九年级数学上册 1.2 矩形的性质与判定(第二课时)教学设计 (新版)北师大版(1)
- 格式:doc
- 大小:63.60 KB
- 文档页数:7
《矩形的性质和判定》教学设计第一课时:矩形的性质教材分析:本节是九年级的第一章第二节的内容,这个年龄段的学生已经具备自主探究和合作学习的能力,他们喜欢动手,喜欢思考一些有挑战性的问题,喜欢向别人展示自己的成果。
部分学生对学习数学有较强的兴趣,具有一定的探究数学问题的能力和数学活动的经验,逻辑推理能力较强。
但大部分学生要把解题的整个过程表述完整、清楚比较困难。
教学目标:【知识与技能】(1) 掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.【过程与方法】(1)经历探索矩形的概念和性质的过程,发展学生合情推理的意识;(2)通过灵活运用矩形的性质解决有关问题,掌握几何思维方法,并渗透运动联系、从量变到质变的观点.【情感态度与价值观】(1)在观察、测量、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。
(2) 通过小组合作展示活动,培养学生的合作精神和学习自信心。
(3)从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想。
教学重难点:【教学重点】掌握矩形的性质。
【教学难点】运用综合法证明矩形的性质。
课前准备:多媒体,平行四边形教具,矩形纸片教学过程:一.创设情景,导入新课活动内容:1、观察图形,都是一种特殊的平行四边形,说一说他们的特殊之处2、探究矩形的定义利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,让学生注意观察。
在演示过程中让学生思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?不变:对边仍保持相等,对边仍分别平行,所以仍然是平行四边形变:角的大小(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。
第一章特殊的平行四边形1.2 矩形的性质与判定第2课时一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形判定定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的判定定理,以及其他相关结论,进一步发展演绎推理能力.4.进一步体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:探索矩形的判定方法.难点:合理应用矩形的判定定理解决问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资《四边形到平行四边形再到矩形的变化》动画,《矩形的判定》微课.五、教学过程设计【复习引入】1.什么叫做矩形?答:有一个角是直角的平行四边形叫做矩形.2.矩形与平行四边形及四边形有什么从属关系?3.矩形有什么特有的性质呢?答:(1)矩形的四个角都是直角;(2)矩形的对角线相等.4.你知道如何判定一个平行四边形是矩形吗?答:有一个角是直角的平行四边形是矩形(定义判定).5.那么除了矩形的定义外,还有没有其他判定矩形的方法呢?这节课我们就共同来探究一下.师生活动:教师出示问题,学生回答,让学生复习前面学过的内容.设计意图:通过复习,巩固旧知,铺垫新知,设置问题,引出新课.【探究新知】做一做如图,是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想?师生活动:教师出示“做一做”并操作演示,学生思考、讨论、交流,猜想出矩形的一个判定方法.答:(1)当∠α增大到90°时,两条对角线的长度相等.当∠α超过90°时,以∠α的顶点为端点的一条对角线逐渐变短,另一条对角线逐渐变长.(2)当两条对角线的长度相等时,平行四边形的四个角都等于90°.得到的猜想是:对角线相等的平行四边形是矩形.思考你能证明你的猜想吗?师生活动:教师出示问题,学生思考,教师引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AC,DB是它的两条对角线,AC=DB.求证:□ABCD是矩形.