现代仪器分析-荧光分析教案
- 格式:docx
- 大小:34.60 KB
- 文档页数:8
《现代仪器分析》课程教学大纲适用对象:药学专业(学分:2 学时:36 )一、课程的性质和任务:现代仪器分析是分析化学的重要组成部分,是药学类专业的一门重要必修基础课。
本课程涉及的分析方法是根据物质物理和化学特性对物质的组成、结构、信息进行表征和测量。
本课程重点讲授仪器分析的基本概念和原理。
介绍应用领域及方法特点。
通过本课程的教学,使学生对仪器分析这一领域有初步了解,掌握常见光学仪器、色谱仪器的基本原理、设备、结构和应用,初步具有根据分析对象选择合适分析方法及解决相应问题的能力。
二、教学内容和要求:光谱部分第一章绪论教学目的和基本要求:了解现代仪器分析的内容、方法、特点和局限性、了解仪器分析发展趋势以及在各领域尤其是药学中的作用。
教学内容:1.现代仪器分析的内容和方法;2.现代仪器分析的特点和局限性3.现代仪器分析的发展趋势4.定量分析方法的评价指标。
第二章光谱分析法概论教学目的和要求:掌握光学分析法的分类和基本原理;波长、波数、频率和光子能量间的换算;光谱分析仪器的基本构造。
熟悉电磁波普的分区;电磁辐射与物质相互作用的相关术语;各类光学仪器的主要部件。
了解光谱分析法的发展概况。
教学内容:第一节电磁辐射及其与物质的相互作用一、电磁辐射与电磁波谱二、电磁辐射与物质的相互作用第二节光学分析法的分类一、光谱法与非光谱法二、原子光谱法与分子光谱法三、吸收光谱法与发射光谱法第三节光谱分析仪器一、辐射源二、分光系统三、辐射的检测第四节光谱分析法的发展概况第三章紫外可见分光光度法教学目的和要求:掌握紫外吸收光谱的特征,电子跃迁类型、吸收类型、特点及影响罂粟;朗伯比尔定律及其物理意义、适用条件、偏离因素;紫外-可见分光光度法用于单组份定量的方法;多组分定量的线性方程组法和双波长法。
熟悉紫外可见分光光度计的主要部件、工作原理;紫外可见分光光度计的几种光路类型;比色法的原理及显色反应条件选择;紫外可见分光光度法定性及纯度检查方法。
学习好资料欢迎下载题目:荧光分析法教学目的与要求:(1)掌握分子荧光、磷光和化学发光的产生机理;掌握激发光谱和发射光谱特征。
(2)掌握荧光与分子结构的关系以及溶液的荧光(磷光)强度影响因素。
(3)熟悉荧光(磷光)分析法的特点及疋里测定方法。
(4)了解磷光分析法的类型。
(5)熟悉荧光、磷光和化学发光分析仪器的结构。
内容与时间分配:①荧光分析原理:120mi n;②荧光仪器:20min;③分析方法:40min;④磷光分析简介:20mi n;重点与难点:1、荧光的产生;2、荧光光谱与激发光谱;3、荧光与分子结构4、影响因素5、分析方法PPT教具准备:学习好资料欢迎下载荧光分析法(fluorometry )灵敏度高,紫外—可见法10”g/ml待测物质:分子荧光原子荧光激发光:紫外可见荧光红外可见荧光X—射线荧光1、基本原理利用目一波长得光照射试样,使试样吸收这一辐射,然后再发射出波长相同或较长得光,若这种再发射约在10-9秒内发生,称为荧光,利用荧光得强度和特性对物质进行定性、定量分析,称为荧光分析法。
当分子轨道中电子吸收光子跃迁,若电子跃迁后,处于自旋方向相反得状态,则总自旋量子数S= 0,体系的多重性M=2S+1既为激发态的单线态(此分子在磁场中不产生能级裂分)若电子跃迁后,处于自旋方向相同的状态,则总自旋量子数S=1/2+1/2=1,体系的多重性M=2S+1=3即为三线态(在磁场中,三线态的电子能级产生裂分,一条线可分裂成三条线。
三线态的能量较相应单线态的能量低)。
[电子由单T单跃迁,所需E<E2(单T三)由于单 > 三的跃迁使禁阻的,所以摩尔吸光系数£小]分子在室温基本处于电子跃迁的级态,吸收了可见-紫外光后,基态分子只能跃迁到激发单线态的各个不同振-转能阶,而不能直接跃迁到激发三线态的各个振-转能级(自旋禁阻定律)紫外-可见光照射物质,基态分子不断跃迁到激发态,则分子的紫外吸收应逐渐减小至消失,但事实上物质分子能够连续吸收紫外-可见光,说明存在一条或多条从分子激发态往基态的途径。
