第四章成比例线段教学设计
- 格式:xls
- 大小:27.50 KB
- 文档页数:1
浙教版数学九年级上册《4.1 比例线段》教学设计2一. 教材分析《比例线段》是浙教版数学九年级上册第四章的第一节内容。
本节主要让学生理解比例线段的定义,学会求解比例线段的方法,并能运用比例线段解决实际问题。
教材通过生活实例引入比例线段的概念,接着介绍比例线段的定义和性质,然后讲解比例线段的求解方法,最后安排一些练习题让学生巩固所学知识。
二. 学情分析九年级的学生已经学习了初中数学的大部分内容,对数学概念和运算方法有一定的理解。
但是,对于比例线段这一概念,学生可能比较陌生,需要通过实例和讲解来理解和掌握。
此外,学生可能对比例线段的求解方法不够熟悉,需要通过练习来提高解题技巧。
三. 教学目标1.知识与技能:让学生理解比例线段的定义,学会求解比例线段的方法,并能运用比例线段解决实际问题。
2.过程与方法:通过实例引入比例线段的概念,引导学生自主探索比例线段的性质和求解方法,培养学生的数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:比例线段的定义和求解方法。
2.难点:比例线段的性质和运用比例线段解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入比例线段的概念,让学生在具体的情境中理解数学概念。
2.引导发现法:引导学生自主探索比例线段的性质和求解方法,培养学生的数学思维能力。
3.练习法:安排一些练习题让学生巩固所学知识,提高解题技巧。
六. 教学准备1.教学PPT:制作相关的教学PPT,用于展示教材内容和实例。
2.练习题:准备一些练习题,用于巩固所学知识。
3.教学用具:准备一些教学用具,如直尺、量角器等,用于讲解和演示。
七. 教学过程1.导入(5分钟)通过一个实际问题引入比例线段的概念:某一路程分为三段,第一段行驶了2小时,速度为40公里/小时;第二段行驶了1小时,速度为60公里/小时;第三段行驶了3小时,速度为80公里/小时。
《成比例线段》教学设计阳山县青莲中学叶兰香一、学情分析相似图形是现实生活中广泛存在的现象,学生在小学时就接触过比例的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例),相似是全等的拓广与发展。
学生已经具备一些知识基础、活动经验基础等,学习线段的比应该不会有困难,但由于学生原有知识水平比较差,故学生在探究线段的比的性质时可能会遇到障碍。
二、教材分析(一)教学内容分析《成比例线段》是新北师大版九年级数学上册第四章《相似图形》第一节的内容。
本节课既是第四章的章节起始课,又是概念课,在教法、学法以及培养学生自主学习能力方面,都有着重要意义,本节课的成功直接关系到整章书的教学效果。
(二)教学目标1.了解线段的比的概念,会求两条线段的比;2. 掌握成比例线段的概念,会判断线段是否成比例;3. 理解和掌握比例的基本性质,并会简单应用。
(三)教学重点和难点教学重点:理解线段的比与成比例线段的概念及其求解。
教学难点:求线段的比,注意线段长度单位要统一。
三、教学方法:自主、合作、探究法四、教学模式及教学流程播放视频,导入新课——目标展示,明确任务——探究新知,交流建构——拓展提升,发展能力——课堂小结,反思收获——课堂后测,拓展反馈——布置作业,课后延伸。
五、教学过程:(一)播放视频,导入新课视频内容:第一部分从学生生活中形状相同,大小不相同的图片入手,引出相似图形;第二部分提出问题:如何比较两个相似图形的大小?如何把一个图形放大或者缩小?如何判定两个三角形是否相似?第三部分明确研究相似图形的基础是比例线段,并阐述了比例线段的作用。
(设计意图:利用学生身边的图片引入,吸引学生注意力,提高学生学习兴趣;作为章节起始课,让学生了解在这一章当中我们将要学习的内容,并解决为什么要学的问题。
)(二)目标展示,明确目的1. 了解线段的比的概念,会求两条线段的比;2. 掌握成比例线段的概念,会判断线段是否成比例;3 . 理解和掌握比例的基本性质,并会简单应用。
成比例线段教案初中教学目标:1. 理解成比例线段的概念,掌握成比例线段的判定方法。
2. 能够运用成比例线段解决实际问题,提高学生的应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 成比例线段的定义和判定方法。
2. 运用成比例线段解决实际问题。
教学难点:1. 成比例线段的判定方法。
2. 运用成比例线段解决实际问题。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾线段的基本概念,如线段的定义、长度等。
2. 提问:线段之间有没有可能存在某种特殊的关系?二、新课讲解(15分钟)1. 介绍成比例线段的定义:如果四条线段a、b、c、d满足a/b = c/d,那么这四条线段叫做成比例线段。
2. 讲解成比例线段的判定方法:a) 如果四条线段a、b、c、d满足a/b = c/d,那么它们是成比例线段。
b) 如果两条线段a和b与另外两条线段c和d分别成比例,即a/b = c/d,那么这四条线段也是成比例线段。
3. 举例说明成比例线段的判定方法。
三、练习与讨论(15分钟)1. 给学生发放练习题,让学生独立完成。
2. 引导学生分组讨论,共同解决问题。
3. 选取部分学生进行解答展示和讲解。
四、应用拓展(10分钟)1. 给学生发放实际问题题目,让学生运用成比例线段解决。
2. 引导学生分组讨论,共同解决问题。
3. 选取部分学生进行解答展示和讲解。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结成比例线段的定义和判定方法。
2. 提问:你们认为成比例线段在实际生活中有哪些应用?教学评价:1. 课后收集学生的练习题答案,评估学生对成比例线段的掌握程度。
2. 在下一节课开始时,让学生进行成比例线段的课堂测试,评估学生的理解和应用能力。
以上是一份关于成比例线段的教案,希望能够帮助到您。
在实际教学过程中,可以根据学生的实际情况对教案进行调整。
