不等式的基本概念与性质
- 格式:docx
- 大小:37.14 KB
- 文档页数:3
不等式的基本性质、解不等式【基础知识】一、不等式的概念及基本性质注意:①不等式的基本性质,没有减法和除法。
如果遇到减法和除法,可以转化乘加法 和乘法,如:求a b -的范围可以转化成求()a b +-的范围,求a b 的范围可以转化成求1a b⨯的范围。
②方程和不等式的两边不能随便乘除,必须先研究这个数的性质,再乘除。
三、分式不等式和高次不等式 1、分式不等式的解法 把分式不等式通过移项、通分、因式分解等化成()0()f xg x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集。
温馨提示:解分式不等式一定要考虑定义域。
2、高次整式不等式的解法(序轴标根法)先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集。
实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集。
四、绝对值不等式 1、解绝对值不等式 方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴。
方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法。
注意小分类求交大综合求并。
方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以用平方法。
2、绝对值三角不等式a b a b a b -≤±≤+绝对值三角不等式的运用主要体现在直接利用绝对值三角不等式证明不等式和求函数的最值。
【例题精讲】例1 已知不等式 的解集为 ,求 、 的值。
不等式的性质及解法不等式是数学中的一种重要的数值关系表示形式,与等式相比,不等式更能反映数值大小之间的差异。
在实际问题中,我们经常会遇到需要确定数值范围的情况,而不等式的性质和解法则帮助我们进行准确的数值分析和解决问题。
一、不等式的基本性质1. 传递性:如果 a<b,b<c,则有 a<c。
这一性质表明不等式的关系可以在数轴上进行传递,简化了分析比较的步骤。
2. 加减性:如果 a<b,则有 a±c<b±c。
对于不等式两边同时加减同一个数,不等式的关系保持不变。
3. 乘除性:如果 a<b 并且 c>0,则有 ac<bc;如果 a<b 并且 c<0,则有ac>bc。
这一性质需要注意,当乘以负数时,不等式的关系需要取反。
4. 对称性:如果a<b,则有b>a。
不等式两边的大小关系可以互换。
二、一元不等式的解法1. 加减法解法:通过加减法将不等式转化为更简单的形式。
例如:对于不等式 2x+3>7,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
2. 乘除法解法:通过乘除法将不等式转化为更简单的形式。
同样以不等式 2x+3>7 为例,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
3. 移项解法:利用不等式的基本性质,将所有项移到同一边,得到一个结果。
例如:对于不等式 3(x-2)>4x-7,我们可以先将右边的项移动到左边,得到 3x-6>4x-7,然后将 x 的系数移到一侧,得到 3x-4x>-7+6,化简得到 -x>-1,再乘以 -1,注意需要反转不等式的关系,得到x<1,即解集为 x<1。
4. 系数法解法:当不等式中存在系数时,我们可以通过判断系数的正负来确定解的范围。
例如:对于不等式 2x-3>0,我们观察到系数2>0,说明 x 的取值范围为正数,即解集为 x>3/2。
课题不等式的基本性质教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明不等式的形式,如a > b、a ≥b 等。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。
性质2:如果a > b 且c > 0,a + c > b + c。
性质3:如果a > b 且c < 0,a + c < b + c。
性质4:如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。
第二章:不等式的运算规则2.1 加减法规则如果a > b 且c > d,a + c > b + d。
如果a > b 且c < d,a + c < b + d。
2.2 乘除法规则如果a > b 且c > 0,ac > bc。