一、教案基本信息教案名称:《现代仪器分析》适用课程:分析化学课时安排:45分钟教学目标:1. 了解现代仪器分析的基本概念和原理。
2. 掌握常见现代仪器分析方法及其应用。
3. 培养学生的实验操作能力和分析问题能力。
教学内容:1. 现代仪器分析的基本概念和原理。
2. 紫外-可见光谱分析法。
3. 原子吸收光谱分析法。
4. 红外光谱分析法。
5. 质谱分析法。
教学方法:1. 讲授法:讲解基本概念、原理和仪器操作方法。
2. 案例分析法:分析具体案例,加深学生对仪器分析方法应用的理解。
3. 实验操作法:引导学生进行实验操作,培养实际操作能力。
教学准备:1. 教材或教学资源。
2. 实验仪器和设备。
3. 投影仪或白板。
教学过程:1. 引入:介绍现代仪器分析在科学研究和工业生产中的重要性。
2. 讲解:讲解现代仪器分析的基本概念、原理及各种分析方法的原理和应用。
3. 案例分析:分析具体案例,展示各种仪器分析方法在实际中的应用。
4. 实验操作:引导学生进行实验操作,培养实际操作能力。
5. 总结:总结现代仪器分析的方法及其在实际中的应用。
二、紫外-可见光谱分析法教学目标:1. 了解紫外-可见光谱分析法的原理。
2. 掌握紫外-可见光谱分析法的应用。
教学内容:1. 紫外-可见光谱分析法的原理。
2. 紫外-可见光谱分析法的应用。
教学方法:1. 讲授法:讲解紫外-可见光谱分析法的原理。
2. 案例分析法:分析具体案例,展示紫外-可见光谱分析法的应用。
教学准备:1. 教材或教学资源。
2. 实验仪器和设备。
教学过程:1. 引入:介绍紫外-可见光谱分析法在化学分析中的应用。
2. 讲解:讲解紫外-可见光谱分析法的原理。
3. 案例分析:分析具体案例,展示紫外-可见光谱分析法的应用。
4. 实验操作:引导学生进行实验操作,培养实际操作能力。
5. 总结:总结紫外-可见光谱分析法的原理及其应用。
三、原子吸收光谱分析法教学目标:1. 了解原子吸收光谱分析法的原理。
第一章:概述1.1 课程介绍介绍本课程的目的、意义和主要内容。
讲解仪器分析在化学、生物技术、环境科学等领域的应用。
1.2 仪器分析的基本概念定义仪器分析及其分类(如光谱分析、色谱分析、电化学分析等)。
介绍仪器分析的基本原理和方法。
1.3 仪器分析的发展历程概述仪器分析技术的发展历程及其重要里程碑。
讲解现代仪器分析技术的主要特点和优势。
仪器分析电子教案(二)第二章:光谱分析2.1 紫外-可见光谱分析介绍紫外-可见光谱分析的基本原理。
讲解紫外-可见光谱仪器的结构及操作方法。
2.2 红外光谱分析介绍红外光谱分析的基本原理。
讲解红外光谱仪器的结构及操作方法。
2.3 拉曼光谱分析介绍拉曼光谱分析的基本原理。
讲解拉曼光谱仪器的结构及操作方法。
第三章:色谱分析3.1 气相色谱分析介绍气相色谱分析的基本原理。
讲解气相色谱仪器的结构及操作方法。
3.2 液相色谱分析介绍液相色谱分析的基本原理。
讲解液相色谱仪器的结构及操作方法。
3.3 色谱-质谱联用分析介绍色谱-质谱联用分析的基本原理。
讲解色谱-质谱联用仪器的结构及操作方法。
仪器分析电子教案(四)第四章:电化学分析4.1 电化学分析基本原理介绍电化学分析的基本原理。
讲解电化学分析仪器的结构及操作方法。
4.2 电位分析法介绍电位分析法的基本原理。
讲解电位分析仪器的结构及操作方法。
4.3 库仑分析法介绍库仑分析法的基本原理。
讲解库仑分析仪器的结构及操作方法。
第五章:现代仪器分析技术5.1 原子吸收光谱分析介绍原子吸收光谱分析的基本原理。
讲解原子吸收光谱仪器的结构及操作方法。
5.2 原子荧光光谱分析介绍原子荧光光谱分析的基本原理。
讲解原子荧光光谱仪器的结构及操作方法。
