ANSYS WorkbenchT型梁分析
- 格式:pdf
- 大小:610.04 KB
- 文档页数:4
ANSYSWorkbench梁壳结构谱分析(二)模态分析ANSYS Workbench梁壳结构谱分析(二)模态分析1 概述模态分析是动力学分析基础,如响应谱分析、随机振动分析、谐响应分析等都需要在模态分析基础上进行。
模态分析简而言之就是分析模型的固有特性,包括频率、振型等。
模态分析求解出来的频率为结构的固有频率,与外界的激励没有任何关系,不管有无外界激励,结构的固有频率都是客观存在的,它只与刚度和质量有关,质量增大,固有频率降低,刚度增大,固有频率增大。
一般情况,当外界的激励频率等于固有频率时,结构抵抗变形能力小,变形很大(产生共振原因);当外界激励频率大于固有频率时,动刚度(动载荷力与位移之比)大,不容易变形;当外界激励频率小于固有频率时,动刚度主要表现为结构刚度;当外界激励频率为零时,动刚度等于静刚度。
2 模态分析该模型框架采用Beam188单元模拟,外表面采用Shell181单元模拟。
该结构的总重量为800kg,分析时将其他附件的质量均布在框架上。
边界条件为约束机柜与地面基础连接螺栓处的6个自由度(Remote Displacement)。
具体建模过程详见《ANSYS Workbench梁壳结构谱分析(一)梁壳建模》或点击下方阅读原文获取。
模态分析详细过程如下:(1)划分网格:单击【Mesh】,右键【Insert】=Sizing,设置【Scope】→【Geometry】=选取所有部件,【Definition】→【Type】→【Element Size】=20。
单击【Mesh】,右键【Generate Mesh】生成网格。
(2)边界条件:单击【Modal (B5)】,右键【Insert】→【Remote Displacement】,设置【Scope】→【Geometry】=分别选择框架4个立柱,并分别按照如下操作:【Definition】→【Define By】=Components,【X Component】=0mm,【YComponent】=0mm,【Z Component】=0mm,【X Remotion】=0°,【Y Remotion】=0°,【Z Remotion】=0°,其余默认。
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
4.2 梁单元静力学分析当结构长度对横截面的比率超过10:1,沿长度方向的应力为主要分析对象,且横截面始终保持不变时,即应用梁单元。
梁单元可用于分析主要受侧向或横向载荷的结构,如建筑桁架、桥梁、螺栓等。
在WB中默认为铁摩辛柯(Timoshenko)梁单元,即Beam188和Beam189,可计算弯曲、轴向、扭转和横向剪切变形。
其中Beam188采用线性多项式作为形函数,Beam189采用二次多项式作为形函数,当WB的Mesh设置中Mesh-Element Midside Nodes为Dropped 时,即为Beam188;Mesh-Element Midside Nodes为Kept时,即为Beam189。
有限元对单元特性的描述包括单元形状、节点数目、自由度和形函数。
表4-2-1为Beam 单元的对比。
在WB中默认设置为二次单元。
一般来说,线性单元需要更多的网格数才能达到二次单元的精度。
选用二次单元可提高计算精度,这是因为二次单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且二次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。
但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,计算内存消耗也多,因此,在使用时应权衡考虑计算精度和时间。
表4-2-1 Beam单元对比4.2.1 梁模型有限元计算用ProE建立一桁架模型,导入WB进行分析计算。
(1)ProE建模。
在草绘界面绘制一边长为30mm、40mm、50mm的三角形,然后选择投影命令将草绘图形投影到基准面上,另存为x_t文件(其他3D软件操作方法类似)。
(2)导入模型。
如图4-2-1所示,在Import设置中,Operation设为Add Frozen,Line Bodies 设为Yes。
– 65 –– 66 – 图4-2-1 Import ProE模型文件设置(3)梁截面赋值,并定义截面方向,最后用Form New Part将三根梁合并为一个部件,如图4-2-2所示。
基于ANSYS Workbench的T形结构优化设计作者:张召颖张帆邹洵张国胜马保平来源:《计算机辅助工程》2019年第03期摘要:针对T形结构传统设计周期长、材料利用率低、设计成本高等问题,使用SolidWorks建立数字模型,将其转换成ANSYS Workbench可读的格式文件,进行拓扑优化设计。
对T形结构在载荷作用下进行最优化设计,建立以单元材料密度为设计变量,以结构最小柔顺度为目标函数,以质量减少百分比为约束函数的数学模型。
采用ANSYS Workbench的Topology Optimization模塊进行拓扑优化设计,对比优化前、后结构的应力和变形,可知运用拓扑优化技术实现T形结构的轻量化设计合理有效。
关键词:T形结构; 拓扑优化; 密度; 柔顺度; 有限元中图分类号:TH131.9; TB115.1文献标志码:BTshape structure optimization designbased on ANSYS WorkbenchZHANG Zhaoying ZHANG Fan ZOU Xun ZHANG Guosheng MA Baoping(School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai 201620 China)Abstract:As to the issuesthat the design cycle ofthe traditional design of Tshape structure is long the material utilization ratio is low and the design cost is high a digital model is built using SolidWorks the model is converted