如果a > b 且c < 0,ac < bc。
如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。
第三章:不等式的比较与排序3.1 两个不等式的比较如果a > b 且c > d,a + c > b + d。
如果a > b 且c < d,a + c < b + d。
3.2 多个不等式的排序如果a > b 且c > d,a + c > b + d > c + d。
如果a > b 且c < d,a + c > b + d > c + d。
第四章:不等式的解法与应用4.1 不等式的解法介绍解不等式的方法,如移项、合并同类项、系数化等。
举例说明解不等式的步骤和技巧。
4.2 不等式的应用介绍不等式在实际问题中的应用,如优化问题、经济问题等。
举例说明如何将实际问题转化为不等式问题,并求解。
不等式基本概念与性质不等式是数学中重要的概念之一,用于表示两个数的大小关系。
与等式相比,不等式描述的是不等关系,由此引出了不等式的基本概念与性质。
本文将从不等式的定义、不等式的解集、不等式性质等方面进行论述,旨在让读者更全面地了解不等式的基本概念与性质。
一、不等式的定义不等式是表示两个数的大小关系的数学式子,用不等号(>、<、≥、≤)进行表示。
其中,>表示“大于”,<表示“小于”,≥表示“大于等于”,≤表示“小于等于”。
二、不等式的解集不等式的解集由使不等式成立的所有实数组成。
解集的表示方法有两种:用区间表示和用集合表示。
(1)用区间表示解集当不等式中含有“>”、“<”时,解集用开区间表示。
例如,不等式x > 3的解集表示为(3, +∞),表示所有大于3的实数。
当不等式中含有“≥”、“≤”时,解集用闭区间表示。
例如,不等式x≤ 5的解集表示为(-∞, 5],表示所有小于等于5的实数。
(2)用集合表示解集当解集中的元素不连续时,用集合表示解集。
例如,不等式2 < x < 5的解集表示为{x ∈ R | 2 < x < 5},表示所有大于2且小于5的实数。
三、不等式的性质不等式具有一些基本的性质,这些性质对于解不等式方程非常有帮助。
(1)加减性质若a > b,则a + c > b + c,a - c > b - c,其中c为任意实数。
(2)乘除性质若a > b 且 c > 0,则ac > bc;若a > b 且 c < 0,则ac < bc。
(3)倒数性质若a > b 且 c > 0,则1/a < 1/b;若a > b 且 c < 0,则1/a > 1/b。
这些性质可以用来化简不等式的形式,使得求解不等式更加简单。
四、不等式的图示为了更直观地理解不等式的解集,我们可以将不等式的解集用数轴表示出来。
初中数学知识点:不等式(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!初中数学知识点:不等式初中数学知识点必备:不等式在我们平凡的学生生涯里,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
不等式的性质不等式是数学中一种重要的数值关系表达形式,它描述了数值之间的大小关系。
在解决各种实际问题以及数学推理中,不等式具有广泛的应用。
本文将介绍不等式的基本概念和性质。
一、不等式的基本概念不等式是指两个数或者两个代数式之间的关系,用符号 "<"(小于)、">"(大于)、"≤"(小于等于)或者"≥"(大于等于)表示。
例如,对于两个实数a和b,我们可以表示为a < b, a > b,a ≤ b 或a ≥ b。
其中,"<" 和 ">" 表示严格不等关系,"≤" 和"≥" 表示非严格不等关系。
二、不等式的性质1.传递性:如果 a < b,b < c,则有 a < c。
同样,如果 a > b,b > c,则有 a > c。
这表明不等式具有传递性,可以通过链式推理得出更复杂的不等式关系。
2.加法性质:如果 a < b,那么对于任意的实数c,a + c < b + c。
同样地,如果 a > b,那么 a + c > b + c。
加法性质指出,在不等式两边同时加上(或减去)同一个数时,不等号的方向不变。
3.乘法性质:如果 a < b 且 c > 0,那么 ac < bc。
同样地,如果 a > b且 c < 0,那么 ac > bc。
乘法性质指出,在不等式两边同时乘以正数时,不等号的方向不变;但是当乘以负数时,不等号的方向会颠倒。
4.取反性质:如果 a < b,则 -a > -b。
同样地,如果 a > b,则 -a < -b。