成比例线段-华东师大版九年级数学上册教案一、教学目标1.了解成比例线段的定义、性质及判定方法。
2.掌握使用成比例线段的性质和判定方法解题。
3.培养学生抽象思维能力,培养问题解决能力。
二、教学重难点1.成比例线段的判定方法。
2.应用成比例线段的性质解题。
三、教学过程1. 导入(5分钟)教师引入本节课的主要内容:成比例线段的性质和判定方法。
2. 讲解成比例线段的定义(15分钟)1.定义:在同一直线上,若AB:CD=AE:CF,则有AB∥CD(A、B在同侧于CD),即线段AB与CD成比例线段。
2.讲解成比例线段的图形表示。
3.举例说明成比例线段的定义。
3. 讲解成比例线段的判定方法(20分钟)1.定理1:在三角形ABC中,若AD是BC的中线,且AD平分角BAC,则BD∥AC,即BD与AC成比例线段。
2.定理2:在三角形ABC中,若BD∥AC,则有AB:BC=AD:DC,即线段AB与BC成比例线段。
3.讲解两个定理的图形表示和证明过程。
4. 应用成比例线段的性质解题(30分钟)1.给出一些简单的例题,引导学生理解成比例线段的性质和判定方法。
2.给出一些较难的例题,让学生运用所学知识独立解题。
5. 拓展应用(10分钟)1.让学生自己举一些实际生活中应用成比例线段的例子。
2.搜集成比例线段的应用场景,让学生展示或讲解。
四、教学评价1.几个简单的作业题,检验学生对成比例线段的掌握情况。
2.课堂小测,检验学生对成比例线段的理解和应用情况。
3.口头提问,检验学生的掌握情况。
五、板书设计1.成比例线段的定义2.定理1:在三角形ABC中,若AD是BC的中线,且AD平分角BAC,则BD∥AC3.定理2:在三角形ABC中,若BD∥AC,则有AB:BC=AD:DC六、教学反思本节课的难度略微较高,需要老师进行详细的讲解和演示,以便让学生掌握成比例线段的定义、性质及判定方法。
同时,在应用方面,需要老师给出充足的例题来让学生自主解题。
教学目的:1.结合现实情境,感受学习线段的比的必要性,理解线段的比和成比例线段.2.借助几何直观,掌握比例的性质及其简朴应用.3.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的亲密联系.教学重、难点:重点:理解线段的比和成比例线段的概念,理解比例的基本性质及其应用.难点:理解线段的比和成比例线段的概念.课前准备:制作多媒体课件.教学过程:一、美图观赏,情境导入导语:同窗们,色彩斑谰的世界中有许多美丽的图形,它们有的形状、大小都相似,这就是我们前面学过和全等形(多媒体出示图1);有的只有形状相似,这就是相似图形(多媒体出示图 2).你知如何刻画图形的相似吗?你懂得如何鉴定两个三角形相似吗?你懂得如何将一种图形放大或缩小吗?从今天开始,我们学习第四章,本章将研究图形的相似,探索三角形相似的条件,理解相似三角形的性质,并运用图形的相似解决某些简朴的实际问题.本节课就让我们一起从“成比例线段”开始学习本章.【板书课题:4.1 成比例线段(1)】图1 图2 解决方式:学生观看生活中的存在的全等形及相似形,体会数学来源于生活,在全等形的基础上感知相似图形.设计意图:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形.初步感知相似图形,引发学生思考相似图形的特性,激发学生的求知欲及学习爱好.为新课的学习做好情感铺垫.二、探究学习,获取新知活动 1:两条线段的比1.考考你的眼力(多媒体出示)你能在下面的这些图形中找出形状相似的图形吗?这些形状相似的图形有什么不同?解决方式:学生先自主观察这些图形的特点,然后在小组内交流自已的见解,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作下列引导:(1)图中形状相似的图形,大小有什么不同?(2)形状相似的图形其中的一种如何由另一种得到?(多媒体动画演示图形的放大与缩小)(3)形状相似的图形对应的线段如何变化的?(4)形状相似而大小不同的两个图形,你认为如何来描述它们的大小关系?设计意图:通过以上引导性问题引导学生共同总结出:对于形状相似而大小不同的两个图形,能够用对应线段长度的比来描述它们的大小关系.适时引出两条线段的比的概念.2.引入线段的比(多媒体出示)如果选用同一种长度单位量得两条线段AB,CD 的长度分别是m,n,那么这两条线段的比(ratio )就是它们的长度比,即 AB ∶CD =m ∶n ,或写成 AB = m.其中,线段 AB ,CD 分CD n别叫做这个线段比的前项和后项.如果把 m 表达成比值 k ,那么 AB= k ,或 AB =k ·CD .两n CD 条线段的比事实上就是两个数的比.解决方式:教师运用多媒体出示两条线段的比的定义.强调有关要点,明确两条线段的比事实上就是两个数的比.接着出示下面实例进一步加深学生对两条线段的比的认识.(多媒体出示)五边形 ABCDE 与五边形 A ′B ′C ′D ′E ′形状相似, AB =5cm , A ′B ′=3cm. AB ∶A ′B ′=5 : 3,就是线段 AB 与线段 A ′B ′的比.这个比值刻画了这两个五边形的大小关系.设计意图:通过两个五边形对应边的比,具体阐明线段的比的意义,进一步巩固对概念的理解.3. 想一想(1) 在计算两条线段的比时我们要注意什么?(2) 两条线段长度的比与所采用的长度单位有无关系?(3) 两条线段的比成果有单位吗?解决方式:学生思考并在小组内交流以上问题,举例阐明自己的理由.教师适时点拨引导,共同归纳出:在计算两条线段的比时我们要统一长度单位;两条线段长度的比与所采用的长度单位无关;两条线段的比成果没有单位,是一种数.设计意图:通过想一想使学生进一步加深对两条线段的比的认识.体会:两条线段长度的比与所采用的长度单位无关.但要采用同一种长度单位.活动 2:成比例线段(多媒体出示)如图,设小方格的边长为 1,四边形 ABCD 与四边形 EFGH 的顶点都在格点上,那么 AB , CD ,EF ,EH 的长度分别是多少?分别计算 AB , AD , AB , EF的值,你发现了什么?EF EH AD EH解决方式:引导学生结合图形分析题意,明确图中两四边形的四条边的长度能够通过观察或勾股定理得出.