5.3 质谱分析介绍质谱分析的基本原理。
讲解质谱仪器的结构及操作方法。
仪器分析电子教案(六)第六章:样品处理与制备6.1 样品采集与处理讲解样品采集的方法和注意事项。
介绍样品的预处理方法,如过滤、稀释、浓缩等。
仪器分析电子教案(一)一、教学目标1. 了解仪器分析的基本概念和分类2. 掌握常见仪器分析方法的基本原理及应用3. 培养学生的实验技能和分析问题的能力二、教学内容1. 仪器分析的基本概念1.1 仪器分析的定义1.2 仪器分析的特点2. 仪器分析的分类2.1 光学分析法2.2 电化学分析法2.3 色谱分析法2.4 质谱分析法2.5 其他分析法三、教学重点与难点1. 教学重点:1. 仪器分析的基本概念2. 常见仪器分析方法的基本原理及应用2. 教学难点:1. 各种仪器分析方法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解基本概念、原理及方法2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:各种仪器分析设备及实验用品3. 辅助工具:多媒体教学设备仪器分析电子教案(二)一、教学目标1. 掌握光谱分析法的基本原理及应用2. 了解光谱分析法的分类及特点3. 培养学生的实验技能和分析问题的能力二、教学内容1. 光谱分析法的基本原理1.1 紫外-可见光谱分析法1.2 红外光谱分析法1.3 拉曼光谱分析法2. 光谱分析法的分类及特点2.1 紫外-可见光谱分析法2.2 红外光谱分析法2.3 拉曼光谱分析法3. 光谱分析法的应用3.1 有机化合物结构的鉴定3.2 生物大分子的结构分析3.3 环境监测及药物分析三、教学重点与难点1. 教学重点:1. 光谱分析法的基本原理2. 光谱分析法的分类及特点3. 光谱分析法的应用2. 教学难点:1. 各种光谱分析法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解光谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:光谱分析设备及实验用品3. 辅助工具:多媒体教学设备仪器分析电子教案(三)一、教学目标1. 掌握色谱分析法的基本原理及应用2. 了解色谱分析法的分类及特点3. 培养学生的实验技能和分析问题的能力二、教学内容1. 色谱分析法的基本原理1.1 气相色谱分析法1.2 液相色谱分析法1.3 色谱-质谱联用分析法2. 色谱分析法的分类及特点2.1 气相色谱分析法2.2 液相色谱分析法2.3 色谱-质谱联用分析法3. 色谱分析法的应用3.1 生物大分子的分析3.2 环境监测及药物分析3.3 食品工业中的应用三、教学重点与难点1. 教学重点:1. 色谱分析法的基本原理2. 色谱分析法的分类及特点3. 色谱分析法的应用2. 教学难点:1. 各种色谱分析法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解色谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析电子教案(四)六、教学目标1. 理解电化学分析法的基本原理及应用2. 熟悉电化学分析法的分类和特点3. 提高学生的实验技能和问题解决能力二、教学内容1. 电化学分析法的基本原理1.1 直流电位滴定法1.2 电位分析法1.3 电化学发光分析法2. 电化学分析法的分类及特点2.1 直流电位滴定法2.2 电位分析法2.3 电化学发光分析法3. 电化学分析法的应用3.1 药物分析3.2 环境监测3.3 生物医学分析七、教学重点与难点1. 教学重点:1. 电化学分析法的基本原理2. 电化学分析法的分类及特点3. 电化学分析法的应用2. 教学难点:1. 各种电化学分析法的原理及应用2. 实验操作技能的培养八、教学方法1. 