数列的求和-高考数学一轮复习(新高考专用)
- 格式:docx
- 大小:891.39 KB
- 文档页数:19
高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。
高考数学一轮总复习数列与级数的求和公式推导与应用高考数学一轮总复习:数列与级数的求和公式推导与应用数列与级数是高中数学中的重要内容,也是高考数学考试中常见的考点之一。
在高考中,理解、掌握数列与级数的求和公式的推导与应用是解题的关键。
本文将重点介绍数列与级数的求和公式的推导方法,并结合实际应用问题进行解析。
一、数列的求和公式推导1.1 等差数列的求和公式对于等差数列{an},其中a1为首项,d为公差,n为项数,其前n项和Sn可以用下式表示:Sn = (a1 + an) * n / 2推导过程如下:首先,将数列{an}逆序相加并累加两式,得到:2Sn = (a1 + an) + (a2 + a{n-1}) + (a3 + a{n-2}) + ... + (an + a1)由于等差数列的关系式为an = a1 + (n-1)d,则上式可以简化为:2Sn = (a1 + a1 + (n-1)d) + (a1 + d + a1 + (n-2)d) + (a1 + 2d + a1 + (n-3)d) + ... + (a1 + a1 + (n-1)d)化简后得:2Sn = n(a1 + an)最终得到等差数列的求和公式:Sn = (a1 + an) * n / 21.2 等比数列的求和公式对于等比数列{an},其中a1为首项,q为公比,n为项数,其前n 项和Sn可以用下式表示:Sn = a1 * (1 - q^n) / (1 - q)推导过程如下:首先,将Sn与qSn相减得:Sn - qSn = a1 * (1 - q^n) - a1 * q * (1 - q^(n-1))化简后得:Sn(1 - q) = a1(1 - q^n)由于等比数列的关系式为an = a1 * q^(n-1),则上式可以简化为:Sn(1 - q) = an最终得到等比数列的求和公式:Sn = a1 * (1 - q^n) / (1 - q)二、数列求和公式的应用2.1 应用一:计算等差数列的前n项和假设某等差数列的首项为a1,公差为d,共有n项。
第五节数列求和课程标准1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.考情分析考点考法:高考命题常以等差、等比数列为载体,考查裂项相消、错位相减求和等数列求和方法,涉及奇偶项的求和问题是高考的热点,常以解答题的形式出现.核心素养:数学建模、数学运算、逻辑推理.【核心考点·分类突破】考点一分组、并项、倒序相加求和[例1](1)数列112,214,318,…的前n项和为S n=()A.2-1B.(r1)2+2nC.(r1)2-12+1D.2-1【解析】选C.数列112,214,318,...的前n项和为S n=(1+2+3+...+n)+(12+14+18+ (12)=(r1)2+12(1-12)1-12=(r1)2-12+1.(2)设f(x)=21+2,则f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024)=________.【解析】因为f(x)=21+2,所以f(x)+f(1)=1.令S=f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024),①则S=f(2024)+f(2023)+…+f(1)+f(12)+…+f(12024),②所以2S=4047,所以S=40472.答案:40472(3)(2023·深圳模拟)已知公差为2的等差数列的前n项和为S n,且满足S2=a3.①若a1,a3,a m成等比数列,求m的值;②设b n=a n-2,求数列的前n项和T n.【解析】①由题意知数列是公差为2的等差数列,设公差为d,则d=2,又因为S2=a3,所以a1+a2=a3,即2a1+d=a1+2d,得a1=d=2,所以a n=a1+(n-1)d=2n(n∈N*).又因为a1,a3,a m成等比数列,即32=a1a m,所以36=2×2m,得m=9.②因为b n=a n-2=2n-4n,所以T n=(2×1-41)+(2×2-42)+…+(2×n-4n)=2×(1+2+…+n)-(41+42+…+4n)=2×(r1)2-4×(1-4)1-4=n(n+1)-43×(4n-1)=n2+n+43-4r13.【解题技法】分组转化与并项求和法(1)数列的项可以拆分成两类特殊数列,分别对这两类数列求和,再合并后即为原来的数列的前n项和;(2)数列的项具有一定的周期性,相邻两项或多项的和是一个有规律的常数,可以将数列分成若干组求和.【对点训练】1.已知数列的通项公式为a n=n cos(n-1)π,S n为数列的前n项和,则S2023=()A.1009B.1010C.1011D.1012【解题提示】将a n=n cos(n-1)π化为a n=n×-1-1,利用并项法求和.【解析】选D.因为当n为奇数时cos(n-1)π=1,当n为偶数时cos(n-1)π=-1,所以cos(n-1)π=-1-1,所以a n=n cos(n-1)π=n×-1-1.S2023=(1-2)+(3-4)+…+(2021-2022)+2023=-1011+2023=1012.2.设f(x)=44+2,若S=f(12024)+f(22024)+…+f(20232024),则S=________.【解析】因为f(x)=44+2,所以f(1-x)=41-41-+2=22+4,所以f(x)+f(1-x)=44+2+22+4=1.S=f(12024)+f(22024)+…+f(20232024),①S=f(20232024)+f(20222024)+…+f(12024),②①+②,得2S=[f(12024)+f(20232024)]+[f(22024)+f(20222024)]+…+[f(20232024)+f(12024)]=2023,所以S=20232.答案:202323.已知是公差d≠0的等差数列,其中a2,a6,a22成等比数列,13是a4和a6的等差中项;数列是公比q为正数的等比数列,且b3=a2,b5=a6.(1)求数列和的通项公式;(2)令c n=a n+b n,求数列的前n项和T n.【解析】(1)因为a2,a6,a22成等比数列,所以62=a2a22,即(1+5)2=(a1+d)(a1+21d)①.因为13是a4和a6的等差中项,所以a4+a6=26,即(a1+3d)+(a1+5d)=26②,由①②可得:a1=1,d=3,所以a n=1+(n-1)×3=3n-2,从而b3=a2=4,b5=a6=16.因为数列是公比q为正数的等比数列,所以b5=b3q2,即16=4q2,所以q=2,从而b n=b3q n-3=2n-1.(2)由于b n=2n-1,所以b1=1.因为c n=a n+b n,所以T n=c1+c2+…+c n=(a1+b1)+(a2+b2)+…+(a n+b n)=(a1+a2+…+a n)+(b1+b2+…+b n)=+(-1)2×3+1-21-2=2n+32n2-12n-1.考点二裂项相消法求和[例2](1)已知函数f(x)=x a的图象过点(4,2),令a n=1(r1)+(),n∈N*.记数列{a n}的前n项和为S n,则S2025=________.【解析】由f(4)=2可得4a=2,解得a=12,则f(x)=12,所以a n=1(r1)+()==+1-,S2025=a1+a2+a3+…+a2025=(2-1)+(3-2)+(4-3)+…+(2025-2024)+(2026-2025)=2026-1.答案:2026-1(2)已知数列的各项均为正数,S n是其前n项的和.若S n>1,且6S n=2+3a n+ 2(n∈N*).①求数列的通项公式;②设b n=1r1,求数列的前n项和T n.【解析】①因为6S n=2+3a n+2,(i)n=1时,6S1=6a1=12+3a1+2,即12-3a1+2=0,解得a1=2或a1=1,因为S n>1,所以a1=2;(ii)n≥2时,由6S n=2+3a n+2,有6S n-1=-12+3a n-1+2,两式相减得6(S n-S n-1)=2--12+3a n-3a n-1,所以6a n=2--12+3a n-3a n-1,所以2--12-3a n-3a n-1=0,所以(a n+a n-1)(a n-a n-1)-3(a n+a n-1)=0,所以(a n+a n-1)(a n-a n-1-3)=0.因为数列的各项均为正数,所以a n+a n-1≠0,所以a n-a n-1-3=0,即a n-a n-1=3,综上所述,是首项a1=2,公差d=3的等差数列,所以a n=a1+(n-1)d=2+(n-1)×3=3n-1,所以数列的通项公式为a n=3n-1.②由①知a n=3n-1,所以a n+1=3(n+1)-1=3n+2,所以b n=1r1=1(3-1)(3r2)=13×(3r2)-(3-1)(3-1)(3r2)=13×(13-1-13r2),所以T n=13×(12-15)+13×(15-18)+13×(18-111)+…+13×(13-1-13r2)=13×(12-15+15-18+18-111+…+13-1-13r2)=13×(12-13r2)=13×3r2-22(3r2)=6r4,所以数列的前n项和T n=6r4.【解题技法】破解裂项相消求和的关键点(1)定通项:根据已知条件求出数列的通项公式.(2)巧裂项:根据通项公式的特征进行准确裂项,把数列的每一项,表示为两项之差的形式.(3)消项求和:通过累加抵消掉中间的项,达到消项的目的,准确求和.(4)常见的裂项结论:①设等差数列的各项不为零,公差为d(d≠0),则1r1=1(1-1r1);②142-1=12(12-1-12r1);③1(r1)(r2)=12(r1)(1-1r2)=12[1(r1)-1(r1)(r2)];④242-1=14(42-1)+1442-1=14+18(12-1-12r1);⑤a n=2(2+)(2r1+)=12+-12r1+;⑥a n=r12(r2)2=14[12-1(r2)2].提醒:要注意正负相消时,可以通过写出前几项观察消去规律的方法,确定消去了哪些项,保留了哪些项,不可漏写未被消去的项.【对点训练】1.{a n }是等比数列,a 2=12,a 5=116,b n =r1(+1)(r1+1),则数列{b n }的前n 项和为()A .2-12(2+1)B .2-12+1C .12+1D .2-12+2【解析】选A .a 5=a 2·q 3,所以q 3=18,所以q =12,a 1=1,所以a n =(12)n -1.b n =(12)[(12)-1+1][(12)+1]=1(12)+1-1(12)-1+1,所以b 1+b 2+b 3+…+b n =[1(12)1+1-1(12)0+1]+[1(12)2+1-1(12)1+1]+[1(12)3+1-1(12)2+1]+…+[1(12)+1-1(12)-1+1]=1(12)+1-12=2-12(2+1).2.已知数列{a n }的前n 项和为S n ,且a 2=8,S n =r12-n -1.(1)求数列{a n }的通项公式;(2)n 项和T n .【解析】(1)因为a 2=8,S n =r12-n -1,所以a 1=S 1=22-2=2.当n ≥2时,a n =S n -S n -1=r12-n -1-(2-n ),即a n +1=3a n +2.又a 2=8=3a 1+2,所以a n +1=3a n +2,n ∈N *,所以a n +1+1=3(a n +1),所以数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,所以a n +1=3×3n -1=3n ,所以a n =3n -1.(2)因为2×3=2×3(3-1)(3r1-1)=13-1-13r1-1,r1n 项和T n =(13-1-132-1)+(132-1-133-1)+…+(13-1-13r1-1)=12-13r1-1.考点三错位相减法求和[例3]已知数列中,a 1=8,且满足a n +1=5a n -2·3n .(1)证明:数列-3为等比数列,并求数列的通项公式;(2)若b n =n (a n -3n ),求数列的前n 项和S n .【解析】(1)因为a n +1=5a n -2·3n ,所以a n +1-3n +1=5a n -5·3n =5(a n -3n ),所以数列-3是以a 1-31=5为首项,以5为公比的等比数列,所以a n -3n =5×5n -1=5n ,所以a n =3n +5n .(2)因为a n =3n +5n ,所以b n =n (a n -3n )=n ×5n ,所以S n =b 1+b 2+b 3+…+b n ,即S n =1×51+2×52+3×53+…+n ×5n ①,所以5S n =1×52+2×53+3×54+…+n ×5n +1②,由①-②得:-4S n =1×51+1×52+1×53+…+1×5n -n ×5n +1,-4S n =5(1-5)1-5-n ×5n +1,化简得:S n =5+(4-1)×5r116.【解题技法】错位相减法求和的解题策略(1)巧分拆,即将数列的通项公式分拆为等差数列与等比数列积的形式,并求出公差和公比.(2)构差式,即写出S n的表达式,再乘公比或除以公比,然后将两式相减.(3)后求和,根据差式的特征准确进行求和.提醒:错位相减法求和的注意点①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式必须注意公比q是否等于1,如果q=1,应用公式S n=na1.【对点训练】已知数列的前n项和为S n=3n2+8n-6,是等差数列,且a n=b n+b n+1(n≥2).(1)求数列和的通项公式;(2)令c n=b n·2n+2n+1,求数列的前n项和T n.【解析】(1)S n=3n2+8n-6,所以n≥2时,S n-1=3(n-1)2+8(n-1)-6,所以a n=S n-S n-1=6n+5.n=1时,a1=S1=5,不满足a n=6n+5,所以a n=5(=1)6+5(≥2);设的公差为d,a n=b n+b n+1(n≥2),所以a n-1=b n-1+b n(n≥3),所以a n-a n-1=b n+1-b n-1,所以2d=6,所以d=3.因为a2=b2+b3,所以17=2b2+3,所以b2=7⇒b1=4,所以b n=3n+1;(2)c n=3(n+1)2n,所以T n=3×2+3×22+…+(+1)2①,所以2T n=32×22+3×23+…+(+1)2r1②,①-②得,-T n=3[2×2+22+23+…+2n-(n+1)2n+1]+1)2r1=-3n·2n+1,所以T n=3n·2n+1,所以数列的前n项和T n=3n·2n+1.。