给学生充足的时间计算AB,AD,AB,EF的值,在计算的过程中体会EF EH AD EHAB=AD,AB=EF.教师借助多媒体展示解题思路及解题过程,规范学生的解题环节EF EH AD EH的书写.完毕后追问:你发现了什么?从而引出成比例线段的概念.强调:上图中AB,EF,AD,EH 是成比例线段,AB,AD,EF,EH 也是成比例线段.四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即a/b=c/d,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段.(多媒体出示)设计意图:通过方格纸上两个四边形对应边的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.跟踪练习:判断下列四条线段与否成比例.(1)a = 2, b= 5, c = 15, d = 23;(2)a =2, b= 3, c = 2, d =3;(3)a = 4, b= 6, c = 5, d =10;(4)a =12, b= 8, c =15, d =10.解决方式:学生先自主判断,然后再在全班展示交流.共同总结出:四条线段成比例与这四条线段的次序有关.设计意图:通过练习巩固学生对概念的理解.活动 3:比例的基本性质议一议如果a,b,c,d 四个数成比例,即a/b=c/d,那么ad=bc 吗?反过来如果ad=bc,那么a,b,c,d 四个数成比例吗?与同伴交流.3 3 解决方式:第一种问题可引导学生从两方面加以阐明,首先根据等式的基本性质,在 a=bc 两边同时乘 bd ,得到 ad =bc ;另首先能够介绍引入比值 k 的办法:设 a = c=k ,那么 d b da =bk ,c = d k ,因此 ad = bk·d =b·kd =bc .第二个问题,要注意条件.通过学生的展示,共同总结出比例的基本性质:如果 a = c,那么 ad =bc .如果 ad =bc (a ,b ,c ,d 都不等于零),b d那么 a = c .b d设计意图:通过对两个问题的讨论引出比例的基本性质. 三、例题解析,应用新知例 1 如图,一块矩形绸布的长 AB =a m ,AD =1m ,按照图中所示的方式将它裁成相似的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比 与原绸布的长与宽的比相似,即 AE = AD ,那么 a 的值应当是多ADAB少?解决方式:引导学生阅读、理解题意,自己尝试解答,教师运用实物投影展示学生的做题状况,借助多媒体展示解题过程,规范学生的书写,强调知识的应用.解:根据题意可知,AB =a m ,AE = 1a m ,AD =1m .3 1 a由 AE = AD ,得 3 = 1 ,即 1 a 2 = 1. AD AB ∴a 2=3.1 a 3 开平方,得 a = ( a =- 舍去).设计意图:通过例题提供应用比例基本性质的一种具体情境,加深学生对比例基本性质的理解.让学生运用所学的知识来解决实际生活中的问题.想一想:生活中尚有哪些运用线段比的事例?你能举例吗?学生举例:房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等.设计意图:进一步让学生体会线段的比在生活中的应用. 四、回想反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些办法?先想一想,再分享给大家.解决方式:学生畅谈自己的收获!教师强调:1)线段的比的概念、表达办法;前项、后项及比值 k;2)两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;3)两条线段的比在实际生活中的应用.4)比例的基本性质:如果a=c,那么ad=bc.如果ad=bc (a,b,c,d 都不等于零),b d那么a=c.b d设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高活动内容:通过本节课的学习,同窗们的收获真多!收获的质量如何呢?请完毕导学案中的达标检测题.(同时多媒体出示)1.一条线段的长度是另一条线段长度的5 倍,则这两条线段之比是_.32.一条线段的长度是另一条线段长度的,则这两条线段之比是.53.已知a、b、c、d 是成比线段,a=4cm,b=6cm,d=9cm,则c=__ .x4.如果2x=5y,那么y =.5.把mn=pq 写成比例式,写错的是()A.m=p; B.p=n; C.q=n; D. m =p .q n m q m p n q6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=,b=,c= .解决方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题状况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握状况,并最大程度地调动全体学生学习数学的主动性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达成全方面提高的目的.六、布置作业,课堂延伸必做题:课本79 页习题4.1 第1 题、第2 题.选做题:课本79 页习题4.1 第3 题.板书设计:。