to the readable format file of ANSYS Workbench and the topology optimizationdesign is performed. The optimal design of Tshape structure under load is carried out. A mathematicalmodel is built in which the unit material density is design variable the minimum structural compliance is objective function and the percentage of mass reduction is constraint function. The topology optimization design is carried out using Topology Optimization module of ANSYS Workbench. The stress and deformation of optimized structure is compared with the initial one. The results show that the lightweight design of Tshape structure using topology optimization technology is reasonable and effective.Key words:Tshape structure; topology optimization; density; compliance; finite element0;引;言结构优化设计是20世纪60年代发展起来的一门新兴学科,其将数学中的最优化理论与工程设计结合[1],运用计算机大规模处理技术,可以在众多方案中找到最优的设计方案,使结构设计使用最少的材料、采用最经济的制造方案实现结构的最佳性能。
AnsysWorkbench工程实例之——梁单元静力学分析本文可能是您能在网络上搜索到的关于Ansys Workbench梁单元介绍最详细全面的文章之一。
梁单元常用于简化长宽比超过10的梁与杆模型,比如建筑桁架、桥梁、螺栓、杠杆等。
Workbench中的梁单元有Beam188(默认)与Beam189两种,Beam188无中节点,Beam189有中节点。
在全局网格设置下,梁单元的中节点设置Element MIdside Nodes默认为dropped(无中节点),即默认使用Beam188单元,如果改为kept(有中节点),则将改变为Beam189单元。
类型单元形状中节点自由度形函数Beam188 3D梁无 6 线性Beam189 3D梁有 6 二次Beam188Beam1891 梁单元分析概要1.1 建模与模型导入线框模型可在DM中创建,也可导入stp/igs等模型。
以下分别介绍通过DM创建与通过CAD软件创建导入过程。
1.1.1 梁线体的创建方法1,简单的线体模型可以在DM中创建,一般在XY平面绘制草图或点,再通过Concept——Lines From Sketches、Lines From Points或3D Curve等创建。
区别在于Lines From Sketches是提取草图所有的线条,如果线条是相连接的,提取的结果为一个线几何体。
Lines From Points或3D Curve用于将草图的点(可以是草图线条的端点)连接成为线体,结合Add Frozen选项,可以创建多个线几何体。
操作3次后多个线条可以通过From New Part功能组合为一个几何体,组合后两条线共节点,相当于焊接在一起。
选中后右击方法2,通过CAD软件创建后导入。
如果读者使用的是creo建模,可在草图中创建点,退出草图后选择基准——曲线——通过点的曲线。
操作3次后输出时需要注意,可另存为stp或igs格式,在输出对话框中必须勾选基准曲线和点选项。
本科课程报告计算机辅助分析:题目18学生姓名: xxx学生学号: XXXX院(系): XXXXXXXXX年级专业: XXXXXXXXX指导教师: XXXXXXX二〇一九年十二月题目18:试对以下结构进行静力分析说明:1.材料为钢密度为7.8*E-6Kg/mm3,弹性模量2E5,泊松比0.2,材料强度极限为180Mpa;2.分析横梁在图示各个单独作用下的强度,刚度与变形,验证叠加定理的正确性(需采用多工况分析);3.尺寸图中测量。
分析步骤1.1进入ANSYS程序→ANSYSED 6.1 →Interactive →change the working directory into 201710601107 dongrui→input Initial jobname:gang1.2设置计算类型ANSYS Main Menu: Preferences →select Structural →OK1.3选择单元类型ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select solid Brick 8 node 185 →OK (back to Element Types window) →Close (the Element Type window)1.4定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2e5, PRXY:0.2 →Density →7800→OK1.5 定义截面无可定义截面。
1.6 生成几何模型1.生成工字钢面ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS→输入x:0→apply→x:0.005→x:0.005,y0.04→x:0.03,y:0.05→x:0.y:0.05→Reflect→沿y-z→沿x-z→Create→Areas→Arbitrary→Through KPs→OK2.拉伸将工作平面旋转到与工字钢面重合,沿z轴拉伸:ANSYS Main Menu: Preprocessor →Modeling →Operate→Extrude→Areas→along normal 拉伸2.5→OK建立模型如下:1.7画网格ANSYS Main Menu: Preprocessor →Meshing→MeshTool→set Global 0.008→Shape Hex→Sweep→选中工字钢→Mesh→OK建立模型如下:此图为网格划分后的图像,由映射网格划分得来。