第04讲 数列求和(精讲)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析题型一:裂项相消求和法 题型二:错位相减求和法 题型三:分组求和法 题型四:倒序相加求和法第四部分:高考真题感悟1.公式法(1)等差数列前n 项和公式11()(1)22n n n a a n n dS na +-==+; (2)等比数列前n 项和公式111(1)11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩2.裂项相消求和法:裂项相消求和法就是把数列的各项变为两项之差,使得相加求和时一些正负项相互抵消,前n 项和变成首尾若干少数项之和,从而求出数列的前n 项和.①21111(1)1n n n n n n ==-+++②1111()()n n k k n n k=-++③211111()41(21)(21)22121n n n n n ==---+-+④1111()(1)(2)2(1)(1)(2)n n n n n n n =-+++++1k= 3.错位相减求和法:错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 4.分组求和法:如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法. 5.倒序相加求和法:即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.1.(2022·福建·厦门一中高二阶段练习)若数列{}n a 满足()11n a n n =+,则{}n a 的前2022项和为( )A .12023B .20222023C .12022D .20212022【答案】B 解:由题得()11111n a n n n n ==-++,所以{}n a 的前2022项和为11111112022112232022202320232023-+-++-=-=. 故选:B2.(2022·全国·高三专题练习(文))若数列{an }的通项公式为an =2n +2n -1,则数列{an }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +n -2 D .2n +1+n 2-2【答案】D由题可知:设数列{an }的前n 项和为n S 所以12n n S a a a =+++即()()22221321n n n S =+++++++-所以()212[1(21)]122n n n n S -+-=+-故1222n n S n +=-+故选:D3.(2022·全国·高三专题练习(文))设4()42xx f x =+,1231011111111f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A .4B .5C .6D .10【答案】B由于()()1144114242x xxx f x f x --+-=+=++,故原式11029565111111111111f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 4.(2022·江苏·高二课时练习)求和:()10132kk =+∑.【答案】2076()10231013232+++3+2+++kk =+=+⋅⋅⋅∑()(32)()(32)231030(2222)=++++⋅⋅⋅+102(12)3012-=+- 113022=-+ 2076=题型一:裂项相消求和法例题1.(2022·浙江省淳安中学高二期中)数列的前2022项和为( )A B C 1 D 1【答案】B记的前n项和为nT,则2022140452T=+)112=;故选:B例题2.(2022·河南安阳·高二阶段练习(理))已知{}n a是递增的等差数列,13a=,且13a,4a,1a成等比数列.(1)求数列{}n a的通项公式;(2)设数列11n na a+⎧⎫⎨⎬⎩⎭的前n项和为nT,求证:11156nT≤<.【答案】(1)21na n=+(2)见解析.(1)设{}n a的公差为d,因为13a,4a,1a成等比数列,所以()()222411333331220a a a d d d d=⋅⇒+=+⇒-=,因为{}n a是递增,所以0d>,故2d=,所以21na n=+.(2)()()111111212322123n na a n n n n+⎛⎫==-⎪++++⎝⎭,所以11111111112355721232323nTn n n⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,因为123n+单调递减,所以n T单调递增,故当1n=时,min11()15nT T==,而111123236n nT⎛⎫=-<⎪+⎝⎭,故11156nT≤<.例题3.(2022·辽宁·沈阳市第八十三中学高二阶段练习)已知n S为等差数列{}n a的前n项和,321S=,555S=.(1)求n a、n S;(2)若数列11n na a+⎧⎫⎨⎬⎩⎭的前n项和n T,求满足225nT>的最小正整数n.【答案】(1)an=4n﹣1,22nS n n=+(2)19(1)设等差数列{an }的公差为d ,则11323212545552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,即117211a d a d +=⎧⎨+=⎩,解得134a d =⎧⎨=⎩,故()34141n a n n =+-=-,2(341)22n n n S n n +-==+ (2)由(1)得,1111111414344143n n a a n n n n +⎛⎫=⋅=- ⎪-+-+⎝⎭.故111111111...437471144143n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1114343129n n n ⎛⎫=-= ⎪++⎝⎭,令225n T >有129225n n +>,即241825n n >+,解得18n >,故满足满足225nT >的最小正整数为19例题4.(2022·全国·高三专题练习)已知正项数列{}n a 的前n 项和n S 满足:12(N )n n S a a n +=-∈,且123+1,a a a ,成等差数列.(1)求数列{}n a 的通项公式; (2)令()()()2221N log log n n n b n a a ++=∈⋅,求证:数列{}n b 的前n 项和34n T <.【答案】(1)()2N nn a n +=∈(2)证明见解析(1)由题意:()12,n n S a a n N +=-∈,()-1-112,2,N n n S a a n n +∴=-≥∈ 两式相减得到-1=2(2,)n n a a n n N +≥∈,又0n a >,{}n a ∴是首项为1a ,公比为2的等比数列, 再由123+1,a a a ,成等差数列得,得()2132+1a a a =+, 即()11122+14a a a =+,则1=2a ,{}n a ∴的通项公式为()2N n n a n +=∈.(2)由题意知,22211111()(2)22log 2log 2n n n b n n n n +===-++⋅1111111111(1)232435112n T n n n n ∴=-+-+-++-+--++ 11113111122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭3N ,4n n T +∈∴<例题5.(2022·河南濮阳·高二期末(文))已知数列{}n a 的前n 项和为n S ,12a =,且25a =,()*11232,n n n S S S n n +--+=≥∈N .(1)求数列{}n a 的通项公式;(2)已知n b 是n a ,1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)31n a n =-(2)()232nn +(1)当2n ≥时,()()113n n n n S S S S +----=, 故13n n a a +-=,又12a =,且25a =, 213a a -=,满足13n n a a +-=,故数列{}n a 为公差为3的等差数列,通项公式为()21331n a n n =+-⨯=-,(2)由题意得:()()23132n b n n =-+,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 则()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭ 例题6.(2022·海南华侨中学高二期中)设等比数列{}n a 满足124a a +=,318a a -=. (1)求{}n a 的通项公式;(2)若()()112311n n n n b a a -+⨯=++,记数列{}n b 的前n 项和为n T ,求n T 的取值范围.【答案】(1)13-=n n a (2)11,42⎡⎫⎪⎢⎣⎭(1)解:设公比为q ,由124a a +=,318a a -=,所以1121148a a q a q a +=⎧⎨-=⎩,解得11a =,3q =, 所以13-=n n a .(2)解:由(1)及()()112311n n n n b a a -+⨯=++,所以()()111231131313131n n n n n n b ---⨯==-++++,所以0112231111111113131313131313131n n n T -=-+-+-++-++++++++011113131231n n =-=-+++ 因为()()1111111111123023123131313131n n n n n n n n n T T -+++-⨯⎛⎫⎛⎫-=---=-=>⎪ ⎪++++++⎝⎭⎝⎭,即n T 单调递增, 所以114n T T ≥=,又1112312n n T =-<+,所以1142n T ≤<,即11,42n T ⎡⎫∈⎪⎢⎣⎭;题型二:错位相减求和法例题1.(2022·全国·高三专题练习) 1232482n nnS =++++=( ) A .22n n n -B .1222n n n +--C .1212n n n +-+D .1222n nn +-+【答案】B 由1232482n nn S =++++, 得23411111112322222n n S n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234111111112222222nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111222211222212n n n n n n n n n ++++⎛⎫- ⎪--⎛⎫⎛⎫⎝⎭=-=--⋅= ⎪ ⎪⎝⎭⎝⎭-.所以1222n n nn S +--=. 故选:B.例题32.(2022·青海玉树·高三阶段练习(理))已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,且111a b ==,32312S b ==. (1)求数列{}n a ,{}n b 的通项公式;(2)若1n n n c a b +=,求数列{}n c 的前n 项和n T .【答案】(1)32n a n =-,14n n b -=(2)()1414n n T n +=+-(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 由题意得:13312a d +=,解得:3d =, 所以()13132n a n n =+-=-, 由2312b =得:24b =,所以214a q a ==, 所以14n n b -=(2)()1324nn n n c a b n +==-⋅, 则()2344474324n n T n =+⨯+⨯++-①, ()2341444474324n n T n +=+⨯+⨯++-②,两式相减得:()23413434343434324n n n T n +-=+⨯+⨯+⨯++⨯--()()111164433241233414n n n n n +++-=+⨯--=-+--,所以()1414n n T n +=+-例题3.(2022·江苏泰州·模拟预测)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且22n n S a =-,2log =n n n b a a .(1)求数列{}n a 的通项公式; (2)求证:当2n ≥时,4n n T S ≥+. 【答案】(1)2n n a =(2)证明见解析(1)因为22n n S a =-,所以1122a a =-,则12a =, 当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,化简得12n n a a -=,所以数列{}n a 是以2为首项,2为公比的等比数列,因此2n n a = (2)()12122212n n n S +-==--,22log 2log 22n n nn n n b a a n =⋅=⋅=⋅,则212222nn T n =⨯+⨯++⨯……, 所以231212222n n T n +=⨯+⨯++⨯……,两式相减得()231122222n n n T n ++=-⨯-+++⋅……,即()()231121222222212n nn n n T n n ++-=-++++⋅=-+⋅+-……,故()1122n n T n +=-+.