《成比例线段》教案教学目标 1.了解两条线段的比和比例线段的概念;2.能根据条件写出比例线段;3.回运用比例线段解决简单的实际问题.教学重点、难点教学重点:比例线段的概念.教学难点:例题中要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点.知识要点1.两条线段的长度的比叫做两条线段的比.2.四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即a b =c d ,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.重要提示1.用方程思想寻找几何图形中四条线段成比例是常用方法.2.四条线段成比例可以解决一些实际问题,如地图上的某两地之间的距离. 教学过程一、复习引入1.列举四个数成比例,并写出比例式,指出比例内项、外项、第四比例项.2.说出比例的基本性质.由ad =bc 可推出哪些比例式?3.练习:(1)若3x =4y ,求x y 、x x -y 、x -2y x +y 的值.(2)若a +b a =53 ,求a -2b b 的值.(3)x :y :z =2:3:4,求x -y +z2x +3y -z 的值.(4)已知a :b :c =3:4:5,且2a +3b -4c =-1,求2a -3b +4c 的值.(5)已知线段AB =15cm ,CD =20cm .求AB :CD 的值.二、设置问题,探究新课如何定义两线段的比呢?什么是比例线段?在同一长度单位下,a ,b ,两线段长度的比叫做这两线段的比.记为a :b 或a b注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长,单位多种,但求比值必需在同一长度单位下比值一定是正数,比值与采用的长度单位无关.(3)表示方式与数字的比表示类同,但它也可以表示为AB :CD .比例线段:一般地,四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 比,即a b =c d ,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.(老教材定义:如果四条线段的长度成比例,那么这四条线段叫做成比例线段,简称比例线段)三、模仿与应用例题:已知线段a =10mm ,b =6cm ,c =2cm ,d =3cm .问:这四条线段是否成比例?为什么? 答:这四条线段成比例∵a =10mm =1cm∴a c =12 ,d b =36 =12∴a c =d b ,即线段a 、c 、d 、b 是成比例线段.想一想:是否还可以写出其他几组成比例的线段.反思:判断四条线段是否成比例的方法有两种:(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等.(2)查看是否有两条线段的积等于其余两条线段的积.例如图,在Rt △ABC 中,CD 是斜边AB 上的高.请找出一组比例线段,并说明理由. 分析:(1)根据比例基本性质,要判断四条线段是否成比例,只要采取什么方法(看其中两条线段的乘积是否等于另两条线段的乘积)(2)已知条件中有三角形的高,我们通常可以把高与什么知识联系起来?(3)根据三角形的面积公式,你能得到一个怎样的等式?根据所得的等式可以写出怎样的比例式.例如图,是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪一个方向?到高雄A B CD市的实际距离是多少km ?注意:要设实际距离为s ;求角度时要注意方位.解:从图上量出高雄市到基隆市的距离约35mm ,设实际距离为s ,则359000000s =⨯∴=(mm )即s =315(km )如果量得图中28α∠=︒,我们还能确定基隆市在高雄市的北偏东28︒的315km 处. 补充练习:1.已知线段a =30mm ,b =2cm ,c =45 cm ,d =12mm ,试判断a 、b 、c 、d 是否成比例线段.2.已知a 、b 、c 、d 是比例线段,其中a =6cm ,b =8cm ,c =24cm ,则线段d 的长度是多上?3.已知三角形三条边之比为a :b :c =2:3:4,三角形的周长为18cm ,求各边的长.4.已知AB 两地的实际距离是60km ,画在图上的距离A 1B 1是6cm ,求这幅图的比例尺.5.现在有一棵很高的古树,欲测出它的高度,但又不能爬到树尖上去直接测量,你有什么好的方法吗?类题:相同时刻的物高与影长成比例.如果一电视塔在地面上影长为180m ,同一时刻高为2m 的竹竿的影长为3m ,那么电视塔的高是多少?6.如图,已知AD ,CE 是△ABC 中BC 、AB 上的高线,求证:AD :CE =AB :BC7.如图,在Rt △ABC 中,CD ⊥AB ,DE ⊥AC ,请找出一组比例线段,并说明理由.8.如图,已知32AD AE DB EC ==,求AB EC AB DB AE AD,, 9.育美中学请张工程师设计学校的矩形花坛的平面图,这个花坛长为20m ,宽为12m .(1)在比例尺为1:100的平面图上,这个矩形花坛的长和宽各是多少?(2)在平面图上,这个花坛的长和宽的比是多少?(3)花坛长和宽实际比是多少?(4)你发现这两个比有什么关系?四、课堂小结1.两条线段的比及比例线段的概念;2.方程思想的体现;3.比例线段在实际问题中的应用.。
《成比例线段》教案一、教学目标1. 让学生理解成比例线段的定义和性质。
2. 培养学生运用成比例线段解决实际问题的能力。
3. 提高学生对数学知识的兴趣和积极性。
二、教学内容1. 成比例线段的定义:如果四个线段a, b, c, d满足a/b = c/d,这四个线段称为成比例线段。
2. 成比例线段的性质:成比例线段的长度比例保持不变,即a:b = c:d。
3. 成比例线段的判定:判断四个线段是否成比例,可以通过比较两组对应线段的长度比例是否相等。
三、教学重点与难点1. 教学重点:成比例线段的定义和性质。
2. 教学难点:成比例线段的判定方法。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析和推理得出成比例线段的定义和性质。
2. 通过实例讲解和练习,让学生掌握成比例线段的判定方法。
3. 鼓励学生参与讨论和提问,提高学生的思维能力和解决问题的能力。
五、教学安排1. 第一课时:介绍成比例线段的定义和性质。
2. 第二课时:讲解成比例线段的判定方法。
3. 第三课时:练习成比例线段的判定和应用。
六、教学评价1. 通过课堂提问和讨论,评估学生对成比例线段定义和性质的理解程度。
2. 通过课后作业和练习题,检查学生对成比例线段判定方法的掌握情况。
3. 结合学生的课堂表现和练习成绩,综合评价学生对成比例线段知识的掌握程度。
