=,23b c -=-,6c d -=,求()()()22a c b c b d ---+-的值. 【答案】(1)()232a b -(2)2022(3)4【分析】(1)利用合并同类项进行计算即可;(2)把2392016x y ++的前两项提公因式3,再代入求值即可; (3)利用已知条件求出a c -,2b d -的值,再代入计算即可. (1)()()()222225262a b a b a b ---+- ()()22562a b =-+- ()232a b =-故答案为:()232a b -. (2)∵2320x y +-=, ∴232x y +=, ∴2392016x y ++ ()2332016x y =++322016=⨯+2022=;(3)∵21a b -=①,23b c -=-②,6c d -=③, ∴①+②得:2a c -=-,②+③得:23b d -=, ∴()()()22a c b c b d ---+-()233=---+ 4=【点睛】此题主要考查了整式的加减--化简求值,解题的关键是掌握整体思想,注意去括号时符号的变化.22.(2022·浙江义乌七年级月考)阅读以下的师生对话,并完成相应的问题.老师:同学们,已知3ab =,我们怎么求代数式()2a ab b +的值呢?小聪:我们只要找到乘积恰好为3的两个数,如1a =,3b =,再代入求值即可.老师:小聪用的是特殊值法,该方法很多时候确实能较快地得岀答案.但是,如果用不同的特殊值,我们没法确定答案是否一致.所以,我们需要一般的方法.小慧:我们不妨把()2a ab b +计算出来,再看看计算结果与已知条件之间有什么关系.老师:很好,努力寻找目标式与已知式之间的联系,再运用整体思想,也许我们能更好地解决该问题,并理解该问题的本质.同学们赶紧试试吧!(1)请用小聪的特殊值法求出代数式()2a ab b +的值.(2)请用小慧的方法解决该问题. 【答案】(1)12;(2)见解析【分析】(1)将a =1,b =3代入计算即可;(2)将原式括号展开,再利用积的乘方得到()2a ab b +=()2ab ab +,最后代入计算.【详解】解:(1)当a =1,b =3时,()2a ab b +=()21133⨯⨯+=12; (2)∵3ab =,∴()2a ab b +=22a b ab +=()2ab ab +=233+=12【点睛】本题考查了代数式求值,积的乘方,解题的关键是读懂材料,理解两位同学的方法,并掌握整式的混合运算法则.23.(2021.河北省初一期末)已知代数式533ax bx x c +++,当0x =时,该代数式的值为-1. (1)求c 的值.(2)已知当1x =时,该代数式的值为-1,求a b c ++的值. (3)已知当3x =时,该代数式的值为9,试求当3x =-时该代数式的值. (4)在第(3)小题已知条件下,若有35a b =成立,试比较+a b 与c 的大小. 【答案】(1)1c =-;(2)-4;(3) 8;(4)a b c +>【分析】(1)将x=0代入代数式求出c 的值即可;(2)将x=1代入代数式即可求出a+b+c 的值; (3)将x=3代入代数式求出35a+33b 的值,再将x=-3代入代数式,变形后将35a+33b 的值代入计算即可求出值;(4)由35a+33b 的值,变形得到27a+3b=-2,将5a=3b 代入求出a 的值,进而求出b 的值,确定出a+b 的值,与c 的值比较大小即可.【解析】(1)当x=0时,533ax bx x c +++=-1,则有c=﹣1; (2)把x=1代入代数式,得到a+b+3+c=﹣1,∴a+b+c=﹣4;(3)把x=3代入代数式,得到35a+33b+9+c=﹣10,即35a+33b=﹣10+1﹣9=﹣18, 当x=﹣3时,原式=﹣35a ﹣33b ﹣9﹣1=﹣(35a+33b )﹣9﹣1=18﹣9﹣1=8; (4)由(3)题得35a+33b=﹣18,即27a+3b=﹣2, 又∵3a=5b ,∴27a+3×35a=﹣2,∴a=﹣572,则b=35a=﹣124,∴a+b=﹣572﹣124=﹣19>﹣1,∴a+b >c .【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 24.(2022·山西七年级期末)观察下列表格中两个代数式及其相应的值,回答问题:(初步感知)(1)根据表中信息可知:a =______;b =______;(归纳规律)(2)表中25x -+的值的变化规律是:x 的值每增加1,25x -+的值就都减少2.类似地,27x -的值的变化规律是:______;(问题解决)(3)请从A ,B 两题中任选一题作答.我选择______题. A .根据表格反应的变化规律,当x ______时,25x -+的值大于27x -的值.B .请直接写出一个含x 的代数式,要求x 的值每增加1,代数式的值就都减小5,且当0x =时,代数式的值为-7.【答案】(1)1;-3;(2)x 的值每增加1,2x -7的值就增加2;(3)A :<3;B :-5x -7【分析】(1)直接将x =2代入代数式计算可得;(2)类似-2x +5的变化规律可得2x -7的变化规律; (3)A :令-2x +5=2x -7,解得x 的值,再结合表格中数据变化可得;B :设代数式为mx +n ,根据变化规律得到m ,再将数值代入得到n ,可得结果. 【详解】解:(1)当x =2时,a =-2×2+5=1; 当x =2时,b =2×2-7=-3; (2)x 的值每增加1,2x -7的值就增加2; (3)A :当-2x +5=2x -7时,解得:x =3,∵随着x 的增加,2x -7增大,-2x +5减小;反之,随着x 的减小,2x -7减小,-2x +5增大; ∴当x <3时,-2x +5>2x -7;B :设代数式为mx +n ,根据规律可知:当x 的值每增加1,代数式的值减少5时,x 的系数m =-5, 又∵当x =0时,代数式的值为-7,即-5×0+n =-7,解得:n =-7,故代数式为-5x -7. 【点睛】本题考查了代数式的有关问题,属于规律性问题和一元一次方程的应用,认真理解题意,利用代数式的有关知识解决问题.。