分析:利用全等三角形证明平行四边形的某两个相邻的角相等,而这两个角又互补,所以它们都是直角,从而得证.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BC=CB,AC=DB,∴△ABC≌△DCB.∴∠ABC=∠DCB.∵AB∥DC,∴∠ABC+∠DCB=180°.∴∠ABC=∠DCB=.∴□ABCD是矩形(矩形的定义).设计意图:培养学生发现规律的能力和逻辑推理能力.判定定理1:对角线相等的平行四边形是矩形.几何语言:∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形.该判定定理的两个适用条件:(1)对角线相等;(2)是平行四边形.想一想:我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论.师生活动:教师出示问题,学生思考、讨论、交流,形成猜想并证明猜想.猜想:一个四边形至少有三个角是直角时,这个四边形就是矩形.已知:在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=90°,∴∠A+∠B=180°.∴AD∥BC.∵∠B+∠C=180°,∴AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).又∵∠A=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).设计意图:培养学生的归纳猜想,推理论证的能力.判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.归纳:矩形的判定方法:方法1:有一个角是直角的平行四边形是矩形;方法2:对角线相等的平行四边形是矩形;方法3:有三个角是直角的四边形是矩形.议一议你有什么方法检查你家(或教室)刚安装的门框是不是矩形?如果仅有一根较长的绳子,你怎样检查?请说明检查方法的合理性,并与同伴交流.师生活动:教师出示问题,学生思考,教师找学生代表回答.答:可以用直角尺检查安装的门框的四个角是否为直角.如果有三个角是直角,那么刚安装的门框一定是矩形.也可以用直尺(或皮尺)分别量出门框两组对边的长度,如果两组对边长度分别相等,则门框一定是平行四边形,再测量门框的对角线的长度,如果两条对角线的长度相等,那么刚安装的门框一定是矩形.如果仅有一根较长的绳子,可以先用绳子分别测量出门框的两组对边的长度,做上记号.如果两组对边的长度分别相等,那么这个门框一定是平行四边形,再用绳子量出门框的对角线的长度.如果这两条对角线的长度相等,那么这个刚安装的门框一定是矩形,否则不是矩形.理由是对角线相等的平行四边形是矩形.设计意图:让学生运用所学知识解决实际问题.【典例精析】例1 如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.师生活动:教师出示例题,学生思考,教师引导学生完成本题.分析:教师先带学生从已知条件入手,对平行四边形对角线的性质进行分析,再结合△ABO是等边三角形的条件,很容易推出对角线相等,从而利用刚学的矩形的判定定理“对角线相等的四边形是矩形”证得是矩形,再利用勾股定理求出边长BC,进而求出矩形的面积.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴OA=OB=OC=OD=4.∴AC=BD=2OA=2×4=8.∴□ABCD是矩形(对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴.∴S□ABCD=AB·BC=4×=.设计意图:培养学生应用所学知识解决问题的能力.【课堂练习】1.下列命题错误的是().A.对角线相等且互相平分的四边形是矩形B.对角互补的平行四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.四个角都相等的四边形是矩形参考答案C2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.参考答案12.3.已知:如图,在□ABCD中,M是AD边的中点,且MB=MC.求证:四边形ABCD是矩形.师生活动:教师先找几名学生板演,然后讲解出现的问题.