七、教学资源1. 课件和教学图片:用于展示成比例线段的例子和解释概念。
2. 练习题和答案:用于学生课后巩固知识和自我评估。
3. 教学视频或动画:可选,用于生动展示成比例线段的特点和应用。
八、教学过程1. 导入新课:通过一个实际问题引入成比例线段的概念。
2. 讲解与示范:清晰讲解成比例线段的定义和性质,并通过示例展示判定方法。
3. 互动与练习:学生参与讨论,回答问题,并完成一些判断练习。
九、课后作业1. 完成一些关于成比例线段的判断题和应用题,以巩固所学知识。
2. 选择一道较复杂的成比例线段问题,要求学生用自己的话解释解题过程。
成比例线段教学目标1使学生了解线段的比和成比例线段的概念,通过实例使学生了解“黄金分割”2能通过计算,判定四条线段是否成比例重点难点重点:成比例线段的概念及通过计算判断四条线段是否成比例. 难点:从实例引导学生了解“黄金分割”教学设计一预习导学预习教材,n ,那么把它们的长度的比m n 叫作这两条线段AB 与A’B’ 的比,记作::=''='',或 AB m AB A B m n A B n如果m n的比值为,那么上述式子也可写成=='''',或 AB k AB kA B A B 在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称为比例线段出示课题:成比例线段例如,已知四条线段a ,b ,c ,d ,若a cb d=,则a ,b ,c ,d 是比例线段,线段d 叫做a ,b ,c 第四比例项如果作为比例内项的是两条相同的线段,即c b b a =(或a :b =b :c ),那么线段b 叫做线段a 和c 的比例中项类似地,如果AB BC AC A B B C A C =='''''',那么称线段AB ,BC ,AC 与线段''''''A B ,B C ,A C 对应成比例 .AB BC AC A B B C A C ===''''''05例3已知四条线段a ,b ,c ,d 的长度分别为 cm , 2 cm , cm , 3 cm ,问a ,b ,c ,d 是比例线段吗设计意图:通过例题练习讲解学习,使学生更好地掌握“比例线段”的概念,也是此概念很好的应用,不断地增强学生的学习积极性(方法与过程:学生自主 学习,然后分组展示质疑点评)对应练习:1 已知四个数a ,b ,c ,d 成比例(1)若a = cm ,b = 1 cm ,c= 1 cm ,求d ;(2)若a = 12 cm ,c = 3cm ,d=15 cm ,求b ;(3)若a = 5 cm ,b = 4 cm ,d=8 cm ,求c .例4 等比性质:证明 如果nm d c b a =⋅⋅⋅==(0≠+⋅⋅⋅++n d b ),那么n d b m c a +⋅⋅⋅+++⋅⋅⋅++=b a . 2 黄金分割比问题情境引入:古希腊数学家天文学家欧多克塞斯Eudou ,约公元前400—前347提出一个问题:能否将一条线段AB 分成不相等的两部分,使较短线段CB 与较长线段AC 的比等于线段AC 与原线段AB 的比 即使得CB AC AC AB=成立吗 小结:如果这能做到的话,那么称线段AB 被点C 黄金 分割,点C 叫作线段AB 的黄金分割点,较长线段AC 与 原线段AB 的比叫作黄金分割比(方法与过程:通过学生自己阅读课本65页宋体字内容,得出“黄金分割阅读课本66页设计意图:通过阅读提高学生学习的兴趣,感受“黄金分割比”的生活艺术效果 温馨提示:记住黄金分割比215-,如果线段AB 被点C 黄金分割,那么较长线段AC=215-AB, 较短线段BC=253-AB三知识梳理以“本节课我们学到了什么”启发学生谈谈本节课的收获1本节课重点有掌握的知识是什么2 在学习的过程中你的困惑是什么3你对自己本节课的表现满意的地方在哪里(说明:学生独立总结出本节知识点,小组内讨论交流,互相补充完善,教师及时给与指导,形成正确的知识归纳)四当堂检测是2,3,8的第四比例项,则m=;2.若是a,b的比例中项,且a=3,b=27,则=;若线段是线段a,b的比例中项,且a=3,b=27,则=;3 把长为7cm的线段进行黄金分割,则分成的较短线段的长度为()A 25721+cm B 25721-cm 2577+D2757-cm 4人的正常体温是36°C~37°C,对大多数人来说,体温最舒适的温度是22~23°C,你能解释吗五教学反思通过习题补充,法,解决有关比例的问题很重要这是重点也是考点通过习题让学生有具体直观的感觉,易学易懂。
教案:成比例线段教学目标:1. 理解成比例线段的概念,掌握成比例线段的性质;2. 能够判断四条线段是否成比例,求出成比例线段的比值;3. 能够运用成比例线段解决实际问题。
教学重点:1. 成比例线段的定义和性质;2. 判断四条线段是否成比例的方法;3. 运用成比例线段解决实际问题。
教学难点:1. 成比例线段的性质的理解和运用;2. 判断四条线段是否成比例的方法的掌握;3. 运用成比例线段解决实际问题的能力的培养。
教学准备:1. 成比例线段的图片或实物;2. 尺子、笔等绘图工具。
教学过程:一、导入(5分钟)1. 引导学生观察成比例线段的图片或实物,让学生初步感知成比例线段的概念;2. 提问:你们观察到这些线段有什么特点?它们之间有什么关系?二、新课讲解(15分钟)1. 给出成比例线段的定义:如果四条线段a、b、c、d满足a/b = c/d,那么这四条线段叫做成比例线段;2. 讲解成比例线段的性质:成比例线段的长度比相等,即a/b = c/d = e/f;3. 给出判断四条线段是否成比例的方法:判断四条线段a、b、c、d是否成比例,只需要判断a/b是否等于c/d即可;4. 讲解如何求成比例线段的比值:如果四条线段成比例,那么它们的比值就是它们长度的比,即a/b = c/d = e/f。
三、课堂练习(15分钟)1. 让学生独立完成教材上的练习题,巩固对成比例线段的理解;2. 让学生分组讨论,互相检查答案,提高学生的合作能力。