所以当2n ≥时,()()()111122222244n n n n n T S n n +++-=-+--=-+≥,所以4n n T S ≥+.例题4.(2022·宁夏·银川一中模拟预测(文))已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .【答案】(1)21n a n =-,12n n b -=;(2)1242n n n S -+=-. (1)依题意,等比数列{}n b 的公比322b q b ==,则有2122n n n b b q --==,因此,111a b ==, 由851a b +=得85115a b =-=,等差数列{}n a 的公差81281a a d -==-,1(1)21n a a n d n =+-=-, 所以数列{}n a 、{}n b 的通项公式分别为:21n a n =-,12n n b -=.(2)由(1)知,111222n n n n n a n nc b -++===, 则23123412222n n n S -=+++++, 于是得23111231222222n n nn nS --=+++++, 两式相减得:23111()11112212122222211222nn n n nn n n S n --+=+++++-=-=--, 所以1242n n n S -+=-. 例题5.(2022·辽宁·建平县实验中学高二期中)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且26S =,314S =. (1)求数列{}n a 的通项公式; (2)若21n nn b a -=,求数列{}n b 的前n 项和n T . 【答案】(1)()*2n n a n =∈N (2)2332n nn T +=-(1)设等比数列{}n a 的公比为q ,当1q =时,1n S na =,所以2126S a ==,31314S a ==,无解.当1q ≠时,()111n n a q S q -=-,所以()()21231316,1114.1a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩解得12a =,2q 或118a =,23q =-(舍).所以()1*222n n n a n -=⨯=∈N .(2)21212n n n n n b a --==.所以231135232122222n n nn n T ---=+++++①,则234111352321222222n n n n n T +--=+++++②,①-②得,2341112222212222222n n n n T +-=+++++-234111111212222222nn n +-⎛⎫=+++++- ⎪⎝⎭1111111213234221222212-++⎛⎫- ⎪-+⎝⎭=+⨯-=--n n n n n .所以2332n nn T +=-. 题型三:分组求和法例题1.(2022·新疆克孜勒苏·高一期中)数列112,134 ,158 ,1716 , ...,1(21)2n n -+ ,的前n 项和n S 的值等于( )A .2112nn +-B .21212nn n -+-C .22112n n -+-D .2112nn n -+-【答案】A可得()231111135212222n n S n =++++-+++++()2111121122112212n n n n n ⎛⎫- ⎪+-⎝⎭=+=+--.故选:A.例题2.(2022·辽宁·沈阳市第五十六中学高二阶段练习)数列{n a }中,1(1)(43)n n a n -=--,前n 和为n S ,则6S 为( ) A .-12 B .16 C .-10 D .12【答案】A解:因为1(1)(43)n n a n -=--,所以()()()6123456=+++++S a a a a a a ,()()()159131721=-+-+-,()34=⨯-, 12=-,故选:A例题3.(2022·安徽·合肥一六八中学模拟预测(文))设数列{}n a 的前n 项和为n S ,已知1222,(1)2n n n a a a -+=+-=,则60S =_________. 【答案】960由12(1)2n n n a a -++-=,当n 为奇数时,有22n n a a ++=;当n 为偶数时,22n n a a +-=, ∴数列{}n a 的偶数项构成以2为首项,以2为公差的等差数列, 则()()601357575924685860S a a a a a a a a a a a a =+++++++++++++3029152********⨯=⨯+⨯+⨯=, 故答案为:960.例题4.(2022·辽宁·鞍山市华育高级中学高二期中)已知数列{}n a 是等差数列,{}n b 是等比数列,23b =,39b =,11a b =,144a b =.(1)求{}n a 、{}n b 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和n S . 【答案】(1)21n a n =-,13n n b -=(2)2312n n S n -=+(1)设等比数列{}n b 的公比为q ,则323b q b ==,2123n n n b b q --∴==; 又111a b ==,14427a b ==,设等差数列{}n a 的公差为d ,则141213a a d -==, ()12121n a n n ∴=+-=-.(2)由(1)得:()1213n n c n -=-+;()()()()112121321133n n n n S a a a b b b n -∴=++⋅⋅⋅++++⋅⋅⋅+=++⋅⋅⋅+-+++⋅⋅⋅+212113312132n n n n n +---=⋅+=+-. 例题5.(2022·湖北·安陆第一高中高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为正项等比数列,满足213a b ==,424S S =,26b +是1b 与3b 的等差中项. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =+,n T 是数列{}n c 的前n 项和,求n T . 【答案】(1)21n a n =-,3n n b =;(2)2113322n n T n +=+⨯-.(1)设等差数列{}n a 的公差为d ,依题意可知: ()21111314324422a a d a d a d a d =+=⎧=⎧⎪⇒⎨⎨⨯=+=+⎩⎪⎩, 所以数列{}n a 的通项公式为()12121n a n n =+-=-,设等比数列{}n b 的公比为q ,依题意可知:()21326b b b +=+,又13b =,所以()2223633230q q q q +=+⇒--=,又0q >,∴3q =,所以数列{}n b 的通项公式为1333n nn b -=⨯=;(2)由(1)可知:()213nn n n c a b n =+=-+所以()()()()()11221212n n n n n T a b a b a b a a a b b b =++++++=+++++++()()2131312113321322nn n n n+-+-=+=+⨯--. 例题6.(2022·重庆八中模拟预测)在等比数列{}n a 中,123,,a a a 分别是下表第一,第二,第三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(1)写出123,,a a a ,并求数列n a 的通项公式;(2)若数列{}n b 满足2(1)log nn n n b a a =+-,求数列{}n b 的前2n 项和2n S . 【答案】(1)14a =,28a =,316a =,12n n a +=;(2)2224n n ++-.(1)由题意知:14a =,28a =,316a =, 因为{}n a 是等比数列,所以公比为2,所以数列{}n a 的通项公式12n n a +=.(2)∵()11122(1)log (1)log (12221)n n nn n n n n n b a a n +++=++-=+-=+-,∴21232n n S b b b b =++++()()23212222345221n n n +=++++⎡-+-+--++⎤⎣⎦()22222122412n n n n +-=+=+--,题型四:倒序相加求和法例题1.(2022·江西·南城县第二中学高二阶段练习(文))德国大数学家高斯年少成名,被誉为数学届的王子.在其年幼时,对123100++++的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数4()42xx f x =+,则1232018()()()()2019201920192019f f f f ++++等于( ) A .1008 B .1009 C .2018 D .2019【答案】B解:因为4()42xx f x =+,且114444()(1)1424242244--+-=+=+=+++⨯+x x x xx x xf x f x , 令1232018()()()()2019201920192019=++++S f f f f , 又2018201720161()()()()2019201920192019=++++S f f f f , 两式相加得:212018=⨯S , 解得1009S =, 故选:B例题2.(2022·江西九江·高二期末(文))德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行123100++++的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列298299-=-n n a n ,则1298+++=a a a ( )A .96B .97C .98D .99【答案】C 令1297989694969897959597=++++=++++S a a a a , 9897219896949697959597=++++=++++S a a a a , 两式相加得:969496989896949629795959797959597S ⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭96989496969498969829797959595959797⎛⎫⎛⎫⎛⎫⎛⎫=++++++++=⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴98S =, 故选:C .例题3.(2022·全国·高三专题练习)已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的前20项和为( )A .100B .105C .110D .115【答案】D因为函数()y f x =满足()(1)1f x f x +-=, 121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭①, 121(1)(0)n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫∴=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②, 由①+②可得21n a n =+,12n n a +∴=, 所以数列{}n a 是首项为1,公差为12的等差数列,其前20项和为20120121152+⎛⎫+ ⎪⎝⎭=. 故选:D.例题4.(2022·辽宁·沈阳市第一二〇中学高二期中)已知定义在R 上的函数()320237338982022f x x ⎛⎫=-+ ⎪⎝⎭,则12320221949194919491949f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭___________. 【答案】73由()320237338982022f x x ⎛⎫=-+ ⎪⎝⎭,得3320232023202373202373194919493898202238982022f x x x ⎛⎫⎛⎫⎛⎫-=--+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()33202320237320237373194938982022389820221011f x f x x x ⎛⎫⎛⎫⎛⎫+-=-++-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设12320221949194919491949S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 20222021202011949194919491949S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, 由+①②,得 1202222021202212194919491949194919491949S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+ 即7373732101110111011S =++⋅⋅⋅+,于是有73220221011S =⨯,解得73S =, 所以1232022731949194919491949f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:73.