取反性质说明不等式两边同时取反时,不等号的方向也会发生改变。
5.绝对值性质:对于任意实数a,有a ≤ |a| 和 -a ≤ |a|。
第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。
不等式和它的基本性质一、考点扫描:1.了解不等式的意义。
2.掌握不等式的三条基本性质,并会运用这些基本性质将不等式变形。
二、名师精讲:1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。
2.不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
用式子表示:如果a>b,那a+c>b+c(或a–c>b–c)(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
用式子表示:如果a>b,且c>0,那么ac>bc(或> )(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
用式子表示:如果a>b,且c<0,那么ac<BC(< SPAN>或< )3.不等式的基本性质是对不等式变形的重要依据。
不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。
在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。
三、例题分析第一阶梯[例1]我们已经学过的等式,方程是用"="连接式子,它表示数量间的相等关系,例如2+3=5,3x-1=2x+7, a+b=b+a等。
事实上,在实际生活中,同类量之间具有不相等关系的例子是大量的,普遍的,例如:某天的气温最低是-2℃,最高是3℃说明气温不相等,两个同学们体重分别是95斤和87斤,也不相等,上述两个例子我们可以分别表示成-2<3,95>87,像这种用不等号表示不等关系的式子,叫做不等式,常用的不等号有">""<"">""≥""≤""≠"。
根据不等式的概念,请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4提示:什么叫做不等式?常用的不等号有哪些?参考答案:②③④⑤是不等式。
不等式的性质与求解教案题目:探索不等式的性质与求解教案导入:大家好!今天我们将一起来探索不等式的性质与求解。
不等式是我们日常生活和数学上经常遇到的问题,通过学习不等式的性质和解题技巧,我们将能够更好地解决各种实际问题。
那么,我们开始吧!第一部分:不等式的基本概念1.1 不等式的定义不等式是一种数值之间的关系,表示两个数的大小关系。
1.2 不等式的符号常见的不等式符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)、不等于(≠)等。
1.3 等式与不等式的区别等式是指两个数相等的关系,而不等式则表示两个数的大小关系。
1.4 不等式的性质不等式具有传递性、对称性和加减乘除性等性质,通过这些性质可以进行不等式的变形和推导。
第二部分:不等式的解法2.1 一元一次不等式的求解一元一次不等式是一种常见的不等式形式,我们可以通过移项、合并同类项和化简等步骤解决这类不等式。
2.2 一元二次不等式的求解一元二次不等式是一种更为复杂的不等式形式,我们可以通过求解不等式的解集和绘制不等式的图像等方法解决。
2.3 绝对值不等式的求解绝对值不等式是一种带有绝对值符号的不等式,我们可以将绝对值不等式拆分成两个含有不等式的方程,再分别求解。
第三部分:不等式的应用3.1 不等式在实际问题中的应用不等式在日常生活和数学领域中有广泛的应用,比如表示区间、解决优化问题等。
3.2 利用不等式解决最值问题不等式在求解实际问题中常常用于确定最大值或最小值,我们可以通过建立数学模型和运用不等式来求解。
教案总结:通过本节课的学习,我们详细了解了不等式的基本概念、符号、性质和解法,并学会了在实际问题中应用不等式进行求解。
掌握不等式的性质和解题技巧不仅在数学考试中有用,更能够帮助我们解决生活、工作和学习中的各类问题。
希望同学们能够继续努力学习,提高数学思维和解题能力。
谢谢大家!。
不等式的基本性质及求解方法在数学中,不等式是描述数值之间关系的一种表达方式。
与等式不同,不等式表达了两个数中的一个大于、小于或不等于另一个数的关系。
本文将介绍不等式的基本性质以及常见的求解方法。
一、不等式的基本性质1. 传递性:如果a>b,b>c,则a>c。
这个性质说明了不等式的关系具有传递性,即一个数大于另一个数,那么它也大于另一个与后者相等的数。