四、实际问题解决(15分钟)1. 给出实际问题,让学生运用成比例线段的知识解决,如:在地图上,AB两地的距离是5cm,实际距离是100km,求地图的比例尺;2. 引导学生通过画图、列式等方式解决问题,培养学生的解决问题能力。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结成比例线段的定义、性质和应用;2. 提问:你们还有什么问题或者想法吗?六、作业布置(5分钟)1. 让学生完成教材上的课后练习题;2. 让学生找一些成比例线段的例子,下节课分享。
成比例线段—教学设计教学目标:1.了解成比例线段的定义和性质。
2.掌握成比例线段的求法。
3.能够应用成比例线段的性质解决实际问题。
教学重点:1.成比例线段的定义和性质。
2.成比例线段的求法。
教学难点:1.运用成比例线段的性质解决实际问题。
教学准备:1.教师准备一些成比例线段的练习题和实际问题。
2.教师准备黑板、粉笔和直尺等教学工具。
教学过程:Step 1:导入新知识教师可以设计一些问题来引入成比例线段的概念,例如:“小明和小红同时从相同起点出发往同一地点走,小明走了10米,小红走了15米,那么小明走的距离和小红走的距离是否成比例呢?为什么?”或者通过展示一些图片,让学生猜测其中的线段是否成比例,并解答为什么。
Step 2:引导学生发现和总结成比例线段的定义和性质教师可以根据学生的回答情况,引导学生总结成比例线段的定义和性质。
例如,根据上述问题的解答,学生可以总结出成比例线段的定义是两个线段的比等于另外两个线段的比,以及成比例线段的线段比相等。
Step 3:讲解成比例线段的求法教师可以通过具体的例子来讲解成比例线段的求法。
例如,给出一个成比例线段的例子:A、B、C、D四个点,已知AB与CD成比例,求BC的长度。
教师可以先让学生利用已知条件写出等式AB/CD=BC/BD,然后通过交叉乘积的方式求得结果。
Step 4:引导学生进行练习教师可以让学生进行一些成比例线段的练习题,包括计算成比例线段的长度、推导成比例线段的等式等。
教师可以提供一定的帮助,并及时纠正学生的错误。
Step 5:引导学生运用成比例线段解决实际问题教师可以设计一些实际问题来引导学生运用成比例线段解决问题。
例如,“小明和小红同时从学校出发走向公园,小明每分钟走100米,小红每分钟走120米,他们走到公园分别花了多少时间?”教师可以引导学生先计算出小明和小红走的距离,然后利用已知条件写出成比例的等式,最后求得时间。
Step 6:巩固和拓展教师可以进行一些巩固和拓展性的活动,以加深学生对成比例线段的理解。
《成比例线段成比例线段与比例的基本性质》教案一、教学目标:知识与技能:1. 理解成比例线段的定义和判定方法。
2. 掌握比例的基本性质,并能运用其解决实际问题。
过程与方法:1. 通过观察和操作,培养学生发现和解决问题的能力。
2. 培养学生运用成比例线段和比例解决实际问题的能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于尝试、克服困难的精神。
二、教学重点:成比例线段的判定方法比例的基本性质三、教学难点:成比例线段的实际应用比例解决实际问题的方法四、教学准备:教师准备PPT,包括成比例线段的图片、判定方法、比例的基本性质等。
学生准备教材、笔记本、尺子、铅笔等。
五、教学过程:1. 导入(5分钟)教师通过展示一些成比例线段的图片,引导学生观察和思考,让学生初步感知成比例线段的概念。
2. 新课导入(10分钟)教师引导学生学习成比例线段的定义和判定方法,通过示例和练习,让学生理解和掌握成比例线段的判定方法。
3. 知识拓展(10分钟)教师引导学生学习比例的基本性质,通过示例和练习,让学生理解和掌握比例的基本性质。
4. 课堂练习(10分钟)教师布置一些有关成比例线段和比例的实际问题,让学生运用所学知识解决,巩固所学内容。
5. 小结与作业布置(5分钟)教师对本节课的内容进行小结,布置一些有关成比例线段和比例的实际问题,供学生课后思考和练习。
六、教学活动设计:活动1:观察和发现教师展示一系列成比例的线段图片,让学生观察并指出哪些线段是成比例的。
学生分组讨论,分享他们的发现,并尝试用自己的语言描述成比例线段的特征。
活动2:操作和实践学生使用尺子和铅笔,在纸上绘制自己的成比例线段。
教师引导学生通过折叠、比较等方式,验证他们的线段是否成比例。
活动3:问题解决教师提供一些实际问题,如“一个长方形的长是10cm,宽是5cm,请问长方形的对角线是否成比例?”学生独立思考或小组合作,运用成比例线段的性质解决问题。
24.2.1成比例线段教学目标:知识与技能:1、掌握比例线段的概念及其性质。
2、会求两条线段的比及判断四条线段是否成比例。
过程与方法:能够灵活运用比例线段的性质解决问题。
情感、态度与价值观:感知知识的实际应用,增强对知识就是力量的客观认识,进一步加强理论联系实际的学习方法。
重点难点重点:线段的比和成比例线段,以及比例线段的基本性质。
难点:用引入比值K 的方法,探索比例的性质。
教学过程设疑自探一、复习回顾,引入新课1、1、2、4、8这四个数成比例吗?如何确定四个数成比例? 2、比例基本性质是什么? 二、自探(1)1、做一做(1)在上面的格点图中,如果设水平(或竖直)的相邻两格点间的距离为1cm ,那么 AB=___,BC=___,A ′B ′=_____,B ′C ′=_____;(2) 计算B A AB ''=______,CB BC''=____;(3)显然AB 、BC 、A ′B ′、B ′C ′不相等,那么它们之间有什么关系呢?从而你能发现B A AB ''与C B BC''之间有什么关系___________.合探(1)学生通过交流,得出结论:B A AB ''=C B BC''在四条线段中,如果其中两条线段的长度比与另外两条线段的长度比相等,那么这四条线段叫做成比例线段,简称比例线段。
如果a,b,c,d 是成比例线段,即b a =dc(或a:b=c:d ).试一试判断下列线段a 、b 、c 、d 是否成比例线段 (1)a =4,b =6,c =5,d =10; (2)a =2,b =5,c=215,d=53图24.2.1评价要求:评结果正误、书写是否规范;评价解题思路自探(2)1、我们以前学习过比例的基本性质,对于成比例线段我们也有下面的性质:①如果ba =dc ,那么ad=bc;②如果ad=bc,(a 、b 、c 、d 都不为零)那么b a =dc 。