例题5.(2022·黑龙江·鹤岗一中高二阶段练习)已知函数()1e e xx f x =+,数列{}n a 为等比数列,0n a >,1831a =,则()()()()123365ln ln ln ln f a f a f a f a ++++=______.【答案】3652∵()e e 1xx f x =+,∴()()e e e e 1)e (e 1)2e e 1e 1e 1(e 1)(e (e 1)2e x x x x x x x xxx x x x xf x f x -------++++++-=+===++++++. ∵数列{}n a 是等比数列,∴2136523641831a a a a a ====,∴2136523643651183ln ln ln ln ln ln ln 0a a a a a a a +=+==+==.设()()()36512365ln ln ln S f a f a f a =+++,① 则()()()3653653641ln ln ln S f a f a f a =+++,②①+②,得()()()()()()()()()3651365236436512ln ln ln ln ln ln S f a f a f a f a f a f a =++++++365=,∴3653652S =. 故答案为:3652例题6.(2022·全国·高二课时练习)已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【答案】1005.因为()442x x f x =+,所以()1144214242442x x xx f x ---===++⨯+, 所以()()11f x f x +-=.令12200920102011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 两式相加得22010S =,故1005S =.例题7.(2022·全国·高三专题练习)已知函数()21122f x x x =+,数列{}n a 的前n 项和为n S ,点()()*,N n n S n ∈均在函数()f x 的图象上,函数()442x x g x =+.(1)求数列{}n a 的通项公式; (2)求()()1g x g x +-的值;(3)令()*2021n n a b g n ⎛⎫=∈ ⎪⎝⎭N ,求数列{}n b 的前2020项和2020T .【答案】(1)n a n =(2)1(3)1010(1)因为点()()*,N n n S n ∈均在函数()f x 的图象上,所以21122n S n n =+,当2n ≥时,()()2211111112222n n n a S S n n n n n -=-=+----=, 当1n =时,111a S ==,适合上式,所以n a n =. (2)因为()442x x g x =+,所以()114214242x x xg x ---==++, 所以()()42114242x x x g x g x +-=+=++.(3)由(1)知n a n =,可得20212021n n a n b g g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以2020122020122020202120212021T b b b g g g ⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,① 又因为2020202020191202020191202120212021T b b b g g g ⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,② 因为()()11g x g x +-=,所以①+②,得202022020T =, 所以20201010T =.1.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 【答案】(1)()12n n n a +=(2)见解析(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭ ∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和. 【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. (1)设{}n a 的公比为q ,1a 为23,a a 的等差中项, 212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 3.设数列{}n a 满足13a =,134n n a a n +=-.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{2}nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+. 证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n+++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n n n n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n na n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+. [方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211nn n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n n n a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22nn S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.。
7.4 数列求和、数列的综合基础篇 固本夯基考点一 数列求和1.(2021浙江,10,4分)已知数列{a n }满足a 1=1,a n+1=n 1+√a (n ∈N *).记数列{a n }的前n 项和为S n ,则( ) A.32<S 100<3 B.3<S 100<4 C.4<S 100<92 D.92<S 100<5 答案 A2.(2020山东仿真联考3)已知正项数列{a n }满足a n+1>2a n ,S n 是{a n }的前n 项和,则下列四个命题中错误的是( )A.a n+1>2na 1 B.S 2k >(1+2k)S k C.S n <2a n -a 1(n ≥2) D.{a n+1a n}是递增数列 答案 D3.(2020浙江,11,4分)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{n(n+1)2}就是二阶等差数列.数列{n(n+1)2}(n ∈N *)的前3项和是 . 答案 104.(2022届T8联考,18)设等差数列{a n }的前n 项和为S n ,已知a 1=3,S 3=5a 1. (1)求数列{a n }的通项公式;(2)设b n =1+2S n,数列{b n }的前n 项和为T n .定义[x]为不超过x 的最大整数,例如[0.3]=0,[1.5]=1.当[T 1]+[T 2]+…+[T n ]=63时,求n 的值.解析 (1)设等差数列{a n }的公差为d,因为a 1=3,所以S 3=3a 1+3d=9+3d. 又因为S 3=5a 1=15,所以9+3d=15,得d=2. 所以数列{a n }的通项公式是a n =3+2(n-1)=2n+1. (2)因为S n =3n+n(n−1)2×2=n 2+2n,所以b n =1+2S n =1+2n(n+2)=1+1n -1n+2. 所以T n =n+(1−13)+(12−14)+(13−15)+…+(1n−1−1n+1)+(1n −1n+2)=n+1+12-1n+1-1n+2. 当n ≤2时,因为-13≤12-1n+1-1n+2<0,所以[T n ]=n.当n ≥3时,因为0<12-1n+1-1n+2<12,所以[T n ]=n+1.因为[T 1]+[T 2]+…+[T n ]=63, 所以1+2+4+5+…+(n+1)=63, 即3+(n−2)(4+n+1)2=63,即n 2+3n-130=0,即(n-10)·(n+13)=0.因为n ∈N *,所以n=10.5.(2022届华中师范大学琼中附中月考,17)已知等差数列{a n }中,a 2=3,a 4+a 6=18. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n+1=2b n ,并且b 1=a 5,试求数列{b n }的前n 项和S n .解析 (1)设数列{a n }的公差为d,根据题意得{a 1+d =3,2a 1+8d =18,解得{a 1=1,d =2,∴a n =a 1+(n-1)d=2n-1.(2)∵b n+1=2b n ,∴数列{b n }是公比为2的等比数列, 又b 1=a 5=2×5-1=9,∴S n =b 1(1−q n )1−q =9(1−2n )1−2=-9+9×2n.6.(2022届长沙雅礼中学月考,17)已知数列{a n }中,a 1=1,a 2=3,其前n 项和S n 满足S n+1+S n-1=2S n +2(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =a n +2a n ,求数列{b n }的前n 项和T n .解析 (1)由题意得S n+1-S n =S n -S n-1+2(n ≥2),即a n+1-a n =2(n ≥2),又a 2-a 1=3-1=2,所以a n+1-a n =2(n ∈N *).所以数列{a n }是以1为首项,2为公差的等差数列,所以a n =2n-1(n ∈N *).(2)b n =a n +2a n=2n-1+22n-1=2n-1+12·4n ,所以T n =[1+3+5+…+(2n-1)]+12×(4+42+43+…+4n )=n 2+2(4n−1)3.7.(2022届广东深圳七中月考)已知等比数列{a n }中,a 1=1,且2a 2是a 3和4a 1的等差中项.等差数列{b n }满足b 1=1,b 7=13.(1)求数列{a n }的通项公式; (2)求数列{a n -b n }的前n 项和T n .解析 (1)设数列{a n }的公比为q,由题意可得2×2a 2=a 3+4a 1,即4a 1q=a 1q 2+4a 1,又a 1=1,所以q=2,则数列{a n }的通项公式为a n =2n-1.(2)设数列{b n }的公差为d,由题意可得b 7-b 1=12=6d,即d=2,则数列{b n }的通项公式为b n =1+(n-1)×2=2n-1.a n -b n =2n-1-(2n-1),则T n =(20-1)+(21-3)+…+[2n-1-(2n-1)]=(20+21+…+2n-1)-(1+3+…+2n-1)=1−2n 1−2-(1+2n−1)·n 2=2n -1-n 2.8.(2022届河北秦皇岛青龙8月测试,18)已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *). (1)求数列{a n }的通项公式a n 及S n ;(2)若数列{b n }满足b n =|S n -15|,求数列{b n }的前n 项和T n . 解析 (1)当n=1时,S 1=2a 1-1,即a 1=1,由S n =2a n -1得S n+1=2a n+1-1,两式相减得a n+1=2a n+1-2a n ,即a n+1=2a n ,即数列{a n }是以1为首项,2为公比的等比数列,则a n =2n-1,则S n =1−2n 1−2=2n-1.(2)由(1)知b n =|2n-16|,则b n ={16−2n (1≤n ≤4),2n −16(n >4).记{2n -16}的前n 项和为A n ,则A n =(21+22+…+2n)-16n=2·(1−2n )1−2-16n=2n+1-16n-2.则当1≤n ≤4时,T n =-A n =16n-2n+1+2.当n>4时,T n =(16-21)+(16-22)+…+(16-24)+(25-16)+(26-16)+…+(2n-16)=-A 4+A n -A 4=A n -2A 4=2n+1-16n+66,则T n ={16n −2n+1+2(1≤n ≤4),2n+1−16n +66(n >4).9.(2021浙江“山水联盟”开学考)已知数列{a n }满足:a 1=1,a n+1a n =nn+1;数列{b n }是等比数列,并满足b 1=2,且b 1-1,b 4,b 5-1成等差数列. (1)求数列{a n },{b n }的通项公式;(2)若数列{b n }的前n 项和是S n ,数列{c n }满足c n =a n a n+1a n+2(S n +2),求证:c 1+c 2+…+c n <12.解析 (1)由于a 1=1,na n =(n+1)a n+1,所以{na n }是常数列,所以na n =1·a 1=1,故a n =1n. 设{b n }的公比是q,由已知得2b 4=(b 1-1)+(b 5-1),所以4q 3=2q 4,所以q=2,故b n =2n.(2)证明:由(1)得S n =2(1−2n )1−2=2n+1-2,则c n =a n a n+1a n+2(S n +2)=n+2n(n+1)·2n+1=1n·2n -1(n+1)·2n+1, 则c 1+c 2+…+c n =11×2-12×22+12×22-13×23+…+1n·2n-1(n+1)·2n+1,所以c 1+c 2+…+c n =12-1(n+1)·2n+1<12. 