确定二次的函数的表达式
- 格式:doc
- 大小:121.00 KB
- 文档页数:7
【知识总结】1.抛物线c bx ax y ++=2,与x 轴的两个交点)0,(),0,(21x B x A ,则线段AB 的长为:aac b x x AB 4221-=-=. 2.二次函数解析式的三种形式:一般式:c bx ax y ++=2(c b a ,,为常数,0≠a )交点式:()()21x x x x a y --=(0≠a ,21,x x 是抛物线与x 轴两交点的横坐标) 顶点式:()k h x a y +-=2(k h a ,,为常数,0≠a )3.抛物线c bx ax y ++=2与直线b kx y +=的交点的求法就是解方程组 ⎩⎨⎧+=++=bkx y c bx ax y 2的解y x ,的值分别作为交点的横纵坐标.4.已知抛物线c bx ax y ++=2,求其关于x 轴、y 轴、原点对称的抛物线的解析式.(1)抛物线c bx ax y ++=2关于x 轴对称的抛物线的解析式:c bx ax y ---=2(2)抛物线c bx ax y ++=2关于y 轴对称的抛物线的解析式:c bx ax y +-=2(3)抛物线c bx ax y ++=2关于原点对称的抛物线的解析式:c bx ax y -+-=25.c b a ,,符号的确定a 的符号:由开口方向决定:开口向上,0>a ;开口向下,0<a . a 决定抛物线开口大小:a 越大开口越小,a 越小开口越大;a 相等则形状相同.b 的符号:b 与a 共同决定对称轴的位置,“左同右异”c 的符号:由抛物线与y 轴交点决定:交点在y 轴正半轴0>c ;交点在y 轴负半轴0<c ;抛物线过原点0=c .且抛物线与y 轴交点坐标为(0,c )6. 抛物线c bx ax y ++=2与x 轴的交点个数由ac b 42-决定:⇔>-042ac b 抛物线与x 轴有两个交点;⇔=-042ac b 抛物线与x 轴有一个交点;⇔<-042ac b 抛物线与x 轴有无交点;例1、求解析式(1)二次函数的图象经过点(-3,2),(2,7),(0,-1),求其解析式.(2)已知抛物线的对称轴为直线x=-2,且经过点 (-l ,-1),(-4,0)两点.求抛物线的解析式.(3)已知抛物线与 x 轴交于点(1,0)和(2,0)且过点 (3,4),求抛物线的解析式.例2、已知抛物线y=x2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP 的面积.例3、已知二次函数2=-+,求分别满足下列条件的二次函数关系式365y x x(1)图像与抛物线2=-+关于x轴对称;365y x x(2)图像与抛物线2365=-+关于y轴对称;y x x(3)图像与抛物线2y x x=-+关于经过其顶点且平行于x轴的直线l对称。
二次函数的三种表示方式1.二次函数的一般式:y=ax2+bx+c(a≠0);2.二次函数的顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x 1+x2=,x1x2=,即=-(x1+x2),=x1x2.所以,y=ax2+bx+c=a( )= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.二次函数的交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.。
对称轴公式二次函数表达式
对称轴公式是用来确定二次函数的对称轴的一种方法。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,x为自变量,y为因变量。
对称轴公式的形式为x = -b/2a。
它给出了二次函数的对称轴的x坐标。
具体解释如下:
1. 获取二次函数的系数:根据给定的二次函数表达式,确定a、b、c 的值。
2. 计算对称轴的x坐标:将b和a带入对称轴公式x = -b/2a中,进行计算。
3. 解释对称轴的意义:对称轴是二次函数图像的一条垂直线,将二次函数图像分为两个完全对称的部分。
对称轴的x坐标表示图像左右对称的中心点。
在对称轴上的任意一点,其对应的y值与它的对称点的y值相等。
需要注意的是,对称轴公式适用于所有二次函数,无论其开口向上还是向下。
它是一种简单而有效的方法来确定二次函数图像的对称轴位
置。
确定二次的函数的表达式知识点1 用一般式确定二次函数表达式1.已知抛物线上的三点坐标,可以设函数解析式为)0(2≠++=a c bx ax y ,代入后得到一个三元一次方程,解之即可得到c b a ,,的值,从而求出函数解析式,这种解析式叫一般式.2.用待定系数法确定二次函数表达式的一般步骤:步骤一:设含有待定系数的二次函数表达式y =ax 2+bx +c (a ≠0);步骤二:将题设中满足二次函数图象的点代入所设表达式,得到关于待定系数a 、b 、c 的方程组;步骤三:解这个方程组,得到待定系数a 、b 、c 的值; 步骤四:将待定系数的值代入表达式,得到所求函数表达式.例1.已知二次函数的图象经过点(0,3),(−3,0),(2,−5),且与x 轴交于A 、B 两点。
(1)试确定此二次函数的解析式; (2)求出抛物线的顶点C 的坐标;(3)判断点P (−2,3)是否在这个二次函数的图象上?如果在,请求出△P AB 的面积;如果不在,试说明理由。
例2.抛物线y =ax 2+bx +c 过(0,0),(12,0),(6,3)三点,则此抛物线的表达式是 .知识点2 用顶点式确定二次函数表达式已知二次函数的顶点坐标为(h ,k )的话,可以设成顶点式:y =a (x -h )2+k (a 、h 、k 为常数且a ≠0)然后再找一点带入二次函数的顶点式,即可求得a 的值,最后回代到顶点式即可(提示:最后一般要把二次函数的解析式化成一般式)。