初中成比例线段教案教学目标:1. 理解成比例线段的概念及性质;2. 学会判断四条线段是否成比例;3. 能够运用成比例线段解决实际问题。
教学重点:成比例线段的概念及其性质。
教学难点:探索成比例线段的性质。
教学准备:课件、学案。
教学过程:一、导入(5分钟)1. 教师通过展示一些实际问题,引导学生发现其中存在的线段比例关系。
2. 学生观察并讨论,尝试解释这些比例关系。
二、新课讲解(15分钟)1. 教师介绍成比例线段的概念,解释线段比例关系的意义。
2. 学生跟随教师一起探究成比例线段的性质,通过示例和练习加深理解。
3. 教师强调成比例线段的判断方法,引导学生注意比例线段的性质。
三、课堂练习(15分钟)1. 学生独立完成练习题,巩固对成比例线段的理解。
2. 教师选取部分学生的作业进行点评,指出优点和需要改进的地方。
四、应用拓展(15分钟)1. 教师提出一些实际问题,引导学生运用成比例线段的知识解决。
2. 学生分组讨论,分享解题过程和答案。
3. 教师总结学生们的解题方法,强调成比例线段在实际问题中的应用。
五、总结(5分钟)1. 教师引导学生回顾本节课所学内容,总结成比例线段的概念和性质。
2. 学生分享自己对成比例线段的理解和收获。
教学反思:本节课通过引入实际问题,引导学生发现线段比例关系,激发学生的学习兴趣。
通过新课讲解和课堂练习,学生能够理解和掌握成比例线段的概念及其性质。
在应用拓展环节,学生能够将所学知识应用于实际问题中,提高解决问题的能力。
在教学过程中,教师应及时关注学生的学习情况,针对学生的掌握情况,调整教学节奏和难度,确保学生能够扎实掌握成比例线段的知识。
同时,教师应鼓励学生积极参与课堂讨论,培养学生的合作意识和沟通能力。
第1课时成比例线段课时目标1.了解相似图形、线段的比的概念;会求两条线段的比,运用线段的比解决实际问题.2.掌握比例的基本性质,提高解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.学习重点理解成比例线段的概念并会求解.学习难点了解比例的基本性质及其简单应用.课时活动设计情境引入通过用幻灯片展示生活中的图片,突出每组图片形状相同的特点.设计意图:引发学生思考每组图片的特征,激发学生的学习兴趣.探究新知1.你能在下面这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?教师提出问题,学生以小组的形式进行讨论交流,教师随机选取学生回答问题,引出学生线段的比的必要性.形状相同而大小不同的两个平面图形,较大的图形可以看作是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的.在这个过程中,两个图形上的相应线段也被“放大”或“缩小”.因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.2.归纳小结.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成ABCD =mn.其中,AB,CD分别叫做这个线段比的前项和后项.如果把mn 表示成比值k,那么ABCD=k,或AB=k·CD.两条线段的比实际上就是两个数的比.如图,五边形ABCDE与五边形A'B'C'D'E'形状相同,AB=5 cm,A'B'=3 cm.AB∶A'B'=5∶3,53就是线段AB与线段A'B'的比,这个比值刻画了这两个五边形的大小关系.3.想一想.两条线段长度的比与所采用的长度单位有没有关系?通过上面的活动学生应该对这个问题有了一定的认识:两条线段长度的比与所采用的长度单位无关.4.做一做.如图,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,那么AB,AD,EF,EH的长度分别是多少?分别计算ABEF ,ADEH,ABAD,EFEH的值.你发现了什么?学生独立解答,师生共同订正答案,然后教师引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab =cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.在图中AB,EF,AD,EH是成比例线段,AB,AD,EF,EH也是成比例线段.5.议一议.如果a,b,c,d四个数成比例,即ab =cd,那么ad=bc吗?反过来,如果ad=bc,那么a,b,c,d四个数成比例吗?学生在小组内交流,教师及时给予提示,最后进行总结归纳.小结:比例的基本性质:如果ab =cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于0),那么ab =cd .设计意图:通过发现这些形状相同的图形的不同点,引出线段的比的概念.学生实际操作并进行讨论后得出:两条线段长度的比与所采用的长度单位没有关系.引入成比例线段的概念,进而研究比例的基本性质.典例精讲如图,一块矩形绸布的长AB=a m,宽AD=1 m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AEAD =ADAB,那么a的值应当是多少?解:根据题意可知,AB=a m,AE=13a m,AD=1 m.由AEAD =ADAB,得13 a 1=1a ,即13a2=1.∴a2=3.开平方,得a=√3(a=-√3舍去).设计意图:通过教材上的例题,让学生利用所学的知识来解决实际生活中的问题.巩固训练1.一条线段的长度是另一条线段长度的5倍,则这两条线段之比是5∶1.2.一条线段的长度是另一条线段长度的35,则这两条线段之比是3∶5.3.已知a,b,c,d是成比例线段,a=4 cm,b=6 cm,d=9 cm,则c= 6 cm.4.如果2x=5y,那么xy =52.5.把mn=pq写成比例式,错误的是(D)A.mq =pnB.pm=nqC.qm=npD.mn=pq6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=103,b=5,c=203.7.