讲授法:讲解电化学分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力4. 互动讨论法:鼓励学生提问和参与讨论,增进理解九、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:电化学分析设备及实验用品3. 辅助工具:多媒体教学设备4. 教学软件:用于演示实验过程和分析结果十、教学评估1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(五)十一、教学目标1. 理解质谱分析法的基本原理及应用2. 熟悉质谱分析法的分类和特点3. 提高学生的实验技能和问题解决能力十二、教学内容1. 质谱分析法的基本原理1.1 静态质谱法1.2 动态质谱法1.3 串联质谱法2. 质谱分析法的分类及特点2.1 静态质谱法2.2 动态质谱法2.3 串联质谱法3. 质谱分析法的应用3.1 蛋白质组学3.2 代谢组学3.3 药物分析与食品安全十三、教学重点与难点1. 教学重点:1. 质谱分析法的基本原理2. 质谱分析法的分类及特点3. 质谱分析法的应用2. 教学难点:1. 各种质谱分析法的原理及应用2. 实验操作技能的培养十四、教学方法1. 讲授法:讲解质谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力4. 互动讨论法:鼓励学生提问和参与讨论,增进理解十五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:质谱分析设备及实验用品3. 辅助工具:多媒体教学设备4. 教学软件:用于演示实验过程和分析结果教学评估:1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(六)十一、教学目标1. 理解其他分析方法的基本原理及应用2. 熟悉其他分析方法的特点3. 提高学生的实验技能和问题解决能力二、教学内容1. 其他分析方法的基本原理1.1 原子吸收光谱分析法1.2 原子荧光光谱分析法1.3 X射线荧光光谱分析法2. 其他分析方法的特点2.1 原子吸收光谱分析法2.2 原子荧光光谱分析法2.3 X射线荧光光谱分析法3. 其他分析法的应用3.1 环境监测3.2 材料分析3.3 生物医学分析教学重点与难点1. 教学重点:1. 其他分析方法的基本原理2. 其他分析方法的特点3. 其他分析法的应用2. 教学难点:1. 各种其他分析方法的原理及应用2. 实验操作技能的培养教学方法1. 讲授法:讲解其他分析方法的基本原理、特点及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:其他分析设备及实验用品3. 辅助工具:多媒体教学设备教学评估1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(七)十二、教学目标1. 培养学生对仪器分析实验操作的技能2. 加强学生对实验数据的处理和分析能力3. 加深学生对仪器分析理论知识的理解二、教学内容1. 实验操作流程1.1 实验前的准备1.2 实验操作步骤1.3 实验后的整理2. 实验数据处理与分析2.1 数据采集2.2 数据处理2.3 结果分析3. 实验安全与规范3.1 实验安全知识3.2 实验操作规范教学重点与难点1. 教学重点:1. 实验操作流程2. 实验数据处理与分析3. 实验安全与规范2. 教学难点:1. 实验操作技能的培养2. 实验数据的处理和分析教学方法1. 讲授法:讲解实验操作流程、数据处理与分析、实验安全与规范2. 示范法:演示实验操作,让学生跟随操作3. 练习法:学生独立操作,教师指导教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:其他分析设备及实验用品3. 