答案证明:∵四边形ABCD是平行四边形,∴AB=DC.∵M是AD边的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS).∴∠A=∠D.又∵AB∥DC,∴∠A+∠D=180°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).4.如图,在□ABCD中,对角线AC,BD相交于点O,点E是□ABCD外一点,且∠AEC=∠BED=90°.求证:□ABCD是矩形.师生活动:教师出示题目,学生思考,教师请有思路的学生讲述解题思路,然后订正,最后教师写出解题过程.证明:如图,连接OE.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠AEC=∠BED=90°,∴OE=AC=BD.∴AC=BD.∴□ABCD是矩形(对角线相等的平行四边形是矩形).设计意图:通过本环节的学习,让学生巩固所学知识,进一步加深对所学知识的理解.六、课堂小结请同学们回顾一下,我们学过的矩形的判定方法有哪些?答:我们学过的矩形的判定方法有:(1)定义:有一个角是直角的平行四边形是矩形;(2)判定定理1:对角线相等的平行四边形是矩形;(3)判定定理2:有三个角是直角的四边形是矩形.师生活动:教师出示问题,引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.2 矩形的性质与判定(2)1.矩形的判定方法:(1)定义:有一个角是直角的平行四边形是矩形(2)判定定理1:对角线相等的平行四边形是矩形(3)判定定理2:有三个角是直角的四边形是矩形。
第一章《特殊平行四边形》《矩形的性质与判定》(第2课时)【教学目标】(1).经历矩形判定定理的探索过程,进一步发展合情推理能力.(2).能够用综合法证明矩形的判定定理,进一步发展演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。
3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】矩形的判定【教学难点】矩形的判定及性质的综合应用.【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习引入(1)矩形的定义;(2)矩形的特征;(3)矩形的特殊性质;提出问题引入新课:想一想我们可以怎样判定一个四边形是矩形?二、探究新知:定义法(有一个角是直角的平行四边形叫做矩形)制作一个如图所示的平行四边形的活动框架. 在一个平行四边形活动框架上,用两根橡皮筋分别套在两个相对的顶点上,拉动一对不相邻的顶点时,平行四边形的形状会发生什么变化?当 ︒=90α 时,平行四边形为矩形。
定义:有一个角是直角的平行四边形叫做矩形. 几何语言:∵四边形ABCD 是平行四边形且∠A=90° ∴四边形ABCD 是矩形2.矩形的判定2的探究:对角线相等的平行四边形是矩形活动内容1:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?处理方式:先由学生独立思考,尝试解答,再采取小组合作的方式,交流讨论,进而得到结论:对角线相等的平行四边形是矩形.活动内容2:通过思考、交流,我们可以发现,对角线相等的平行四边形是矩形,你能证明这个命题吗?处理方式:鼓励学生积极探索,大胆猜想,在此基础上再进行严格地证明.证明过程中,学生可能会有一定的困难,教师要及时予以指导和规X.此处可安排学生板演证明过程.定理的证明:如图,在平行四边形ABCD 中,AC 、BD 是它的两条对角线,且AC=DB ,证明: 四边形ABCD 是矩形. 分析:要证明□ABCD 是矩形,只要证明有一个角是直角即可. 证明:∵ 四边形ABCD 是平行四边形 ∴ AB=DC,AB//DC 又∵BC=CB,AC=DB ∴△ABC ≌△DCB ∴∠ABC=∠DCB ∵AB//DC∴∠ABC+∠DCB=180°, ∴∠ABC=∠DCB=90°∴平行四边形ABCD 是矩形几何语言:∵在□ABCD 中,AC=BD ∴□ABCD 是矩形3.矩形的判定3的探究:三个角是直角的四边形是矩形活动内容1:一同学用“边——直角、边——直角、边——直角、边”这样四步,画出了一个四边形,她说这就是一个矩形,她的判断对吗?为什么?