2. 反对称性:如果a≤b且b≤a,则a=b。
这个性质说明了不等式的关系具有反对称性,即一个数小于等于另一个数,同时另一个数也小于等于前者,则这两个数相等。
3. 相反数性质:如果a>b,则-a<-b。
这个性质说明了不等式的两边取相反数后,不等号的方向会发生翻转。
4. 倍增性:如果a>b,并且c>0,则a*c>b*c。
这个性质说明了不等式在两边同时乘上正数的情况下,不等关系保持不变。
二、求解方法1. 加减法求解:如果a+b>c,则a>c-b;如果a-b>c,则a>c+b。
这种方法适用于对不等式进行加减运算求解的情况。
2. 乘除法求解:如果a*b>c (且b>0),则a>c/b (其中b>0);如果a*b<c (且b<0),则a<c/b (其中b<0)。
这种方法适用于对不等式进行乘除运算求解的情况。
需要注意的是,在乘除法求解中,当乘(除)以负数时,不等号需要进行反向翻转。
3. 绝对值法求解:对于形如|a|>b的不等式,有两种情况:a>b 或 a<-b。
取其并集,即a>b 或 a<-b。
4. 平方法求解:对于形如x^2>a的不等式,有两种情况:x>√a 或 x<-√a。
取其并集,即x>√a 或 x<-√a。
5. 区间法求解:对于形如a<x<b的不等式,解集为(a, b)。
不等式的性质不等式是数学中的一个重要概念,它描述了两个数之间的关系。
与等式不同,不等式允许有不同的可能性,因此在解决问题时更具灵活性。
不等式的性质包括以下几个方面:基本性质、平移性质、乘法性质和倒数性质。
基本性质不等式的基本性质是指不等式的传递性、对称性和反射性。
不等式的传递性意味着如果一个数大于另一个数,而后者又大于第三个数,那么第一个数一定大于第三个数。
例如,如果a > b且b > c,则a > c。
不等式的对称性表示当两个数的顺序发生变化时,不等号的方向也会发生变化。
例如,如果a > b,则b < a。
不等式的反射性表示任何数都大于或小于自身。
例如,对于任何数a,都有a > a或a < a。
这些基本性质帮助我们在解决不等式问题时建立起一些规则和判断依据。
平移性质不等式的平移性质指的是当不等式的两边加减同一个数时,不等式的方向仍然保持不变。
例如,如果a > b,那么a + c > b + c,其中c是任意实数。
这个性质可以用来简化不等式的解题过程。
我们可以通过加减同一个数将不等式变形为一个更简单的形式,使得问题更容易处理。
乘法性质不等式的乘法性质是指当不等式的两边同时乘以同一个正数时,不等式的方向保持不变;当两边乘以同一个负数时,不等式的方向发生改变。
例如,如果a > b且c > 0,则ac > bc;如果a > b且c < 0,则ac < bc。
乘法性质也可以用来简化不等式的解题过程。
通过乘以一个适当的数,我们可以使得不等式变得更易处理。
需要注意的是,在乘法性质中,如果乘的是一个负数,不等式的方向就会发生改变。
这是因为负数的平方大于本身。
所以,在运用乘法性质时需要特别小心。
倒数性质不等式的倒数性质是指,如果a > b且a和b都是正数,则1/a < 1/b。
这个性质可以通过两个数的倒数比较来推导。
不等式的基本性质【知识要点】1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb ). 3.不等式的解与解集:4.一元一次不等式:一元一次不等式的标准形式:)0(≠><a b ax b ax 或一元一次不等式的步骤:①去分母;②去括号;③移项变号;④合并同类项;⑤系数化为1. 【典型例题】例1 指出下面变形根据的是不等式的哪一条基本性质.(1)由5a >4,得a >54; (2)由a +3>0,得a >-3; (3)由-2a <1,得a >-21; (4)由3a >2a +1,得a >1.例2 用“<”“=”“>”号填空.(1)如果a >b ,那么a -b __________0;(2)如果a =b ,那么a -b __________0;(3)如果a <b ,那么a -b __________0.例3 指出下列各题中不等式变形的依据.(1)由21a >3,得a >6.(2)由a -5>0,得a >5.(3)由-3a <2,得a >-32.例4 根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52(4)-32x >-1例5 如果a >ab ,且a 是负数,那么b 的取值范围是什么?* 例6 已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.【大展身手】1.