辅助工具:多媒体教学设备教学评估1. 实验操作考核:评估学生在实验中的操作技能2. 实验报告:评估学生在实验中的数据处理和分析能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(八)十三、教学目标1. 培养学生对仪器分析实验操作的技能2. 加强学生对实验数据的处理和分析能力3. 加深学生对仪器分析理论知识的理解二、教学内容1. 实验操作流程1.1 实验前的准备1.2 实验操作步骤1.3 实验后的整理2. 实验数据处理与分析2.1 数据采集2.2 数据处理2.3 结果分析3. 实验安全与规范3.1 实验安全知识3.2 实验操作规范教学重点与难点1. 教学重点:1. 实验操作流程2. 实验数据处理与分析3. 实验安全与规范2. 教学难点:1. 实验操作技能的培养2. 实验数据的处理和分析教学方法1. 讲授法:讲解实验操作流程、数据处理与分析、实验安全与规范2. 示范法:演示实验操作,让学生跟随操作3. 练习法:学生独立操作,重点和难点解析本文主要介绍了仪器分析的教学目标、内容、重点和难点,以及相应的教学方法和评估方式。
第一章绪论(Preface )§1-1 仪器分析简介一、仪器分析方法在分析化学中的位置1.分析化学定义:是化学学科的一个重要分支,是研究物质的组成、含量、结构及其分析方法的学科。
分类:化学分析法;仪器分析法2.化学分析法/经典分析法定义:是以物质的化学反应为基础的分析方法。
分类:重量分析法—绝对分析法滴定分析法—相对分析法:酸碱滴定;络合滴定;氧化还原滴定;沉淀滴定3.仪器分析法(物理和物理化学分析法)是采用比较复杂或特殊的仪器设备,通过测量能表征物质的某些物理或物理化学性质来确定其化学组成、含量、结构。
分类:二、仪器分析的特点和局限性1.仪器分析的特点:(1)适用于微量、痕量组份含量分析(含量<1%,测量的相对误差为1~10%);(2)操作简便快速;(3)最适用于生产过程中的控制分析。
2.仪器分析的局限性:(1)准确度不够高,相对误差通常(1~10%);(2)一般都需要以标准物进行校准,而很多标准物需要用化学分析方法来标定;(3)仪器比较昂贵。
3.仪器分析的发展趋势:与计算机联用:自动化、数字化与其它分析方法联用:气相色谱-光度法联用;FIA -光度法联用§1-2 定量分析方法的评价指标1. 标准曲线标准曲线:被测物质的浓度或含量x 与仪器响应信号y 的关系曲线。
线性范围:标准曲线直线部分所对应被测物质浓度或质量的范围。
标准曲线的绘制:用 “一元线性回归法”的数据统计方法来给出y 与x 的关系式标准溶液浓度: x 1 x 2 x 3 x 4 x 5 …… 响应信号: y 1 y 2 y 3 y 4 y 5……121()()()niii nii x x y y b x x ==--=-∑∑a y bx =-2. 灵敏度物质单位浓度或单位质量的变化引起响应信号的变化,称为方法的灵敏度,用S 表示。
yxdy S dm =,dy S dc= 灵敏度也是标准曲线的斜率,斜率越大,方法的灵敏度越大。
分析仪器教案X-荧光光谱仪一、X-荧光光谱仪的特点:1)分析速度快:X-荧光光谱仪分析速度快,这是化学分析无法比较的,对于多元素的烧结矿X-荧光光谱仪可以在几分钟内得到分析结果,对于指导生产具有很大的意义。
2)用途广泛X-荧光光谱仪用途广泛。
在生产中广泛用于冶金、地质、水泥等行业,并且能够分析80多种元素。
3)有很好的稳定性和重现性。
这一点我们在日常分析中能够体会到4)分析结果准确X-荧光光谱仪分析结果准确、灵敏度高。
我厂日常所分析的很多样品用X-荧光光谱仪分析均能得到很准确的结果可以满足指导生产的要求和结算需要。
二、原理1、基本原理:每一种元素的原子其电子层能级的能量是一定的,能级差也是一定的,因此,各元素的特征X射线波长也是一定的,利用X射线荧光仪,只要测出一系列X射线荧光光谱线的波长,便可知是何种元素,这是X射线荧光光谱定性分析的原理。