判断下列四条线段是否成比例.(1)a=2,b=√5,c=√15,d=2√3;(2)a=√2,b=3,c=2,d=√3;(3)a=4,b=6,c=5,d=10;(4)a=12,b=8,c=15,d=10.解:(1)否;(2)否;(3)否;(4)是.设计意图:通过有梯度的练习,巩固课堂上所学的知识,加深学生对线段的比和成比例线段的认识.课堂小结这节课我们学习了哪些知识?你有什么收获?你有什么发现、探索?设计意图:让学生回顾本节课的学习内容,提高学生归纳总结的能力.课堂8分钟.1.教材第79页习题4.1第1,2题.2.七彩作业.第1课时成比例线段1.两条线段的比.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成ABCD =mn.其中,AB,CD分别叫做这个线段比的前项和后项.2.成比例线段.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab =cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.3.比例的基本性质.如果ab =cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于0),那么ab =cd .教学反思第2课时等比性质课时目标1.理解比例的等比性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力.2.经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识.3.通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系.学习重点让学生理解并掌握比例的性质及其简单应用.学习难点运用比例的性质解决有关问题.课时活动设计复习回顾复习:1.成比例线段的定义;2.比例的基本性质;3.若3m=2n,你可以得到mn 的值吗?nm呢?设计意图:学生思考回顾上节课的内容,更好地进入本节课的学习.探究新知1.如图,已知BDAD =CEAE=12,你能求出BD+ADAD与CE+AEAE的值吗?它们有怎样的关系?如果ABBD =ACCE,那么AB-BDBD与AC-CECE有怎么样的关系?在求解过程中,你有什么发现?教师提出问题,学生先独立完成计算,再在小组内交流自己的计算结果及发现,组内达成共识后在班内展示,教师给予正确引导.议一议:已知a,b,c,d,e,f六个数.如果ab =cd,那么a+bb=c+dd和a-bb=c-dd成立吗?为什么?学生独立完成,教师随机选择学生进行回答.2.如图,ABHE ,BCEF,CDFG,ADHG的值相等吗?AB+BC+CD+ADHE+EF+FG+HG的值又是多少?在求解过程中,你有什么发现?议一议:已知a,b,c,d,e,f六个数.如果ab =cd=ef(b+d+f≠0),那么a+c+eb+d+f=ab成立吗?为什么?学生独立完成,教师随机选择学生进行回答.如果ab =cd=…=mn(b+d+…+n≠0),那么a+c+…+mb+d+…+n=ab吗?学生尝试总结a,b,…,n之间的关系,教师多媒体展示.注意事项:要强调等比性质中,分母b+d+…+n≠0.设计意图:通过由特殊到一般的方法归纳出合比性质与等比性质,加深对成比例线段的理解.典例精讲 1.已知a b =23,求a+b b与a -b b的值.解:∵a b =23,∴a+b b=a b +1=23+1=53.∵a b =23,∴a -b b =ab -1=23-1=-13.2.在△ABC 与△DEF 中,若AB DE =BC EF =CA FD =34,且△ABC 的周长为18 cm,求△DEF 的周长.解:∵AB DE =BC EF =CA FD =34, ∴AB+BC+CA DE+EF+FD =AB DE =34.∴4(AB +BC +CA )=3(DE +EF +FD ),即DE +EF +FD =43(AB +BC +CA ). 又∵△ABC 的周长为18 cm,即AB +BC +CA =18 cm,∴DE +EF +FD =43(AB +BC +CA )=43×18=24(cm),即△DEF 的周长为24 cm . 设计意图:学到的知识要会应用升华,在这个环节中,让学生灵活运用比例的合比性质及等比性质.解决实际问题.师生互动,主要还是学生的动,要体现教师的主导作用,学生的主体作用.让学生会主动学习,遇到问题,要善于分析思考.巩固训练1.已知a b =c d =23(b +d ≠0),求a+cb+d 的值. 解:a+c b+d =23. 2.若x+y y =179,则x y = 89 .3.若a b =14,则3a+b 2b的值为 78 .4.已知a 3=b 5=c7. (1)求a+b+c b的值; (2)求a+2b -3c a+c的值.解:(1)∵a 3=b 5=c7, ∴a b =35,c b =75. ∴a+b+c b =a b +1+cb =3.(2)设a3=b5=c7=k,∴a=3k,b=5k,c=7k.∴a+2b-3ca+b =3k+2×5k-3×7k3k+5k=-8k8k=-1.5.如图,已知每个小方格的边长均为1,求AB,DE,BC,DC,AC,EC的长,并计算△ABC与△EDC的周长比.解:由勾股定理,得AB=2√5,DE=√5,BC=2√10,DC=√10,AC=2√13,EC=√13,△ABC的周长=AB+BC+AC=2(√5+√10+√13),△EDC的周长=DE+DC+EC=√5+√10+√13,所以△ABC与△EDC的周长比等于2∶1.设计意图:通过有针对性的练习,加深学生对合比性质与等比性质的理解,进一步巩固本堂课所学知识,提高应用能力.课堂小结谈谈本节课的收获,与同伴进行交流.设计意图:复习比例的基本性质,合比性质,等比性质,巩固本节课所学的内容.课堂8分钟.1.课本第81页习题4.2第3题.2.七彩作业.第2课时等比性质合比性质如果ab =cd,那么a±bb=c±dd等比性质如果ab=cd=…=mn(b+d+…+n≠0),那么a+c+…+mb+d+…+n=ab教学反思。