填空:(1)若3x>4,两边都除以3,得__________,依据是____________.(2)若x+6≤5,两边都减6,得__________,依据是_____________.(3)若-4y≥1,两边都除以-4,得__________,依据是____________.(4)若-23y<-2,两边都乘-32,得___________,依据是____________. 2.若a<b ,用不等号填空: (1)a -5_______b -5;(2)a+m_______b+m ; (3)-2a ______-2b ; (4)6-a_______6-b ;(5)-1+2a_______-1+2b ;(6)ac 2_______bc 2.3.(1)已知a<b ,b<c ,则a_______c ;(2)已知a<b ,则b________a .4.若a <b ,则-3a +1________-3b +1.5.若-35x >5,则x ________-3. 6.若a >b ,c ≤0,则ac ________bc .7.若ba b a --||=-1,则a -b ________0. 8.若ax >b ,ac 2<0,则x ________ab . 9.若a +3>b +3,则下列不等式中错误的是( )A.-55b a -<B.-2a <-2bC.a -2<b -2D.-(-a )>-(-b )10.若a >b ,c <0,则下列不等式成立的是( )A.ac >bcB.c b c a <C.a -c <b -cD.a +c <b +c11.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A.b -a >0B.ab >0C.c -b <c -aD.a b 11>图112.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③13.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 14.已知x>y ,则下列不等中不成立的是( )A .x -4>y -4B .-2x>-2yC .33x y >D .-13x<-13y 15.下列不等式的变形中,正确的是( )A .∵-3x>4,∴x>-43B .∵-3x>4,∴x>-34C .∵-3x>4,∴x<-43D .∵-3x>4,∴x<-3416.已知x<y ,要使mx>my 成立,则( )A .m>0B .m<0C .m=0D .m 是任意实数17.如果x<3,则下列不等式错误..的是( ) A .x -3<0 B .2x<6 C .-x>-3 D .x+2008>018.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 19.不等式3(x -2)≤x +4的非负整数解有几个.( )A.4B.5C.6D.无数个 20.不等式4x -41141+<x 的最大的整数解为( ) A.1 B.0 C.-1 D.不存在21.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-622.用不等式的基本性质,试将下列不等式化为x>a或x<a的形式:(1)x-1>3;(2)4x<6;(3)-2x>8.23.如果a<b,则下列不等式必定成立的是()A.am>bm B.am<bm C.am2<bm2D.am2≤bm2 24.如果a<0,则不等式ax>2可化为()A.x<2aB.x>2aC.x<-2aD.x>-2a25.已知关于x的不等式x>32a,表示在数轴上知图,则a的值为()A.1 B.2 C.-1 D.-226.已知a>b,比较12-3a与12-3b的大小.27.试比较a与2a的大小.。
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念πφ 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥”及“≤”等不等号把代数式连接起来,表示不等关系的式子。
a-b>0a>b, a-b=0a=b, a-b<0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>”读作“大于”,它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