一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.2.如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示△ADE的面积.(2)用a、b的代数式表示△DCG的面积.(3)用a、b的代数式表示阴影部分的面积.【答案】(1)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,∴S△ADE= AD·AE=(2)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴AB=DC=BC=a,∠C=90°,BG=BE=b,∴CG=BC-BG=a-b,∴S △DCG= DC·CG=(3)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴S正方形ABCD+S正方形BEFG= .又∵S△ADE= ,S△DCG= ,S△EFG= EF·FG= ,∴S阴影= -S△ADE-S△GEF-S△CDG== .【解析】【分析】(1)根据题意可得△ADE的两直角边AD、AE,再由三角形的面积公式求出即可;(2)先求出CG=BC-BG=a-b,再根据三角形的面积公式求出即可;(3)分别求出△ADE、△EFG、△DCG的面积和两个正方形的面积,即可得出阴影部分的面积.3.已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:(1)请直接写出b、c的值:b=________,c=________(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,①当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.②当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)【答案】(1)2;6(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9【解析】【解答】解:(1)∵(c﹣6)2+|2a+b|=0,∴c=6,2a+b=0,即b=﹣2a,又∵a=﹣1,∴b=2,故答案为:2,6;【分析】(1)根据非负数的性质可得;(2)①根据两点间距离公式列出算式,化简可得;②分别根据﹣1≤x<2、2≤x<6、x≥6结合绝对值性质,去绝对值符号后化简可得.4.亚萍做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚(1)乔亚萍看了答案以后知道,请你替乔亚萍求出多项式的二次项系数;(2)在(1)的基础上,乔亚萍已经将多项式正确求出,老师又给出了一个多项式,要求乔亚萍求出的结果.乔亚萍在求解时,误把“ ”看成“ ”,结果求出的答案为,请你替乔亚萍求出“ ”的正确答案.【答案】(1)解:设A的二次项系数为m,由题意可得mx2+4x+2(2x2-3x+1)=x2-2x+2mx2+4x+4x2-6x+2=x2-2x+2(m+4)x2-2x+2=x2-2x+2∴m+4=1解之:m=-3∴多项式A的二次项系数为-3.(2)解:∵A+C=x2-5x+2∴-3x2+4x+C=x2-5x+2∴C=x2-5x+2-3x2-4x=-2x2-9x+2∴A-C=-3x2+4x-(-2x2-9x+2)=-3x2+4x+2x2+9x-2=-x2+13x-2【解析】【分析】(1)设A的二次项系数为M,将其代入可得到mx2+4x+2(2x2-3x+1)=x2-2x+2,就可求出m的值.(2)根据题意可得到A+C=x2-5x+2,代入求出多项式C,然后求出A-C即可。
一、初一数学代数式解答题压轴题精选(难)1.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。
(2)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况分别根据图表的收费标准列出代数式并计算即可得解。
2.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.3.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。
(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。
4.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为________(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是________.【答案】(1)3;3;4(2);1或-3(3)-1;5【解析】【解答】解:(1)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3.(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,,∴x+1≥0,x-2≤0,x+3≥0,∴-1≤x≤2.