处理方式:学生独立完成作图后可与课本作法进行对比,通过思考作法的正确性,探索得到矩形的另一种判定方法:三个角是直角的四边形是矩形.并对这一判定方法加以证明.已知:如图,在四边形ABCD 中, ∠A=∠B=∠C=90°,求证:四边形ABCD 是矩形. 分析:利用同旁内角互补,两直线平行来证明四边形是平行四边形,可使问题得证. 证明:∵∠A=∠B=∠C=90°, ∴∠A+∠B=180°,∠B+∠C=180° ∴AD ∥BC,AB ∥CD.∴四边形ABCD 是平行四边形. ∴四边形ABCD 是矩形.几何语言:∵在四边形ABCD 中,∠A=∠B=∠C=90° ∴□ABCD 是矩形归纳:矩形的三个判定:1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形. 三、例题讲解例例1.判断题:(1)有一个角是直角的四边形是矩形。
1.2矩形的性质与判定第2课时矩形的判定教学目标【知识与能力】熟练运用矩形的定义和判定定理判定四边形是矩形.【过程与方法】经历探索、猜想、证明的过程,进一步发展推理论证的能力.【情感态度价值观】通过学生独立完成证明的过程,体会数学是严谨的科学,增强学生严谨的治学态度,从而养成良好的习惯.教学重难点【教学重点】能够用综合法证明矩形的判定定理并利用定义和定理进行证明.【教学难点】灵活运用矩形的性质和判定定理及其相关结论解决问题.课前准备多媒体课件、三角板.教学过程学生:定义,符合定义就是,不符合就不是.教师:说得非常好,我们来看一看下面的四边形是否符合矩形的定义.(课件展示)图1-2-441.已知:如图1-2-44,在ABCD中,AC=BD.求证:四边形ABCD是矩形,注意:学生思考、交流后,教师可以适当地引导:给出的条件与矩形的定义相比,少了哪个条件?怎么办?教师:分析后课件展示过程.证明:∵AB=DC,CA=BD,BC=CB,∴△ABC≌△DCB(SSS),∴∠ABC=∠DCB.在ABCD中,∵AB∥CD,∴∠ABC+∠DCB=180°,∴2∠ABC=180°,即∠ABC=90°,∴四边形ABCD是矩形.教师:在菱形中,对角线互相垂直,而对角线互相垂直的平行四边形是菱形.类似地,在矩形中,对角线相等,反过来,对角线相等的平行四边形是矩形.我们判定的着手点就是看看图形“特殊”的地方,比如菱形的边也比较特殊,四条边都相等,所以四条边都相等的四边形是菱形.那么矩形有没有比较特殊的地方呢?学生:矩形的角特殊,四个角都是直角.教师:如果一个四边形的四个角都是直角,那么这个四边形是不是矩形呢?我们来试一试(课件展示):2. 如图1-2-45,已知∠A=∠B=∠C=∠D=90°,则四边形ABCD是矩形吗?图1-2-45学生:思考、交流后尝试给出证明过程.教师:学生展示过程后点评、规范相应的步骤.证明:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.教师:我怎么感觉有一个条件没有用到呢?学生:∠D=90°.。
《矩形的性质与判定》《矩形的性质与判定》一课属于初中平面几何重点知识。
本节是在学习了平行四边形的性质与判定以及菱形的基础上,在掌握了证明平行四边形有关内容及特殊平行四边形的一般研究方法后来学习的,它既是平行四边形的延伸,又为后面正方形的学习提供知识、方法的支持,为进一步研究其他图形奠定基础。
依据新课标要求,《矩形的性质》不能只停留在知识教学上,而是要把经历探索图形的基本性质的过程,发展学生的基本的推理技能放在首要位置。
矩形是的平行四边形中的一种特殊图形,在生活中有着广泛的应用,所以课本很多地方以图片形式呈现了矩形的“原型”,旨在唤起学生的生活经验,促进数学学习。
【知识与能力目标】1、掌握矩形的的定义,理解矩形与平行四边形的关系。
2、理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明。
【过程与方法目标】1、经历探索矩形的概念和性质的过程,发展学生合情推理的意识;2、通过灵活运用矩形的性质解决有关问题,掌握几何思维方法,并渗透运动联系、从量变到质变的观点。
【情感态度价值观目标】1、在观察、测量、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。
2、通过小组合作展示活动,培养学生的合作精神和学习自信心。