(4)常见不等式基本语言的含义:①若x >0,则x 是正数;②若x ﹤0,则x 是负数;③若x ≥0,则x 是非负数;④若x ≤0,则x 是非正数;⑤若x-y >0,则x 大于y ;⑥若x-y ﹤0,则x 小于y ;⑦若x-y ≥0,则x 不小于y ;⑧若x-y ≤0,则x 不大于y ;⑨若xy >0(或yx >0),则x ,y 同号;⑩若xy ﹤0(或yx ﹤0),则x ,y 异号; (5)等式与不等式的关系:等式与不等式都用来表示现实中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
不等式的基本概念与性质不等式是数学中一种重要的关系表达式,描述了两个或多个数之间的大小关系。
不等式与等式不同,它表示两个数之间的大小关系,可以是大于、小于、大于等于、小于等于等。
一、不等式的基本概念1. 不等式符号不等式符号是表示数之间大小关系的符号,常见的不等式符号有以下几种:- 小于号:<,表示小于的关系,如a < b表示a小于b。
- 大于号:>,表示大于的关系,如a > b表示a大于b。
- 小于等于号:≤,表示小于等于的关系,如a ≤ b表示a小于等于b。
- 大于等于号:≥,表示大于等于的关系,如a ≥ b表示a大于等于b。
- 不等号:≠,表示不等的关系,如a ≠ b表示a不等于b。
2. 不等式的解集不等式的解集是满足不等式条件的数值范围。
解集可以表示为一个区间或多个不等式的交集或并集。
例如,不等式x > 3的解集可以表示为(3, +∞),表示 x 的取值范围大于3,不包括3本身。
3. 不等式的性质- 不等式的传递性:如果 a < b 且 b < c,那么有 a < c,这是不等式的传递性质。
例如,如果 x < y 且 y < z,则可以推断出 x < z。
- 不等式的加法性:如果 a < b,那么有 a + c < b + c,其中 c 是任意实数。
例如,如果 x < y,则可以推断出 x + 1 < y + 1。
- 不等式的乘法性:如果 a < b 且 c > 0,那么有 ac < bc,其中 c 是正实数;如果 a < b 且 c < 0,那么有 ac > bc,其中 c 是负实数。
例如,如果 x < y 且 z > 0,则可以推断出 xz < yz。
- 不等式的取反性:如果 a < b,则有 -a > -b。
例如,如果 x < y,则可以推断出 -x > -y。
不等式的基本概念与性质不等式是数学中常见的一种关系表示形式,用于描述数值的大小关系。
与等式不同的是,不等式中的符号表示的是不等关系,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)等。
一、基本概念1. 不等式的定义:不等式是数学中一种描述数值大小关系的表达式,由一个或多个代数式组成,用不等号连接。
例如:a > b、x + y ≤ 102. 不等式的解:满足不等式的数值范围即为不等式的解。
与等式一样,不等式的解也可以是一个数、一组数或数的区间。
例如:不等式 x > 3 的解为 x > 3,不等式2x ≤ 10 的解为0 ≤ x ≤ 53. 不等式中的常见符号:不等式中常见的符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。
符号的意义如下:- 大于(>):表示左侧的数大于右侧的数。
- 小于(<):表示左侧的数小于右侧的数。
- 大于等于(≥):表示左侧的数大于或等于右侧的数。
- 小于等于(≤):表示左侧的数小于或等于右侧的数。
二、不等式的性质1. 加减法性质:对不等式两侧同时加减一个数,不等式的大小关系保持不变。
例如:若 a > b,则 a + c > b + c,a - c > b - c(其中 c 为任意实数)2. 乘法性质:对不等式两侧同时乘以一个正数,不等式的大小关系保持不变;对不等式两侧同时乘以一个负数,则不等式的大小关系反转。
例如:若 a > b,则 ac > bc(其中 c > 0);若 a > b,则 ac < bc(其中 c < 0)3. 不等式的翻转:不等式两边同时取负号,则不等式的大小关系发生翻转。
例如:若 a > b,则 -a < -b4. 绝对值不等式性质:- 若 |a| < c,则 -c < a < c- 若 |a| > c,则 a < -c 或 a > c5. 平方不等式性质:- 若 a > b(a、b 非负数),则 a^2 > b^2- 若 a < b(a、b 非负数),则 a^2 < b^26. 合并与分离不等式:两个不等式通过“且”或“或”连接,可以合并成一个不等式;一个复合不等式可以分离成两个不等式。
不等式基本概念与性质不等式是数学中重要的概念之一,用于描述数值关系的符号不等于号(≠),不等式(<、≤、>、≥)用于表示两个数之间的大小关系。