10.(2020天津,19,15分)已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3). (1)求{a n }和{b n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N *);(3)对任意的正整数n,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由a 1=1,a 5=5(a 4-a 3),可得d=1,从而{a n }的通项公式为a n =n.由b 1=1,b 5=4(b 4-b 3),又q ≠0,可得q 2-4q+4=0,解得q=2,从而{b n }的通项公式为b n =2n-1.(2)证明:由(1)可得S n =n(n+1)2,故S n S n+2=14n(n+1)·(n+2)(n+3),S n+12=14(n+1)2(n+2)2,从而S n S n+2-S n+12=-12(n+1)(n+2)<0,所以S n S n+2<S n+12.(3)当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2-2n−1n ;当n 为偶数时,c n =a n−1b n+1=n−12n.对任意的正整数n,有∑k=1nc 2k-1=∑k=1n(22k 2k+1−22k−22k−1)=22n 2n+1-1和∑k=1n c 2k =∑k=1n 2k−14k =14+342+543+…+2n−14n ①. 由①得14∑k=1n c 2k =142+343+…+2n−34n +2n−14n+1②. 由①-②得34∑k=1n c 2k =14+242+…+24n -2n−14n+1=24(1−14n )1−14-14-2n−14n+1,从而得∑k=1n c 2k =59-6n+59×4n .因此,∑k=12nc k =∑k=1nc 2k-1+∑k=1nc 2k =4n 2n+1-6n+59×4n -49.所以,数列{c n }的前2n 项和为4n 2n+1-6n+59×4n -49.考点二 数列的综合1.(2020福建泉州线上测试)已知{a n }是公差为3的等差数列.若a 1,a 2,a 4成等比数列,则{a n }的前10项和S 10=( )A.165B.138C.60D.30 答案 A2.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了以下猜想:F n =22n+1(n=0,1,2,…)是质数.直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 2(F n -1),n=1,2,…,S n表示数列{a n }的前n 项和.则使不等式2S 1S 2+22S 2S 3+…+2n S n S n+1<2n2 020成立的最小正整数n 的值是( )A.11B.10C.9D.8 答案 C3.(2022届浙江“山水联盟”开学考,20)已知数列{a n }的前n 项和为S n ,2S n =(2n+1)a n -2n 2(n ∈N *),数列{b n }满足b 1=a 1,nb n+1=a n b n .(1)求数列{a n }和{b n }的通项公式; (2)设数列{c n }满足:c 1=4,c n+1=c n -a n b n (n ∈N *),若不等式λ+3n+92n ≥c n (n ∈N *)恒成立,求实数λ的取值范围. 解析 (1)当n=1时,2a 1=3a 1-2,∴a 1=2.当n ≥2时,由{2S n =(2n +1)a n −2n 2,2S n−1=(2n −1)a n−1−2(n −1)2得2a n =(2n+1)a n -(2n-1)a n-1-2n 2+2(n-1)2,即a n -a n-1=2,∴数列{a n }是公差为2的等差数列, ∵a 1=2,∴a n =2n.由条件得b 1=2,nb n+1=2nb n ,∴b n+1=2b n ,即数列{b n }是公比为2的等比数列,∴b n =2n.(2)由(1)得a n b n =2n 2n =n 2n−1,设数列{a n b n }的前n 项和为T n ,则T n =1+22+322+423+…+n2n−1, ∴12T n =12+222+323+…+n−12n−1+n2n , ∴12T n =1+12+122+123+…+12n−1-n 2n =1−12n 1−12-n 2n =2-n+22n , ∴T n =4-n+22n−1,由c n+1=c n -a nb n 得c n+1-c n =-a n b n ,所以c n -c n-1=-a n−1b n−1,……,c 2-c 1=-a 1b 1,累加得c n -c 1=-T n-1,即c n -4=-4+n+12n−2,∴c n =n+12n−2,∴λ≥n+12n−2-3n+92n =n−52n 对任意n ∈N *恒成立, 令f(n)=n−52n ,则f(n+1)-f(n)=n−42n+1-n−52n =−n+62n+1, ∴f(1)<f(2)<…<f(6)=f(7),f(7)>f(8)>…, ∴f(n)max =f(6)=f(7)=164,∴λ≥164. 故λ的取值范围是[164,+∞). 4(2022届校际联合考试)我国南宋时期的数学家杨辉,在他1261年所著的《详解九章算法》一书中,用如图的三角形解释二项和的乘方规律,此图称为“杨辉三角”.在此图中,从第三行开始,首尾两数为1,其他各数均为它肩上两数之和.(1)把“杨辉三角”中第三斜列的各数取出,按原来的顺序排列得一数列:1,3,6,10,15,…,写出a n 与a n-1(n ∈N *,n ≥2)的递推关系,并求出数列{a n }的通项公式;(2)已知数列{b n }满足b 1+12b 2+13b 3+ (1)b n =2a n (n ∈N *),设数列{c n }满足c n =2n+1b n b n+1,数列{c n }的前n 项和为T n ,若T n <n n+1λ(n ∈N *)恒成立,试求实数λ的取值范围. 解析 (1)由题意可知a 1=1,n ≥2时,a n -a n-1=n,所以a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=n+(n-1)+…+2+1=n(n+1)2,故a n =n(n+1)2. (2)数列{b n }满足b 1+12b 2+13b 3+ (1)b n =n 2+n,① 当n ≥2时,b 1+12b 2+13b 3+…+1n−1b n-1=(n-1)2+(n-1),② ①-②得1nb n =2n,故b n =2n 2(n ≥2),又n=1时亦成立,所以b n =2n 2(n ∈N *). 数列{c n }满足c n =2n+1b n b n+1=2n+14n 2(n+1)2=14[1n 2−1(n+1)2], 则T n =14[1−122+122−132+⋯+1n 2−1(n+1)2]=14[1−1(n+1)2],由T n <n n+1λ(n ∈N *)恒成立, 得14[1−1(n+1)2]<n n+1λ,整理得λ>n+24n+4,因为y=n+24n+4=14(1+1n+1)在n ∈N *上单调递减,故当n=1时,(n+24n+4)max =38,即λ>38,所以实数λ的取值范围为(38,+∞). 5.(2022届长沙长郡中学月考,18)已知数列{a n }满足a n+1-2a n =0,a 3=8. (1)求数列{a n }的通项公式; (2)设b n =n a n,数列{b n }的前n 项和为T n .若2T n >m-2021对n ∈N *恒成立,求正整数m 的最大值. 解析 (1)由a n+1-2a n =0得a n+1=2a n ,则{a n }是以2为公比的等比数列, 又a 3=8,即4a 1=8,解得a 1=2,所以a n =2n.(2)由(1)可得b n =n a n =n 2n ,则T n =12+222+323+…+n 2n ,12T n =122+223+324+…+n 2n+1,两式相减可得12T n =12+122+123+…+12n -n 2n+1=12(1−12n)1−12-n 2n+1, 化简可得T n =2-n+22n (n ∈N *),因为T n+1-T n =2-n+32n+1-2+n+22n =n+12n+1>0,所以{T n }逐项递增,T 1最小,为12,所以2×12>m-2021,解得m<2022,又m ∈N *,所以m 的最大值为2021. 6.(2021南京三模,18)已知等差数列{a n }满足:a 1+3,a 3,a 4成等差数列,且a 1,a 3,a 8成等比数列. (1)求数列{a n }的通项公式;(2)在任意相邻两项a k 与a k+1(k=1,2,…)之间插入2k个2,使它们和原数列的项构成一个新的数列{b n },记S n为数列{b n }的前n 项和,求满足S n <500的n 的最大值. 解析 (1)设等差数列{a n }的公差为d, 由题意知a 1+3+a 4=2a 3, 即2a 1+3+3d=2a 1+4d,解得d=3, 又a 1a 8=a 32,即a 1·(a 1+7×3)=(a 1+2×3)2,解得a 1=4,故a n =3n+1.(2)因为b n >0,所以{S n }是单调递增数列,又因为a k+1前的所有项的项数为k+21+22+ (2)=k+2k+1-2,所以S k+2k+1−2=(a 1+a 2+…+a k )+2(21+22+23+ (2))=k(4+3k+1)2+2×2(1−2k )1−2=3k 2+5k 2+2k+2-4.当k=6时,S 132=321<500;当k=7时,S 261=599>500, 令S 132+a 7+2(n-133)<500,即321+22+2(n-133)<500, 解得n<211.5,所以满足S n <500的n 的最大值为211.7.(2020辽宁葫芦岛兴城高中模拟)设函数f(x)=x 2,过点C 1(1,0)作x 轴的垂线l 1,交函数f(x)的图象于点A 1,以A 1为切点作函数f(x)图象的切线交x 轴于点C 2,再过C 2作x 轴的垂线l 2,交函数f(x)的图象于点A 2,……,以此类推得点A n ,记A n 的横坐标为a n ,n ∈N *.(1)证明数列{a n }为等比数列,并求出通项公式;(2)设直线l n 与函数g(x)=lo g 12x 的图象相交于点B n ,记b n =OA⃗⃗⃗⃗ n ·OB ⃗⃗⃗⃗ n (其中O 为坐标原点),求数列{b n }的前n 项和S n .解析 (1)以点A n-1(a n-1,a n−12)(n ≥2)为切点的切线方程为y-a n−12=2a n-1(x-a n-1).当y=0时,x=12a n-1,即a n =12a n-1,又∵a 1=1,∴数列{a n }是以1为首项,12为公比的等比数列,∴a n =(12)n−1. (2)由题意,得B n ((12)n−1,n −1), ∴b n =OA⃗⃗⃗⃗ n ·OB ⃗⃗⃗⃗ n =(14)n−1+(14)n−1·(n-1)=n ·(14)n−1, ∴S n =1×(14)0+2×(14)1+…+n ×(14)n−1,14S n =1×(14)1+2×(14)2+…+n ×(14)n. 两式相减,得34S n =1×(14)0+14+…+(14)n−1-n ×(14)n=1−(14)n1−14-n ×(14)n,化简,得S n =169-(4n 3+169)×(14)n =169-3n+49×4n−1.综合篇 知能转换A 组考法一 错位相减法求和1.(2022届全国学业质量联合检测)已知正项数列{a n }的前n 项和为S n ,且满足a n 2,S n ,a n 成等差数列. (1)求数列{a n }的通项公式;(2)请从以下三个条件中任意选择一个,求数列{b n }的前n 项和T n . 条件①:设数列{b n }满足b n =(-1)na n ;条件②:设数列{b n }满足b n =2a n ·a n ; 条件③:设数列{b n }满足b n =√a +√a .解析 (1)因为a n 2,S n ,a n 成等差数列,所以2S n =a n 2+a n ,当n ≥2时,2S n-1=a n−12+a n-1,两式作差化简,得(a n +a n-1)·(a n -a n-1-1)=0.因为该数列是正项数列,所以a n +a n-1≠0, 所以a n -a n-1-1=0,即a n -a n-1=1, 所以数列{a n }是公差为1的等差数列, 又当n=1时,2a 1=a 12+a 1,解得a 1=1, 所以a n =n(n ∈N *).(2)选择条件①:数列{b n }满足b n =(-1)n a n =(-1)nn. 所以T n =-1+2-3+4-5+6-…+(-1)nn,当n 为偶数时,T n =(-1+2)+(-3+4)+(-5+6)+…+[-(n-1)+n]=n2×1=n 2; 当n 为奇数时,T n =(-1+2)+(-3+4)+(-5+6)+…+[-(n-2)+(n-1)]-n=n−12×1-n=-1+n2.所以T n ={n2,n 为偶数,−1+n 2,n 为奇数.选择条件②:数列{b n }满足b n =2a n ·a n =n ·2n,可得T n =1×21+2×22+…+n ·2n,①2T n =1×22+2×23+…+n ·2n+1,②①-②得-T n =2+22+23+ (2)-n ·2n+1=2(1−2n )1−2-n ·2n+1=(1-n)·2n+1-2,则T n =(n-1)·2n+1+2.选择条件③:数列{b n }满足b n =√a +√a =√n+1+√n=√n +1-√n ,则T n =(√2-1)+(√3-√2)+…+(√n +1-√n )=√n +1-1.2.(2022届山东德州夏津一中入学考试)设数列{a n }是等差数列,数列{b n }是公比大于0的等比数列,已知a 1=1,b 1=3,b 2=3a 3,b 3=12a 2+3.