3、从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想。
【教学重点】掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系。
【教学难点】会运用矩形的概念和性质来解决有关问题。
学生每人准备好草稿纸、铅笔、直尺、矩形纸片;教师准备课件,图片,三角板,一个活动的平行四边形教具。
一、情景导入1.复习:什么叫平行四边形?它有哪些性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形),引出本课题及矩形定义。
北师大版九年级数学上册说课稿:1.2 矩形的性质与判定一. 教材分析《矩形的性质与判定》是北师大版九年级数学上册第一章第二节的内容。
本节内容是在学生已经掌握了四边形的性质,平行四边形的性质和判定,以及菱形、正方形的性质和判定基础上进行学习的。
通过本节内容的学习,使学生掌握矩形的性质和判定方法,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对平行四边形的性质和判定,以及菱形、正方形的性质和判定有一定的了解。
但是,对于矩形的性质和判定,他们可能还比较陌生。
因此,在教学过程中,我将以学生为主体,引导他们通过观察、思考、讨论,自主探索矩形的性质和判定方法。
三. 说教学目标1.知识与技能:掌握矩形的性质,学会用矩形的性质解决几何问题;理解并掌握矩形的判定方法,能够运用矩形的判定方法判断一个四边形是否为矩形。
2.过程与方法:通过观察、思考、讨论,培养学生的空间想象能力和逻辑思维能力;学会用归纳法、演绎法进行数学论证。
3.情感态度价值观:培养学生对数学的兴趣,激发学生学习数学的积极性;培养学生合作学习的意识,提高学生的团队协作能力。
四. 说教学重难点1.教学重点:矩形的性质和判定方法。
2.教学难点:矩形的判定方法的应用,以及如何运用矩形的性质解决几何问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法、探究学习法等。
2.教学手段:利用多媒体课件、几何模型、黑板等辅助教学。
六. 说教学过程1.导入新课:通过展示生活中的矩形物体,如矩形桌子、矩形电视等,引导学生思考矩形的特征,激发学生的学习兴趣。
2.自主探究:让学生观察矩形的特点,引导学生发现矩形的性质,如矩形的对边平行且相等,矩形的对角相等等。
3.小组讨论:让学生分组讨论,归纳出矩形的性质,并学会用这些性质解决几何问题。
4.讲解判定:讲解矩形的判定方法,如对角线互相平分的四边形是矩形,有一个角是直角的平行四边形是矩形等。
1.2 矩形的性质与判定【学习目标】课标要求:1. 知识与技能:(1) 掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.2. 过程与方法:(1)经历探索矩形的概念和性质的过程,发展学生合情推理的意识;(2)通过灵活运用矩形的性质解决有关问题,掌握几何思维方法,并渗透运动联系、从量变到质变的观点.3. 情感态度与价值观:(1)在观察、测量、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。
(2) 通过小组合作展示活动,培养学生的合作精神和学习自信心。
(3)从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想。
目标达成:1、掌握矩形的的定义,理解矩形与平行四边形的关系2、理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明学习流程:【课前展示】1.什么叫做平行四边形2.平行四边形有什么性质3.什么叫做菱形4.菱形有什么性质5.如何判定一个四边形是平行四边形6.如何判定一个平行四边形是菱形【创境激趣】活动内容:1、平行四边形具有哪些性质?2、探究矩形的定义。
利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,让学生注意观察。
在演示过程中让学生思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?不变:对边仍保持相等,对边仍分别平行,所以仍然是平行四边形变:角的大小(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。