第七章梁分析和横截面形状7.1梁分析概况梁单元用于生成三维结构的一维理想化数学模型。
与实体单元和壳单元相比,梁单元求解效率更高。
本章的内容只适用于BEAM44(三维变截面单元)和另两种有限元应变单元BEAM188和BEAM189 (三维梁单元)。
这些梁单元与ANSYS的其他梁单元相比,提供了更健壮的非线性分析能力,显著地改进了截面数据定义功能和可视化特性。
参阅《ANSYSElements Reference> 中关于BEAM44、BEAM188 和BEAM189单元的描述。
注意--如要对BEAM44单元采用本章论述的横截面定义功能,必须清楚不能应用这些功能来定义斜削的截面。
此外,本章所述的后处理可视化功能不能应用于BEAM44单元。
注意--用户定义横截面功能可能不能应用CDWRITE命令。
7.2何为横截面横截面定义为垂直于梁轴的截面的形状。
ANSYS提供有11种常用的梁横截面库,并支持用户自定义截面形状。
当定义了一个横截面时,ANSYS建立一个9节点的数值模型来确定梁的截面特性(lyy,Izz等),并求解泊松方程得到扭转特征。
图7-1是一个标准的Z型横截面,示出了截面的质心和剪切中心,以及计算得到的横截面特性。
图7-1 Z型横截面图横截面和用户自定义截面网格将存储在横截面库文件中。
如果用BEAM44、BEAM188、BEAM189单元来模拟线实体,可用LATT 命令将梁横截面属性赋予线实体。
7.3如何生成横截面用下列步骤生成横截面:1、定义截面并与代表相应截面形状的截面号(Dection ID)关联。
2、定义截面的几何特性数值。
ANSYS提供了表7-1所列出的命令,可以完成横截面生成、查看、列表和操作横截面库的功能。
表7-1 ANSYS横截面命令GUI菜单路径Mai nMenu >Ge neralPostproc>ListResul命令目的ts>PRSSOSectio nSolutio nUtilityMe nu>打印梁截面结果(BEAM44不支持)SECTYList>Results>Sectio nSolutio nMainMenu >Preprocessor>Secti on s>-Be am-Com mon Sect nsMai nMenu>用SEID关联截面子类PESECDA TASECOF FSET型Preprocessor>Secti on s>-Beam-Custom Sectns>ReadSectMeshMainMenu >Preprocessor>Secti on s>-Be am-Common Sect nsMainMenu >Preprocessor>Secti on s>-Be am-Common Sect nsMai nMenu>定义截面几何数据定义梁截面的截面偏SECCO NTROLSSECNU M离Preprocessor>Secti on s>-Beam-Custom Sectns>ReadSectMeshMainMenu >Preprocessor>Secti on s>-Beam-Add/Edit 值Mai nMenu >Preprocessor>-Attributes-D efine>DefaultAttribsMai nMenu>覆盖程序计算的属性SECPL OT的Preprocessor>-Modeli ng-Create>Eleme nts>ElemAttributesMainMenu >Preprocessor>Secti on s>-Be am-PlotSecti on识别关联到一个单元SECID按比例显示梁截面的几何形状-Beam-CustomSect ns>ReadSectMesh MainMenu >Preprocessor>Sectio ns>Lis tSectio nsUtilityMe nu>SLIST List>Properties>Sectio nPropertiesUtilit汇总截面特性 yMe nu >List>Properties>SpecifiedSection PropertiesSDELE Mai nMen u>Preprocessor>Sectio ns>Del TE eteSecti on 参阅《ANSYS Comma nds Refere nee 可以得到横截面命令的完整描述。
基于ANSYS Workbench的桥式起重机主梁仿真分析作者:杨从从袁秀峰陈嘉磊樊一波来源:《山东工业技术》2018年第12期摘要:主梁是桥式起重机的主要组成部分和承载部件。
本文以40/16t-22.5m-20m A5桥式起重机主梁为研究对象,采用Solidedge建立其实体模型,并导入ANSYS Workbench对主梁进行了静力学和模态仿真分析。
得到主梁的等效应力云图、变形云图以及前6阶模态的固有频率和相对振型,对仿真结果进行了分析,为该主梁的优化设计提供了一定的理论基础。
关键词:桥式起重机;主梁;ANSYS Workbench;静力学分析;模态分析DOI:10.16640/ki.37-1222/t.2018.12.0070 引言智能制造是现代制造业发展的方向,为了提高效率,降低生产成本,人们越来越重视对制造设备的智能化发展。
桥式起重机在制造业智能化发展的进程中占据着至关重要的作用,其是物料搬运的大型设备,被搬运物体质量大,搬运频率高。
主梁是桥式起重机的主要组成部件和承载部件,主梁设计的好坏直接影响了整机的制造成本、工作性能、使用寿命等。
而主梁传统设计方法是模型简化后手工计算,与实际工况会有一定的偏差且计算复杂[1-2]。
基于此,本文以40/16t-22.5m-20m A5桥式起重机主梁为研究对象,采用Solidedge建立主梁的三围实体模型,并导入ANSYS Workbench对主梁进行了静力学和模态仿真分析,并对得到的等效应力云图、变形云图以及前6阶模态的固有频率和相对振型进行了分析。
即采用ANSYS Workbench软件从主梁的强度、刚度以及固有特性角度进行仿真研究。
为主梁在保证其刚度、强度、固有特性的前提下进一步优化结构,节省材料提供一定的理论基础和依据,具有一定的理论和实际意义[3-4]。
1 模型建立本文研究对象为40/16t-22.5m-20m A5桥式起重机的主梁,该主梁为偏轨箱型梁结构,主要由上、下盖板,主、副腹板,隔板,加强筋等焊接而成。