(1)求数列{a n }和数列{b n }的通项公式;(2)设数列{c n }满足c n ={1,n ≤5,b n−5,n ≥6,求数列{a n c n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q(q>0),根据题意得{3q =3(1+2d),3q 2=12(1+d)+3,解得{d =1,q =3或{d =−1,q =−1(舍),所以a n =1+(n-1)×1=n,b n =3·3n-1=3n .(2)当n ≤5时,c n =1,所以T n =a 1+a 2+…+a n =1+2+…+n=n(n+1)2.当n ≥6时,c n =b n-5=3n-5,所以T n =T 5+a 6b 1+a 7b 2+…+a n b n-5=15+6×31+7×32+…+n ·3n-5.令M=6×31+7×32+…+n ·3n-5,则3M=6×32+7×33+…+(n-1)·3n-5+n ·3n-4,两式相减得-2M=6×31+(32+33+…+3n-5)-n ·3n-4=18+32(1−3n−6)1−3-n ·3n-4,整理得M=-274+2n−14·3n-4,所以T n =334+2n−14·3n-4.综上,T n ={n(n+1)2,n ≤5,334+2n−14·3n−4,n ≥6.3.(2022届山东泰安肥城摸底考试)已知数列{a n }各项均为正数,a 1=1,{a n 2}为等差数列,公差为2. (1)求数列{a n }的通项公式.(2)求S n =2a 12+22a 22+23a 32+ (2)a n 2.解析 (1)∵a 1=1,∴a 12=1,又∵{a n 2}为等差数列,公差为2,∴a n 2=a 12+(n-1)×2=2n-1,又∵a n >0,∴a n =√2n −1.(2)由(1)可得S n =1×2+3×22+5×23+…+(2n-1)·2n ,2S n =1×22+3×23+5×24+…+(2n-1)·2n+1, 两式相减得-S n =1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2+2n+2-23-(2n-1)·2n+1=-6-(2n-3)·2n+1,∴S n =6+(2n-3)·2n+1.4.(2021浙江,20,15分)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n+1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n-4)a n =0(n ∈N *),记{b n }的前n 项和为T n ,若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.解析 (1)解法一:由4S n+1=3S n -9,得4S n =3S n-1-9(n ≥2),两式相减,得4a n+1=3a n ,则a n+1=34a n (n ≥2).又由4S n+1=3S n -9,得4S 2=3S 1-9,即4(a 1+a 2)=3a 1-9, 又a 1=-94,所以a 2=-2716,则a 2=34a 1, 所以数列{a n }是以-94为首项,34为公比的等比数列, 所以数列{a n }的通项公式为a n =-94·(34)n−1=-3·(34)n . 解法二:由4S n+1=3S n -9,得S n+1=34S n -94,则S n+1+9=34S n -94+9=34S n +274=34(S n +9),又S 1+9=-94+9=274≠0,所以数列{S n +9}是以274为首项,34为公比的等比数列,则S n +9=274·(34)n−1=9·(34)n ,所以S n =9·(34)n-9.当n ≥2时,a n =S n -S n-1=[9·(34)n −9]-[9·(34)n−1−9]=-3·(34)n .当n=1时,a 1=-94也满足上式,所以数列{a n }的通项公式为a n =-3·(34)n.(2)由(1)知a n =-3·(34)n.由3b n +(n-4)a n =0,得b n =-n−43a n =(n-4)(34)n. 则T n =(-3)×34+(-2)×(34)2+(-1)×(34)3+0×(34)4+…+(n-5)(34)n−1+(n-4)(34)n,① 因此34T n =(-3)×(34)2+(-2)×(34)3+(-1)×(34)4+0×(34)5+…+(n-5)(34)n +(n-4)(34)n+1,②由①-②,得14T n =-3×34+(34)2+(34)3+(34)4+…+(34)n -(n-4)(34)n+1 =-94+(34)2−(34)n ·341−34-(n-4)(34)n+1=-n (34)n+1, 所以T n =-4n (34)n+1.由T n ≤λb n ,得-4n (34)n+1≤λ(n-4)(34)n 恒成立,即λ(n-4)≥-3n 恒成立. 当n<4时,λ≤-3n n−4,设f(n)=-3n n−4=-3+−12n−4,当n<4且n ∈N *时,f(n)min =f(1)=1,所以λ≤1;当n=4时,不等式恒成立; 当n>4时,λ≥-3n n−4,设f(n)=-3n n−4=-3+−12n−4,当n>4且n ∈N *,n →+∞时,f(n)→-3,所以λ≥-3.综上所述,实数λ的取值范围是[-3,1].5.(2021全国乙文,19,12分)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. 解析 (1)设等比数列{a n }的公比为q. ∵a 1,3a 2,9a 3成等差数列,∴6a 2=a 1+9a 3,又∵{a n }是首项为1的等比数列,∴6a 1q=a 1+9a 1q 2,∴9q 2-6q+1=0,解得q 1=q 2=13,∴a n =a 1·q n-1=(13)n−1,∵b n =na n 3,∴b n =n ·(13)n. (2)证明:∵S n 为{a n }的前n 项和, ∴S n =a 1(1−q n )1−q =32[1−(13)n]. ∵T n 为{b n }的前n 项和, ∴T n =b 1+b 2+…+b n =1×(13)1+2×(13)2+…+n (13)n,① 13T n =1×(13)2+2×(13)3+…+n (13)n+1.② ①-②可得23T n =13+(13)2+…+(13)n-n ·(13)n+1=13[1−(13)n ]1−13-n ·(13)n+1=-(13n +12)(13)n +12,∴T n =-(12n +34)(13)n +34, ∴T n -S n 2=-12n ·(13)n <0,∴T n <S n2.6.(2020课标Ⅲ理,17,12分)设数列{a n }满足a 1=3,a n+1=3a n -4n. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2na n }的前n 项和S n . 解析 (1)a 2=5,a 3=7. 猜想a n =2n+1.由已知可得 a n+1-(2n+3)=3[a n -(2n+1)], a n -(2n+1)=3[a n-1-(2n-1)], ……a 2-5=3(a 1-3).因为a 1=3,所以a n =2n+1. (2)由(1)得2na n =(2n+1)2n,所以S n =3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n =3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1.所以S n =(2n-1)2n+1+2.7.(2017山东文,19,12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n+1=b n b n+1,求数列{b na n}的前n 项和T n . 解析 (1)设{a n }的公比为q,由题意知a 1(1+q)=6,a 12q=a 1q 2,又a n >0,所以解得a 1=2,q=2,所以a n =2n. (2)由题意知S 2n+1=(2n+1)(b 1+b 2n+1)2=(2n+1)b n+1,又S 2n+1=b n b n+1,b n+1≠0,所以b n =2n+1.令c n =b n a n ,则c n =2n+12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n−12n−1+2n+12n ,又12T n =322+523+724+…+2n−12n +2n+12n+1,两式相减得12T n =32+(12+122+⋯+12n−1)-2n+12n+1,所以T n =5-2n+52n. 8.(2017天津理,18,13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,因为b 1=2,所以q 2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8①.由S 11=11b 4,可得a 1+5d=16②,联立①②,解得a 1=1,d=3,由此可得a n =3n-2. 所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,得a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n +(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1−4n )1−4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n−23×4n+1+83.所以,数列{a 2n b 2n-1}的前n 项和为3n−23×4n+1+83. 9.(2018浙江,20,15分)已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1-b n )·a n }的前n 项和为2n 2+n. (1)求q 的值;(2)求数列{b n }的通项公式.解析 (1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20得8(q +1q )=20,解得q=2或q=12, 因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }的前n 项和为S n . 由c n ={S 1,n =1,S n −S n−1,n ≥2,解得c n =4n-1. 由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n−1,故b n -b n-1=(4n-5)·(12)n−2,n ≥2, 所以b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1)=(4n-5)·(12)n−2+(4n-9)·(12)n−3+…+7×12+3.设T n =3+7×12+11×(12)2+…+(4n-5)·(12)n−2,n ≥2,则12T n =3×12+7×(12)2+…+(4n-9)·(12)n−2+(4n-5)·(12)n−1, 所以12T n =3+4×12+4×(12)2+…+4·(12)n−2-(4n-5)·(12)n−1,因此T n =14-(4n+3)·(12)n−2,n ≥2,又b 1=1,所以b n =15-(4n+3)·(12)n−2. 10.(2021浙江嘉兴教学测试,20)已知数列{a n }的前n 项和为S n ,S n =2a n -n,n ∈N *. (1)求数列{a n }的通项公式;(2)令b n =2na n ,求数列{b n }的前n 项和T n . 解析 (1)当n=1时,S 1=a 1=2a 1-1,得a 1=1;当n ≥2时,由S n =2a n -n,得S n-1=2a n-1-(n-1),两式相减得a n =2a n-1+1,变形得a n +1=2(a n-1+1), ∴数列{a n +1}是等比数列,且公比为2.又∵a 1+1=2,∴a n +1=2n,∴a n =2n-1.(2)b n =2na n =2n(2n -1)=n ·2n+1-2n,于是T n =b 1+b 2+…+b n =(1×22-2)+(2×23-4)+…+(n ×2n+1-2n)=(1×22+2×23+…+n ×2n+1)-2(1+2+…+n),令A n =1×22+2×23+…+n ·2n+1,即T n =A n -n(n+1).A n =1×22+2×23+…+(n-1)·2n +n ·2n+1,① 2A n =1×23+2×24+…+(n-1)·2n+1+n ·2n+2,②①-②得-A n =22+23+…+2n+1-n ·2n+2=4(1−2n )1−2-n ·2n+2=-4+2n+2-n ·2n+2=-(n-1)·2n+2-4,∴A n =(n-1)·2n+2+4,∴T n =(n-1)·2n+2+4-n 2-n.考法二 裂项相消法求和1.(2020长沙明德中学3月月考)在各项都为正数的等比数列{a n }中,若a 1=2,且a 1a 5=64,则数列{a n(an −1)(a n+1−1)}的前n 项和是( )A.1-12n+1−1B.1-12n+1C.1-12n+1 D.1-12n −1答案 A2.(多选)(2021辽宁百校联盟质检,10)已知数列{a n }满足a 2=4,n(n-1)a n+1=(n-1)a n -na n-1(n>1且n ∈N *),数列{a n }的前n 项和为S n ,则( ) A.a 1+a 3=2 B.a 1+a 3=4C.2020S 2021-a 2020=8080D.2021S 2021-a 2020=4040 答案 AC3.(2017课标Ⅱ,15,5分)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k = . 答案2nn+14.