例1.已知抛物线y =ax 2+bx +c 的图象顶点为(−2,3),且过(−1,5),则抛物线的表达式为______. 例2.已知抛物线y =ax 2+bx +c ,当x =2时,y 有最大值4,且过(1,2)点,此抛物线的表达式为 .例3.有一个二次函数,当x <-1时,y 随x 的增大而增大;当x >-1时,y 随x 的增大而减小;且当x =-1时,y =3,它的图象经过点(2,0),请用顶点式求这个二次函数的表达式.例4.由表格中的信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数表达式正确的( )A . y =x 2-x +4B . y =x 2-x +6 C . y =x 2+x +4 D . y =x 2+x +6例5. 已知函数抛物线的顶点坐标为(-3,-2),且过点(1,6),求此抛物线的解析式。
知识点3 用交点式确定二次函数表达式如果知道抛物线与x 轴的两个交点坐标分别为A (x 1,0)和B (x 2,0)两点,这时可以设二次函数的解析式是))((21x x x x a y --=,这种形式,我们称为二次函数的交点式。
设出交点式后,只需再找出二次函数图象上的一点,把它带入二次函数的交点式,解方程即可求得a 的值,最后回代到交点式即可(提示:最后一般要把二次函数的解析式化成一般式)。
例1.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),则该抛物线的表达式为 .例2.抛物线y =ax 2+bx +c 与x 轴的两个交点为(-1,0),(3,0),其形状与抛物线y =-2x 2相同,则y =ax 2+bx +c 的函数表达式为_______________.例3.已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一个交点为C ,则AC 长为_______.例4.已知二次函数y =2316x bx c -++的图象经过A (0,3),B (-4,92-)两点. (1)求b ,c 的值; (2)二次函数y =2316x bx c -++的图象与x 轴是否存在公共点?若有求公共点的坐标;若没有,请说明理由.二次的函数的应用利用二次函数求图形的最大面积销售中的最大利润二次函数中的实际应用综合知识点1 利用二次函数求图形的最大面积1.矩形的一边长为l m ,则另一边长为?矩形的面积S 怎样表示?2. 本题中有几个变量?分别是?S 是l 的函数吗?l 的取值范围是什么?3. 利用什么知识来确定l 是多少时S 的值最大?4.不规则图形的面积如何求:割补法、铅垂线法、等积法等。
例1.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y 米,矩形的面积为S平方米,且x<y.(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?知识点2 销售中的最大利润复习回顾一下商品销售中的各个相关量以及它们之间的数量关系利润=售价-进价=进价×利润率利润率=售价进价进价×100%=利润进价×100%打折销售中的售价=标价(定价)×打折数×0.1售价=成本+利润=成本×(1+利润率)利息=本金×利率例1.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?例2.东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为⎪⎪⎩⎪⎪⎨⎧≤≤+≤≤+=)4825(4821-)241(3041为整数,为整数,t t t t t t p ,且其日销售量y (kg )与时间t (天)的关系如下表: 时间t (天) 1 3 6 10 20 30 … 日销售量y (kg )1181141081008040…(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少? (2)问哪一天的销售利润最大?最大日销售利润为多少?例3.某商店购进一批单价为20元的日用商品,如果以单价30元销售那么半月内可售出400件,根据销售经验,推广销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件。
(1)销售单价提高多少元,可获利4480元。
例4.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某产品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?随堂练习题1.(2015河北唐山)如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是 .2.(2015福建莆田升学)用一根长为32cm 的铁丝围成一个矩形,则围成矩形面积的最大值是 cm 2.3.(2015江苏常熟期末)正方体的表面积S(cm 2)与正方体的棱长a(cm)之间的函数关系式为 .6、(2017·丽水)将函数y=x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A 、向左平移1个单位B 、向右平移3个单位C 、向上平移3个单位D 、向下平移1个单位7.(2015·湖南省益阳市)若抛物线y =(x ﹣m )2+(m +1)的顶点在第一象限,则m 的取值范围为( )A . m >1B . m >0C . m >﹣1D . ﹣1<m <08.(2015•江苏苏州)若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.(2015•广东梅州,)对于二次函数y =﹣x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.410.(2015•四川广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣311.(2015•广东梅州,)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 …月销量(件)200 180 160 140 …已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是元;②月销量是件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?。