若测得谱线的强度并与标样同一谱线强度对比便可知道该元素的含量,这是X射线荧光光谱定量分析的原理。
所以说X射线荧光光谱线分析就是基于二次射线(X射线荧光)而建立起来的一种分析方法。
二次X射线的波长是定性分析的依据,二次射线的强度是定量分析的依据。
2、X-荧光光谱仪分析原理:当试样受到来自X射线管的初级X射线照射后,便产生X射线荧光,它通过准直器形成一束近似平行的X 射线投射到分光晶体上,对于某一固定的晶体位置,只有一种波长,衍射线光子被位于衍射线出射方向上的探测器接收,将其转变成电脉冲输送到测量系统进行测量记录。
如下图:试样准直器晶体器测器X-光管三、X射线荧光光谱仪基本结构X射线荧光光谱仪基本由四部分组成:1、X射线发生系统:它是由X射线管、高压发生器、X射线安全控制系统、水冷系统组成。
2、分光系统:由试样室、准直器、晶体、测角仪组成。
3、测量系统:由检测器、放大器脉冲高度分析器和记录系统组成。
4、控制与数据处理系统:由微处理机和计算机组成。
四、制样要求:1、炉渣、烧结矿等粉末状压制样品在分析之前要保证制备的样品(即压片)无裂痕或粉末脱落现象并且样片要有一定的强度,否则要重新制备。
学习好资料欢迎下载题目: 荧光分析法教学目的与要求: (1)掌握分子荧光、磷光和化学发光的产生机理;掌握激发光谱和发射光谱特征。
(2)掌握荧光与分子结构的关系以及溶液的荧光(磷光)强度影响因素。
(3)熟悉荧光(磷光)分析法的特点及定量测定方法。
(4)了解磷光分析法的类型。
(5)熟悉荧光、磷光和化学发光分析仪器的结构。
内容与时间分配: ①荧光分析原理:120min;②荧光仪器:20min;③分析方法:40min;④磷光分析简介:20min;重点与难点: 1、荧光的产生;2、荧光光谱与激发光谱;3、荧光与分子结构4、影响因素5、分析方法教具准备: PPT荧光分析法(fluorometry)灵敏度高,紫外-可见法10-7g/ml待测物质:分子荧光原子荧光激发光:紫外可见荧光红外可见荧光X-射线荧光1、基本原理利用目一波长得光照射试样,使试样吸收这一辐射,然后再发射出波长相同或较长得光,若这种再发射约在10-9秒内发生,称为荧光,利用荧光得强度和特性对物质进行定性、定量分析,称为荧光分析法。
当分子轨道中电子吸收光子跃迁,若电子跃迁后,处于自旋方向相反得状态,则总自旋量子数S=0,体系的多重性M=2S+1,既为激发态的单线态(此分子在磁场中不产生能级裂分)若电子跃迁后,处于自旋方向相同的状态,则总自旋量子数S=1/2+1/2=1,体系的多重性M=2S+1=3,即为三线态(在磁场中,三线态的电子能级产生裂分,一条线可分裂成三条线。
三线态的能量较相应单线态的能量低)。
[电子由单→单跃迁,所需E1<E2(单→三)由于单→三的跃迁使禁阻的,所以摩尔吸光系数ε小]分子在室温基本处于电子跃迁的级态,吸收了可见-紫外光后,基态分子只能跃迁到激发单线态的各个不同振-转能阶,而不能直接跃迁到激发三线态的各个振-转能级(自旋禁阻定律)。
紫外-可见光照射物质,基态分子不断跃迁到激发态,则分子的紫外吸收应逐渐减小至消失,但事实上物质分子能够连续吸收紫外-可见光,说明存在一条或多条从分子激发态往基态的途径。
①振动弛豫:无辐射跃迁,只在同一电子能级内进行。
激发态分子由于分子间碰撞或分子与晶格间的相互作用,以热的形式损失掉部分能量,从振动能级的较高能级下降。
既激发态不同振动能级间的能量释放,这部分能量以热的形式释放,而不是以光辐射的形式发出,故振动弛豫属于无辐射跃迁。
②荧光发射电子由激发态的最低振动能级回迁到基态,释放出能量,发射的光为荧光。
由于已损失了部分能量,所以荧光的波长<原照射的紫外光波长。
③内部能量转换:非辐射过程激发态分子将激发态能转变为热能,回到基态。