(2020浙江丽水四校联考,14)已知数列{a n }满足:a 1=12,a n+1=a n 2+a n ,用[x]表示不超过x 的最大整数,则[1a1+1+1a 2+1+⋯+1a 2 012+1]的值等于 . 答案 15.(2022届河北邢台入学考试)在①a3+a6=18,②{a n}的前n项和S n=n2+pn,③a3+a4=a7这三个条件中任选一个,补充在下面的问题中并解答.问题:在等差数列{a n}中,a1=2,且.(1)求数列{a n}的通项公式;(2)若b n=1a n a n+1,求数列{b n}的前n项和T n.注:若选择多个条件分别解答,则按第一个解答计分.解析(1)选①.设{a n}的公差为d.由题意可得a1+2d+a1+5d=2a1+7d=18.因为a1=2,所以d=2,则a n=a1+(n-1)d=2n.选②.设{a n}的公差为d.因为S n=n2+pn,所以S n-1=(n-1)2+p(n-1)=n2+pn-2n-p+1(n≥2),两式相减得a n=2n+p-1(n≥2),又因为a1=S1=p+1满足上式,所以a n=2n+p-1(n∈N*).由a1=2得p+1=2,所以p=1,所以a n=2n. 选③.设{a n}的公差为d.因为a3+a4=a7,所以a1+2d+a1+3d=a1+6d,即a1=d.因为a1=2,所以d=2,所以a n=a1+(n-1)d=2n.(2)由(1)可得a n+1=2(n+1),则b n=12n·2(n+1)=14(1n−1n+1).故T n=14[(1−12)+(12−13)+⋯+(1n−1n+1)]=14(1−1n+1)=n4n+4.6.(2022届河北唐山玉田一中开学考试)在①S7=49,②S5=a8+10,③S8=S6+28这三个条件中任选一个,补充在下面问题中,并完成解答.问题:已知等差数列{a n}的前n项和为S n,a5=9,,若数列{b n}满足b n=1a n a n+1,证明:数列{b n}的前n项和T n<12.注:若选择多个条件分别解答,则按第一个解答计分.证明 选择①.设数列{a n }的公差为d,由{S 7=49,a 5=9,得{7a 1+7×(7−1)2d =49,a 1+4d =9,解得{a 1=1,d =2,所以a n =2n-1.又因为b n =1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),所以T n =b 1+b 2+b 3+…+b n =12(1−13+13−15+15−17+⋯+12n−1−12n+1), 所以T n =12(1−12n+1)<12. 选择②.设数列{a n }的公差为d,由S 5=a 8+10,可得4a 1+3d=10,又a 5=a 1+4d=9,联立解得d=2,a 1=1,所以a n =2n-1.下面同选择①.选择③.设数列{a n }的公差为d,由S 8-S 6=28,可得a 7+a 8=2a 5+5d=28,又因为a 5=9,所以d=2,所以a 1=a 5-4d=9-4×2=1,所以a n =2n-1.下面同选择①.7.(2022届湖北黄冈调研,19)已知数列{a n }的前n 项和为S n ,2S n =(n+1)a n ,且a 1>1,a 2-1,a 4-2,a 6成等比数列. (1)求数列{a n }的通项公式; (2)设b n =4a n a n+1+2−a n ,数列{b n }的前n 项和为T n ,求证:T n <43.解析 (1)∵2S n =(n+1)a n ,∴S n =(n+1)a n 2,当n ≥2时,a n =S n -S n-1=n+12·a n -n 2·a n-1,化简得a n n =a n−1n−1,即a n n =a n−1n−1=…=a 11,∴a n =na 1,又a 2-1,a 4-2,a 6成等比数列,∴(a 2-1)·a 6=(a 4-2)2,即(2a 1-1)·6a 1=(4a 1-2)2,解得a 1=2或a 1=12.又a 1>1,∴a 1=2,∴a n =2n(n ∈N *). (2)证明:由(1)可得b n =4a n a n+1+2−a n =42n·2(n+1)+2-2n =1n -1n+1+(14)n ,∴T n =b 1+b 2+…+b n =[(1−12)+14]+[(12−13)+(14)2]+…+[(1n −1n+1)+(14)n ]=(1−12+12−13+⋯+1n −1n+1)+14+(14)2+…+(14)n=1-1n+1+14[1−(14)n]1−14=43-1n+1-13(14)n ,∵n ∈N *,∴T n <43. 8.(2021广东深圳外国语学校第一次月考)设数列{a n }的前n 项和为S n ,∀m ∈N *,都有a m+1-a m =-1,且a 2+S 2=-5. (1)求数列{a n }的通项公式; (2)求证:1a 1a 2+1a 2a 3+…+1a n a n+1<1. 解析 (1)∵∀m ∈N *,都有a m+1-a m =-1, ∴{a n }是等差数列,设公差为d,则d=-1.由a 2+S 2=3a 1+2d=-5,解得a 1=-1, 所以a n =-1-(n-1)=-n. (2)证明:由a n =-n,得1a n a n+1=1n(n+1)=1n -1n+1,所以1a 1a 2+1a 2a 3+…+1a n a n+1=(1−12)+(12−13)+…+(1n −1n+1)=1-1n+1<1. 9.(2021湖北八市3月联考,18)已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论. 条件①:S n =-a n +t(t 为常数);条件②:a n =b n b n+1,其中数列{b n }满足b 1=1,(n+1)b n+1=nb n ;条件③:3a n 2=3a n+12+a n+1+a n .数列{a n }中,a 1是(2√301x)6展开式中的常数项,且 .求证:S n <1对任意n ∈N *恒成立.注:如果选择多个条件作答,则按第一个条件的解答计分.解析 (2√30+1x )6的展开式的通项为T r+1=C 6r·(2√30)6−r(1x )r =C 6r (√30)6−r x 12-3r,令12-3r=0,得r=4,得展开式的常数项为12,即a 1=12.若选择①:在S n =-a n +t 中,令n=1,得2a 1=t,即t=1, 当n ≥2时,S n-1=-a n-1+1.两式相减得a n =12a n-1, 故{a n }是以12为首项,12为公比的等比数列, 所以S n =a 1(1−q n )1−q =1-(12)n <1对任意n ∈N *恒成立. 若选择②:由(n+1)b n+1=nb n 得b n+1b n =nn+1, 所以b n =b n b n−1·b n−1b n−2·…·b 2b 1·b 1=1n (n ≥2),n=1时也满足,故b n =1n (n ∈N *),则a n =1n(n+1)=1n -1n+1, S n =(1−12)+(12−13)+…+(1n −1n+1)=1-1n+1<1对任意n ∈N *恒成立. 若选择③:由题意得3a n+12-3a n 2=-(a n+1+a n ),得a n+1-a n =-13或a n+1+a n =0,又a 1=12,当a n+1+a n =0时,有S n ={0,n 为偶数,12,n 为奇数,所以S n <1;当a n+1-a n =-13时,有S n =n 2-n(n−1)6=-16(n 2-4n),当n=2时,S n 取最大值,为-16×(22-4×2)=23,因为23<1,所以S n <1对任意的n ∈N *恒成立.10.(2022届广东阶段测,17)设{a n }是各项均为正数的数列,a 1=3,a n+1=√a n 2+4a n+1+4a n . (1)求数列{a n }的通项公式;(2)若S n 为数列{a n }的前n 项和,且b n =n(n+1)S n+1S n,求数列{b n }的前n 项和.解析 (1)由a n+1=√a n 2+4a n+1+4a n 得a n+12=a n 2+4a n+1+4a n ,整理得(a n+1-a n -4)(a n+1+a n )=0,又a n+1+a n >0,所以a n+1-a n =4,所以{a n }是首项为3,公差为4的等差数列,故a n =4n-1. (2)由(1)可知,S n =n(3+4n−1)2=n(2n+1),S n+1=(n+1)(2n+3),所以b n =n(n+1)S n+1S n =1(2n+1)(2n+3)=12(12n+1−12n+3),设数列{b n }的前n 项和为T n , 则T n =12[(13−15)+(15−17)+⋯+(12n+1−12n+3)] =12(13−12n+3)=n6n+9.B 组1.(2022届重庆西南大学附中月考,8)设数列{a n }的前n 项和是S n ,令T n =S 1+S 2+⋯+S nn,称T n 为数列a 1,a 2,…,a n 的“超越数”.已知数列a 1,a 2,…,a 504的“超越数”为2020,则数列5,a 1,a 2,…,a 504的“超越数”为( )A.2018B.2019C.2020D.2021 答案 D2.(2022届河北张家口宣化一中考试,6)将正整数12分解成两个正整数的乘积,有1×12,2×6,3×4三种分解方式,其中3×4是这三种分解方式中两数差的绝对值最小的一种,我们称3×4为12的最佳分解.当p ·q(p,q ∈N *)是正整数n 的最佳分解时,我们定义函数f(n)=|p-q|,例如f(12)=|4-3|=1,则∑i=12 021f(2i)=( )A.21011-1B.21011C.21010-1 D.21010答案 A3.(2021山东菏泽期末,7)已知数列{a n }的前n 项和是S n ,且S n =2a n -1,若a n ∈(0,2021),则称项a n 为“和谐项”,则数列{a n }的所有“和谐项”的和为( ) A.1022 B.1023 C.2046 D.2047 答案 D4.(2021河北衡水中学联考二,11)若P(n)表示正整数n 的个位数字,a n =P(n 2)-P(2n),数列{a n }的前n 项和为S n ,则S 2021=( )A.-1B.0C.1009D.1011 答案 C5.(多选)(2021新高考Ⅱ,12,5分)若正整数n=a 0·20+a 1·2+…+a k-1·2k-1+a k ·2k ,其中a i ∈{0,1}(i=0,1,…,k),记ω(n)=a 0+a 1+…+a k ,则( )A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n-1)=n 答案 ACD6.(多选)(2021广州一模,12)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……;第n(n ∈N *)次得到数列1,x 1,x 2,x 3,…,x k ,2.记a n =1+x 1+x 2+…+x k +2,数列{a n }的前n 项和为S n ,则( ) A.k+1=2nB.a n+1=3a n -3C.a n =32(n 2+3n) D.S n =34(3n+1+2n-3) 答案 ABD7.(2020山东师范大学附中最后一卷)对n 个不同的实数a 1,a 2,…,a n 可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i 行a i1,a i2,…,a in ,记b i =-a i1+2a i2-3a i3+…+(-1)nna in ,i=1,2,3,…,n!.例如用1,2,3可得数阵如图,此数阵中每一列各数之和都是12,所以b 1+b 2+…+b 6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的数阵中,b 1+b 2+…+b 120等于( )1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1A.-3600B.-1800C.-1080D.-720 答案 C8.(2021湖南岳阳一模,4)“中国剩余定理”又称“孙子定理”,讲的是一个关于整除的问题.现有这样一个整除问题:将1到2021这2021个数中能被3整除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{a n },则此数列的所有项中,中间项的值为( ) A.992 B.1022 C.1007 D.1037 答案 C9.(多选)(2021济南十一学校联考,11)已知数列{F n }:1,1,2,3,5,8,13,…,从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论中正确的是( ) A.S 6=F 8 B.S 2019=F 2021-1C.F 1+F 3+F 5+…+F 2021=F 2022D.F 12+F 22+F 32+…+F 2 0202=F 2020F 2021答案 BCD10.(2022届南京调研,7)取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下的两段;再将剩下的两段分别三等分,各去掉中间一段,留剩下的更短的四段;……;将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃的过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔三分集.若在第n 次操作中去掉的线段长度之和不小于160,则n 的最大值为(参考数据:lg2≈0.3010,lg3≈0.4771)( ) A.6 B.7 C.8 D.9 答案 C应用篇知行合一应用构建数列模型解决实际生活中的问题1.(2020山东潍坊6月模拟数学文化与等差数列)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.