在学习不等式的过程中,我们需要了解不等式的基本概念与性质,以及如何利用它们解决实际问题。
本文将介绍不等式的基本概念与性质,并举例说明其应用。
一、不等式的基本概念1. 不等式的定义:不等式是数的比较关系的代数表达式,其形式为x>y或x<y,其中x和y为实数。
2. 不等式的解集:不等式的解集是满足给定不等式的实数的集合。
解集可以是有限集、无限集或空集。
3. 不等式的等价变形:通过对不等式进行等价变形可以得到与原不等式等价的不等式。
常用的等价变形包括加减法、乘除法、平方等。
二、不等式的性质1. 不等性质的传递性:对于任意实数a、b和c,如果a>b且b>c,则有a>c。
2. 加法性质:对于任意实数a、b和c,如果a>b,则a+c>b+c。
3. 减法性质:对于任意实数a、b和c,如果a>b,则a-c>b-c。
4. 乘法性质:对于任意实数a、b和c,如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac<bc。
5. 除法性质:对于任意实数a、b和c,如果a>b,c>0,则a/c>b/c;如果a>b,c<0,则a/c<b/c。
三、不等式的应用1. 不等式的解集:通过对不等式进行等价变形,可以确定不等式的解集。
解集的求解可以通过图像法、试数法或推理法等多种方法。
2. 推论的应用:通过对不等式的性质进行推导,可以解决实际问题。
例如,利用不等式性质可以证明两个物体的质量或长度的关系,解决优化问题等。
例题一:已知不等式3x+2>7,求解x的范围。
解:将不等式进行等价变形,得到3x>7-2,即3x>5。
再将不等式两边都除以3,得到x>5/3。
不等式的基本概念与性质
在数学中,不等式是表示两个数或者两个代数式之间大小关系的数学表达式。
不等式通过使用不等于号(≠)、小于号(<)、小于等于号(≤)、大于号(>)和大于等于号(≥)等符号,来描述数值的相对大小关系。
不等式的概念和性质在数学中起到了重要的作用,对于解决实际问题和进行数学推理都具有重要意义。
一、不等式的基本概念
1. 不等式的定义
不等式是一个数学表达式,通过使用不等于号、小于号、小于等于号、大于号和大于等于号等符号来比较两个数或者两个代数式的大小关系。
2. 不等式的符号及其含义
(1)≠:不相等。
表示两个数或两个代数式不相等。
(2)<:小于。
表示第一个数或者代数式小于第二个数或代数式。
(3)≤:小于等于。
表示第一个数或代数式小于等于第二个数或代数式。
(4)>:大于。
表示第一个数或代数式大于第二个数或代数式。
(5)≥:大于等于。
表示第一个数或代数式大于等于第二个数或代数式。
3. 不等式的解集
不等式的解集是使得不等式成立的数的集合。
解集可以是无穷集合、有限集合或为空集。
二、不等式的性质
1. 不等式的传递性
如果a<b,b<c,那么a<c。
即如果两个数的大小关系成立,并且第二个数与第三个数的大小关系也成立,那么第一个数与第三个数之
间的大小关系也成立。
2. 不等式的加减性
如果a<b,那么a±c<b±c。
即不等式两边同时加上或减去同一个数,不等式的方向保持不变。
3. 不等式的乘除性
(1)如果a<b,且c>0,那么ac<bc。
即不等式两边同时乘以一个正数,不等式的方向保持不变。
(2)如果a<b,且c<0,那么ac>bc。
即不等式两边同时乘以一个负数,不等式的方向发生改变。
4. 不等式的倒置性
如果a<b,那么-b<-a。
即不等式两边取相反数,不等式的方向发生改变。
5. 不等式的平方性
(1)如果a<b,且a、b≥0,那么a²<b²。
即两个非负数之间的不等关系,其平方的大小关系保持不变。
(2)如果a<b,且a、b≤0,那么a²>b²。
即两个非正数之间的不等关系,其平方的大小关系发生改变。
6. 不等式的倒数性
如果a<b,且a、b>0,那么1/b<1/a。
即两个正数之间的倒数的大小关系是倒置的。
总结:
不等式是一种表示数值相对大小关系的数学表达式。
通过不等号的使用,不等式可以比较两个数或者代数式之间的大小关系。
不等式的基本概念包括定义、符号及其含义以及解集。
而不等式的性质包括传递性、加减性、乘除性、倒置性、平方性和倒数性,这些性质可以帮助我们进行不等式的运算和推导,解决实际问题和进行数学推理。
不等式的基本概念与性质在数学中具有重要的作用,它们不仅帮助我们理解数字之间的相对大小关系,还广泛应用于代数、几何和数学分析等各个数学分支中。
通过深入学习和理解不等式的概念与性质,我们可以提高数学推理和问题解决的能力,为未来的学习和研究打下坚实的基础。