第二电子激发态S2的的振动能级与第一电子激发态的高振能级的ΔE较小,甚至重叠,所以,他们之间的内部能量转换很容易发生,速度很快。
因此,分子无论在哪一个激发单线态都能通过内部能量转换到达低一级激发态的最高振动能级;然后通过振动弛豫回到起最低振动能级;最终回到基态的最低振动能级。
这一过程成为内部卒灭。
大多数物质的内部卒灭过程很快,所以无荧光发出。
④内部能量转换激发态分子通过碰撞将能量转移给其他分子,直接回到基态,导致外部卒灭。
例:溶剂中含荧光卒灭剂或温度较高时,易产生外部卒灭。
⑤体系间交叉跃迁电子由激发单线的最低振动能级→激发三线态的最高振动多数分子:体系间交叉跃迁时禁阻的。
极少数分子可以(如含溴、碘等重原子)→因为其自旋轨道的强偶合作用,电子自旋可以逆转方向,时体系跨越容易。
⑥磷光发射电子通过振动弛豫从激发态三线态的最高振动→最低,然后发出光发射跃迁至基态的各个振动能级,这种光辐射称磷光发射。
激发三线态最低振动能级低于……单线态……所以磷光辐射能量<荧光磷光辐射波长>荧光荧光法不普及:室温下难呈现①体系间跨越几率小②体系间跨越后,又一改体系间跨跃回到激发单线态→荧光③分子间碰撞,溶剂间作用,各种卒灭效应。
所以,磷光法:液氮冷冻条件下激发。
⑦延迟荧光分子在激发三线态的振动基态可以存活一定时间,所以需时较长。
2、激发光谱与荧光光谱荧光时分子受激发射光谱,所以有两个特征光谱:激发光谱发射光谱(1)激发光谱:以激发光波长为横坐标荧光强度为纵坐标荧光强度随激发光波长的变化(2)荧光光谱:以荧光的发射波长为横坐标荧光的发光强度为纵坐标荧光物质的λex,man和λem,max是鉴定的依据,也是定量的依据,(3)特点:(4)紫外光谱:紫外光的吸收度荧光物质的激发光谱两者相似,因吸收了紫外线才能发射荧光①激发光谱与紫外吸收相似,但不完全重叠②荧光光谱与激发光谱相比在长波长处荧光光谱的吸收峰只有一个,且与激发光波长无关。
③激发光谱与荧光光谱呈镜像关系,例蒽的激发光谱与荧光光谱(在高分辨的荧光光谱图上)激发光谱 a峰:分子基态S0→S2*b峰:分子基态S0→S i*的(V0、V1、V2、V3、V41、2、……为不同的能级)b0峰相当于b0的跃迁线b1峰相当于b1的跃迁线荧光光谱:C峰:分子从第一电子激发态的振动能级基态跃迁至电子基态的不同振动能级而形成C0峰→C0跃迁线C1峰→C1的跃迁线3、荧光与分子结构的关系(1)产生过程:(2)分子吸收光子,由基态→第一电子激发态或第二激发态→通过无辐射跃迁回到第一激发态的最低振动能级→跃迁到基态的各振动能级→发出荧光→通过无辐射跃迁回到基态的最低振动能级(2)产生荧光的必要条件分子①吸收光能量(紫外-可见吸收强),产生跃迁。
(n→л×跃迁ε弱,所以引起的荧光极弱)②吸收后必须具有较高的荧光效率,才能产生荧光物质分子不是吸收荧光紫外光量子,即能够发射一个荧光量子。
物质发射荧光的量子数与所吸收的激发态量子数的比值,称为荧光效率或荧光量子产率фf=发出荧光的量子数/吸收激发光的量子数(3)荧光强度与分子结构的关系(内部因素)①长共軛结构л→л×跃迁产生强K带紫外吸收。
Л电子共軛越长,λex和λen将长移。
F、фf将增大②分子的刚性结构和共平面效应分子的刚性结构和共平面效应增大,фf增大,且λem长移。
例:③取代基a、增加分子的л电子共軛程度,фf增大,λem长移的基团―NH2,―OH,―OCH3,―NHR,―NR2,―CN等b、减弱分子的л电子共軛程度,фf减小,甚至荧光卒灭的基团―COOH,―NO2,―C=O,―NO,―SH,―NHCONH3,―F,―Cl,―I,-Br等c、对分子的л电子共軛作用小,对荧光影响不明显。
―R,―SO3H,―NH3+等4、影响荧光强度的外部因素(1)温度:温度增大,фf小,碰撞几率大,分子运动速度增大,无辐射跃迁增大,(2)溶剂:a,极性大,фf大。
红移所以极性溶剂中,ΔEл→л×减小。