相逢时良马比驽马多行()A.540里B.426里C.963里D.114里答案A2.(2020山东省实验中学期中数学文化与等比数列)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,若要使织布的总尺数不少于30尺,则至少需要()A.6天B.7天C.8天D.9天答案C3.(2022届全国联考,6实际生活)某微生物科研机构为了记录微生物在不同时期的存活状态,计划将微生物分批次培养,第一批次,培养1个;从第二批次开始,每一批次培养的个数是前一批次的2倍,按照这种培养方式(假定每一批次的微生物都能成活),要使微生物的总个数不少于950,大概经过的批次为()A.10B.9C.8D.7答案A4.(2022届湖南湘潭月考,4数学文化与等比数列)我国古代数学名著《算法统宗》是明代数学家程大位(1533年—1606年)所著.程大位少年时,读书极为广博,对书法和数学颇感兴趣.20岁起便在长江中下游一带经商,因商业计算的需要,他随时留心数学,遍访名师,搜集了很多数学书籍,刻苦钻研,时有心得,终于在他60岁时,完成了《算法统宗》这本著作.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”根据诗词的意思,可得塔的最底层共有灯()A.192盏B.128盏C.3盏D.1盏答案 A5.(多选)(2022届江苏南通海门一中月考数学文化)《张丘建算经》是中国古代众多数学名著之一.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了9匹3丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这个月有30天,记该女子这个月中第n 天所织布的尺数为a n ,b n =2a n ,则( )A.b 10=8b 5B.数列{b n }是等比数列C.a 1b 30=105D.a 3+a 5+a 7a 2+a 4+a 6=209193答案 BD6.(多选)(2021江苏栟茶中学学情调研数学文化与等比数列)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难,次日脚痛减一半,如此六日过其关.”则下列说法正确的是( )A.此人第二天走了九十六里路B.此人第一天走的路程比后五天走的路程多六里C.此人第三天走的路程占全程的18D.此人后三天共走了42里路答案 ABD7.(多选)(2021湖南、河北联考,11数学文化与等差数列)朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( )。
第43讲 数列的求和【基础知识回顾】 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).1、数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100【答案】 D【解析】 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 2、数列{}n a 的前n 项和为n S ,若()11n a n n =+,则5S 等于( )A .1B .56 C .16D .130【答案】:B 【解析】:因为()11111n a n n n n ==-++,所以5111111111151122334455666S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选B . 3、设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】:A 【解析】:由11111++++2612(1)S n n =++,得11111++++122334(1)S n n =+⨯⨯⨯+,111111112111++++222334111n S n n n n +=+-==+++----,故选:A.4、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________.【答案】 2 022【解析】 a n =1n (n +1)=1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.5、已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.【答案】:5000【解析】:由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5000.6、 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 【答案】:2n【解析】:因为数列{a n }为等比数列,则a n =2q n -1,又数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0q =1,即a n =2,所以S n =2n .考向一 公式法例1、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】4 42【解析】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-,514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42. 故答案为:(1)4;(2)42.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.考向二 利用“分组求和法”求和例2、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.变式1、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+ (12)-1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12 =12n -1+2n -2. 变式2、 已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3.又S 2=2a 1+d ,所以a 1=d , 易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.变式3、(2021·广东高三专题练习)设数列{a n }满足a n +1=123n a +,a 1=4. (1)求证{a n ﹣3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n . 【答案】(1)证明见解析,11()33n n a -=+;(2)31(1)323n n -+.【解析】(1)数列{a n }满足a n +1=123n a +,所以113(3)3n n a a +-=-, 故13133n n a a +-=-, 所以数列{a n }是以13431a -=-=为首项,13为公比的等比数列. 所以1131()3n n a --=⋅,则1*1()3,3n n a n N -=+∈. (2)因为11()33n n a -=+,所以011111()()()(333)333n n T -=++++++⋯+=11(1)33113n n -+-=31(1)323n n -+. 方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考向三 裂项相消法求和例3、(2021·四川成都市·高三二模(文))已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得20T 的值为( )A .1939B .3839C .2041D .4041【答案】C 【解析】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n nT n n n n =⨯-+-++-=⨯-=-+++,所以202020220141T ==⨯+,故选:C.变式1、(2021·全国高三专题练习)已知在数列{}n a 中,14,0.=>n a a 前n 项和为n S ,若1,2)-+=∈≥n n n a S S n N n .(1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:132020n T <<【解析】(1)在数列{}n a 中,1(2)n n n a S S n -=-≥①∴1n n n a S S -=且0n a >,∴①式÷②11n n S S -= (2)n ≥, ∴数列{}nS 1142S a ===为首项,公差为1的等差数列,2(1)1n S n n =+-=+ ∴2(1)n S n =+当2n ≥时,221(1)21n n n a S S n n n -=-=+-=+;当1n =时,14a =,不满足上式,∴数列{}n a 的通项公式为4,121,2n n a n n =⎧=⎨+≥⎩.(2)由(1)知4,121,2n n a n n =⎧=⎨+≥⎩,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,∴当1n =时,114520n T ==⨯, ∴当1n =时,120n T =,满足132020n T ≤<,∴12233411111n n n T a a a a a a a a +=++++1111455779(21)(2n =++++⨯⨯⨯+111111111111()()()()45257792123202523n n n ⎡⎤=+⨯-+-++-=+⨯-⎢⎥⨯+++⎣⎦ 312046n =-+ ∴在n T 中,1n ≥,n ∈+N ,∴4610n +≥,∴114610n ≤+,∴1104610n >-≥-+,∴131320204620n ≤-<+.所以132020n T << 变式2、(2021·辽宁高三二模)已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【解析】解:(1)因为2n n a S n =+①, 所以()11212n n a S n n --=+-≥② 由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列. (2)令1n =,1121a S =+,则11a =. 由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭. 因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+< ⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝ ⎛⎭⎪⎫1n -1n +k ,此类数列适合使用裂项相消法求和. (2)数列的通项公式形如a n =1n +k +n时,可转化为a n =1k(n +k -n ),此类数列适合使用裂项相消法求和.考向四 错位相减法求和例4、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N*=+∈,且12a =.(1)求数列{}n a 的通项公式;(2)设()12n an n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==, 所以2n a n =(2)由(1),(1)2=(21)4n ann n b a n =--, 所以 12314+34+54++(21)4n n T n =⨯⨯⨯-231414+34++(23)4(21)4n n n T n n +=⨯⨯-+-…两式相减得:23134+2(4+4++4)(21)4n n n T n +-=⨯--…,2+114434+2(21)414n n n T n +--=⨯---,化简得120(65)4+99n n n T +-= 变式1、(2020·全国高三专题练习(文))已知数列{}n a 是等差数列,其前n 项和为n S ,且22a =,5S 为10和20的等差中项;数列{}n b 为等比数列,且319b b -=,4218b b -=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n M . 【解析】(1)设等差数列{}n a 的公差为d ,因为22a =,5S 为10和20的等差中项,所以112541020522a d a d +=⎧⎪⎨⨯++=⎪⎩,解得111a d =⎧⎨=⎩,所以n a n =. 设等比数列{}n b 的公比为q ,因为319b b -=,4218b b -=,所以2121(1)9(1)18b q b q q ⎧-=⎨-=⎩,解得132b q =⎧⎨=⎩, 所以132n n b -=⋅.(2)由(1)可知132n n n a b n -⋅=⋅,所以213(122322)n n M n -=+⨯+⨯++⋅,令21122322n n P n -=+⨯+⨯++⋅ ①, 则232222322n n P n =+⨯+⨯++⋅ ②,-①②可得2112122222(1)2112nn nn n n P n n n ---=++++-⋅=-⋅=---,所以(1)21nn P n =-+,所以3(1)23n n M n =-+.变式2、(2020·湖北高三期中)在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分. 【解析】(1)由题意,等差数列{}n a 中35a =且636S =,可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121nb n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得:()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。