(矩形)矩形的定义:有一个内角是直角的平行四边形是矩形AB C D AB CD 一个角变形成直角【自学导航】1、矩形的定义2 矩形的性质3.例题【合作探究】活动内容:1. 既然矩形是平行四边形,那么它具有平行四边形的哪些性质?在同学回答的基础上进行归纳:2.但矩形是特殊的平行四边形,它还具有一些特殊性质。
2. 矩形的性质与判定(二)一、学生知识状况分析学生在初二平行四边形一章中,已经认识了三种特殊平行四边形矩形、菱形和正方形,同时,通过平行四边形和菱形的学习,进行了对平行四边形和菱形性质和判定的证明,学生已经有了一定的推理论证能力,掌握了独立证明特殊平行四边形性质及判定定理的基本技能;在相关知识的学习中,学生已经经历了大量的证明活动,特别是平行四边形的相关证明推理,学生已经逐渐体会到了证明的必要性和证明在解决实际问题时的作用,从而初步具备了证明特殊平行四边形性质和判定定理的能力;同时,在前面的相关活动中,学生已经初步了解了归纳、概括及转化等数学思想方法,大量的活动经验丰富了学生的数学思想,锻炼了学生的能力,使学生具备了在解题中合理运用方法的能力。
二、教学任务分析课本基于目前学生的知识和能力水平,对本课内容提出了具体的学习任务:进一步发展推理论证能力,运用综合法证明矩形的性质和判定定理,进一步体会证明的必要性和作用,体会归纳等数学思想方法。
对于本节课的知识,教科书提出的学习任务,重点集中在了学生的能力培养上,在教学时,我们应该把目标上升一个层次,从关注学生是否能证明这些定理提高到关注学生如何找到解题思路,从关注学生是否能顺利证明提高到关注学生是否合理严密的使用数学语言严格证明,从关注学生合作解题提高到让每一个学生都能独立完成证明的过程。
能力培养不仅是本节课教学过程中的近期目标,更是为今后学生学习数学知识打下基础的远景目标,能力的培养也必然带动学生情感态度目标的达成。
同时,在教学中,还必须注意对不同层次的学生制定不同的教学任务,做到让每一个学生都能在课堂上有所收获。
为此,本节课我们要达到的具体教学目标为:1.能够运用综合法和严密的数学语言证明矩形的性质和判定定理以及其他相关结论;2.经历探索、猜测、证明的过程,发展学生的推理论证能力,培养学生找到解题思路的能力,使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用;3.学生通过对比前面所学知识,体会证明过程中所运用的归纳、概括以及转化等数学思想方法;4.通过学生独立完成证明的过程,让学生体会数学是严谨的科学,增强学生对待科学的严谨治学态度,从而养成良好的习惯。
三、教学过程分析本节课设计了六个教学环节:第一环节:创设情境,提出问题;第二环节:先猜想再实践,发展几何直觉;第三环节:再创情境,猜想实践;第四环节:实际应用,范例教学;第五环节:反馈练习,注重参与;第六环节:课堂小结,布置作业。
第一环节:创设情境,提出问题活动内容:课前准备小木板和橡皮筋,制作一个如图所示的平行四边形的活动框架。
在一个平行四边形活动框架上,用两根橡皮筋分别套在两个相对的顶点上,拉动一对不相邻的顶点时,平行四边形的形状会发生什么变化?活动目的:通过这个活动,首先是学生能够主动地对平行四边形的相关知识有一个系统的回顾和认知,让学生以一种比较有趣的形式对这部分知识进行自主的复习,激发学生对本节知识的学习兴趣。
同时,对平行四边形进行归纳,可以使学生清楚地认识到平行四边形与特殊平行四边形之间的关系,为后面连续几节研究特殊的平行四边形提供有力的支持。
此外,这个活动,也可以激发学生的积极性和主动性。
活动的注意事项:因为前面对平行四边形及菱形、矩形的学习,学生回答问题比较有针对性,能概括地从“边、角、对角线”等几个方面回答,较有条理。
当然也有个别学生语言表述不到位,需老师同学适时点拨、补充、鼓励。
第二环节:先猜想再实践,发展几何直觉活动内容:根据上面的实践活动提出以下两个问题:∠的变化,两条对角线将发生怎样的变化?(1)随着α(2)当两条对角线相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想? 学生在小组中完成这个活动的过程中,会引发对于这两个问题的讨论,请学生根据实践的结果对问题进行回答,再对比前面所学的平行四边形及菱形的判定定理的证明过程,来思考如何证明矩形的判定定理。