即当x取=-1时为最小值,此时代数式值为5【分析】(1)数轴上表示2和5的两点之间的距离是|2-5|,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|;数轴上表示1和-3的两点之间的距离是|1-(-3)|;(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,求出x的值;(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,得到-1≤x≤2;求出代数式的值.5.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=________,b=________,c=________.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.【答案】(1)﹣24;﹣10;10(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,∴t=2s或5s时,P到A、B、C的距离和为40个单位.(3)解:当点P追上T的时间t1= .当Q追上T的时间t2= .当Q追上P的时间t3= =20,∴当<t<时,位置如图,∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t=74-28=46.【解析】【解答】解:(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,∴a+24=0,b=﹣10,c=10,∴a=﹣24,故答案为﹣24,﹣10,10.【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2=.当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝对值的性质即可解决问题.6.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分价格补贴0元300▲▲B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200(3)解:①当他要批发不超过500千克苹果时,很明显在A家批发更优惠;当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300,要使A店买的多反而便宜即是0.42x-300>0,解得:x>∴当x> 时,A店买的多反而便宜;②当购买数量为1500以上~2500时,B家需要的总价=500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200又总价=购买数量×单价+价格补贴∴价格补贴=1200元,当购买数量为2500以上部分时,B家需要的总价=500×6×95%+1000×6×85%+(2500-1500)×6×75%+(x-2500)×6×70%=4.2x+1950∴价格补贴=1950元.【解析】【分析】(1)A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+(700-500)×单价×85%;把相关数值代入求解即可;(2)根据“A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+1000×单价×85%+(x-1500)×单价×75%”;(3)①当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300;即可举例说明A店买的多反而便宜;②分别求出B家批发各个价格所需要的费用的等式即可求解.7.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.8.某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x 不超过2000时,甲厂的收费为________元,乙厂的收费为________元;(2)若x 超过2000时,甲厂的收费为________元,乙厂的收费为________元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?【答案】(1)0.5x+1000;1.5x(2)1000+0.5x;0.25x+2500(3)解:当x=8000时,甲厂费用为1000+0.5×8000=5000元,乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元;(4)解:当x⩽2000时,1000+0.5x=1.5x,解得:x=1000;当x>2000时,1000+0.5x=0.25x+2500,解得:x=6000;答:印刷1000或6000本证书时,甲乙两厂收费相同.【解析】【解答】解:(1)若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元,故答案为:0.5x+1000,1.5x;(2)若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元,故答案为:1000+0.5x, 0.25x+2500;【分析】(1)根据印刷费用=数量×单价可分别求得;(2)根据甲厂印刷费用=数量×单价、乙厂印刷费用=2000×1.5+超出部分的费用可得;(3)分别计算出x=8000时,甲、乙两厂的费用即可得;(4)分x≤2000和x>2000分别计算可得.9.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.(1)S甲=________,S乙=________(用含a、b的代数式分别表示);(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.【答案】(1)(a+b)(a-b);a2-b2(2)由两个图形的面积相等可知,(a+b)(a-b)=a2-b2。