b、粘度大,фf大,粘度小,分子碰撞几率增大,所以фf小(3)PH值的影响:对弱酸和弱碱的荧光物质影响大。
PH值不同,离子电离结构不同。
如:(4)荧光熄灭剂:使фf减小或荧光强度与浓度不呈线性关系。
常见的熄灭剂有:卤素离子、重金属离子,氧分子、硝基化合物、重氮化合物、羰基和羧基混合物。
原因:分子碰撞;产生无荧光的配合物;I、Br溶解O2使易发生体系跨越至三线态;(5)散射光干扰a、容器表面:方形影响小,原形影响大。
可通过调整狭缝减小散射。
b、丁达尔散射:胶体颗粒产生的散射可尽量除去胶体颗粒;脱气c、瑞利散射:瑞利光波长=激发光波长分子吸收光子后,由基态较低振能级→较高能级,并在极短的时间内返回原来的能级,释放出与激发光相同波长的光线。
d 、 拉曼散射分子吸收光子,基态较低振动能级→较高能级→回到稍高或稍低与原能级的振动能级。
拉曼光波长≠激发光波长可通过减小狭缝加强滤光片选择激发波长来减小拉曼光的干扰。
(6) 氢键的影响与溶剂或其它溶液分子产生氢键,对荧光光谱和荧光强度有显著的影响(7) 表示活性剂的影响增溶、增稳、表面活性剂浓度增大→胶束→对荧光分子有遮蔽作用。
→减小分子碰撞几率→保护激发单线态荧光分子→提高фf(8) 自卒灭荧光物质浓度过大,>1g/l 产生的荧光含被分子吸收。
使荧光强度减小,发生浓度卒灭5、荧光强度与浓度的关系(1) 定量关系F ∝(I 0-I t )F:荧光强度。
(I 0-I t ):被吸收的光强度即F=(I 0-I t ).K ′K ′常数,取决于фf根据Beer 定律:I T /I 0=10-Ecl即:F= K ′I 0(1-10-Ecl )= K ′I 0(1-e -2.3Ecl )= K ′I 0[2.3Ecl-(-2.3Ecl)/2!-(-2.3Ecl)2/3!-……-(-2.3Ecl)n /n!]当Ecl 05.0≤时,即稀溶液F=K ´I 02.3Elc=KC所以,浓度低时,F 与C 成线性关系。
(2) 灵敏度高可通过放大检测信号,增加激发光强度,通过灵敏度。
而吸收光谱:A =-lgI t /I 0I t /I 0为比值,无法放大(3) 定性、定量分析①定性分析:依据激发光谱中地峰位鉴定物质。
注意:影响因素多,测到地只是表观光谱图,须校正。
一般用对照品对照②定量分析方法:工作曲线法比例法(标准曲线过原点)Fs-F 0=KCsF 样-F 0=KC 样 F 0:空白溶液荧光强度多组分测定:与紫外分光光度法定量分析用6荧光分光光度计(1) 主要部件①激发光源:疝灯(多用):连续光源汞灯:发射线光谱,产生不连续地一定波长地光另外:氘灯、卤钨灯等②单色器:激发单色器(光源与样品之间)发射单色器(样品与监测器之间)荧光计:虑光片荧光分光光度计:光栅作色散元件③吸收池:石英④检测器:光电倍增管光电二极管阵列检测器:迅速、瞬时测定荧光光谱(2)类型荧光计荧光分光光度计(3)校正(4)①波长校正用汞灯地标准谱线对单色器地波长刻度进行校正②灵敏度:影响因素较多a光源强度稳定度单色器地性能b波长、狭缝c空白溶液、拉曼散射、激发光、杂质荧光常用:硫酸奎宁溶液作为标准溶液进行校正③光谱校正双光束荧光分光光度计,参比光束抵消光学误差7荧光分析新技术(1)激发荧光分析:光源:激光、波长纯,强度大检测灵敏度高,样品量<1ul最小可测10-16g测量生化样品、气体样品及有机化合物中地自由基(2)同步荧光分析灵敏度高在荧光物质地激发光谱和发射光谱中选择适宜地波长差值Δλ,同时扫描荧光发射波长和激发波长,得同步荧光光谱。
F sp(λem,λex)=KCFexFem(3)胶束增溶增敏荧光分析加入增溶增敏试剂,如表面活性剂:SDS,CTMAB,CPB,PVA,Triton*100等环糊精:α-CD,β-CD,γ-CD等表面活性剂在临界胶束浓度时,相差疏水基向里,亲水基向外得具有一定大小内腔得胶束,增溶、增敏其用于荧光分析,不仅提高了灵敏度、选择性且可在分子水平模拟生物体系细胞膜结构。