然后通过小组合作,将定理的证明严格的完成,最后同学实物投影的形式,各小组之间进行交流。
对比前一节学习的菱形和矩形的性质定理,引导学生对矩形独有的第一个判定定理进行证明:教师板书本题证明过程。
定理两条对角线相等的平行四边形是矩形。
(1)学生独立画出图形,在教师引导下写出已知、求证;(2)对比平行四边形和菱形的判定定理的证明,对已知、求证进行分析;(3)请学生交流大体思路;(4)用规范的数学语言写出证明过程;(5)同学之间进行交流,找出自己还存在的问题。
活动目的:矩形的性质学生已经非常熟悉,对比矩形的性质得到矩形的判定,通过教师引导和独立思考,培养遇到题目时冷静思考,找到解题思路的良好习惯。
在分析思路时,逐步锻炼学生的推理论证能力,最后通过互查的形式让每个学生都能严格的证明,培养严谨的作风。
通过小组合作,在合作中让学生相互帮助共同进步。
活动注意事项:通过这个活动,学生能够很容易想出矩形的这个判定定理,而且通过对比平行四边形和菱形的相关证明,不难证明。
所以,教师在这里可以放手让学生通过分组的形式,自主证明,这样不仅有利于学生的合作交流,还能让学生多些时间来研究一题多解,开阔了学生的思路,让学生把精力投入到对思想方法的研究上去。
同时,采取小组合作时,应当鼓励学生提出自己的意见,特别是有没有更多的方法来证明这些定理,在小组讨论形成结果的时候,由代表为其他同学进行讲解,并把自己组所有想到的方法向大家展示。
此时,教师应该关注学生的思路是否清晰、证明是否严谨,对学有余力的学生要关注他们是否有新的想法,对学困生则要关注他们是否掌握了基本的证明思路。
对学生的证明要求不高,但需要学生画图,并写出已知求证,这对部分学生来说有一定困难,教师在此时可以注意引导,让学生首先分析出定理中的条件和结论,然后让学生仿照前面平行四边形和菱形的证明,写出已知和求证,同时对他们做出分析,这个学生分析的环节是发展学生推理论证能力的关键。
在证明过程中,对于重点步骤,应该要求学生写明理由,同时,还要关注学生的证明过程是否严谨清晰。
第三环节:再创情境,猜想实践活动内容:教师给出PPT中的情境二:李芳同学用四步画出一个四边形,“边、直角、边----直角、边----直角、边”,她说这就是一个矩形,她说的对吗?为什么?学生现猜想然后小组讨论,将讨论的结果进行证明。
定理三个角是直角的四边形是矩形。
(1)学生独立画出图形,在教师引导下写出已知、求证;(2)对比平行四边形和菱形的判定定理的证明,对已知、求证进行分析;(3)请学生交流大体思路;(4)用规范的数学语言写出证明过程;(5)同学之间进行交流,找出自己还存在的问题。
活动目的:通过上面的一个判定定理的证明,学生已经学会如何分析命题,找出条件和结论,画出图形,根据图形写出已知和求证,到现在为止学生有两种证明一个四边形是矩形的方法,在这个环节中,应引导学生对方法的适当选择,并通过实物投影的方式对比较严谨清晰的方法进行展示。
活动注意事项:通过这个活动,学生能够很容易想出矩形的这个判定定理,而且通过对比平行四边形和菱形的相关证明,不难证明。
所以,教师在这里可以放手让学生通过分组的形式,自主证明,这样不仅有利于学生的合作交流,还能让学生多些时间来研究一题多解,开阔了学生的思路,让学生把精力投入到对思想方法的研究上去。
第四环节:实际应用,范例教学;活动内容:1.教师实际问题:①如果仅有一根足够长的绳子,如何判断一个四边形是平行四边形?②如果仅有一根足够长的绳子,如何判断一个四边形是菱形?③如果仅有一根足够长的绳子,如何判断一个四边形是矩形?请说明如何操作,并说明这样做的原因。
2. 教师给出书中例二,学生进行分析,并解决这个问题,然后互相交流解法。
例:如图在□ABCD中,对角线AC和BD相较于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.教师板书本例题活动目的:运用刚刚证明的两个定理解决实际问题,进一步发展学生的推理能力,将课本中的问题拆分成三个问题,发散学生思维,从而能将平行四边形菱形和矩形联系起来,分析三者之间的区别和联系。
在活动2的证明中,通过让学生找寻不同的解题方法,培养学生的分析能力,深刻体会数学思想的多样性和灵活性。
在一题多解的过程中,贯彻分层教学的理念,让学生在思维最活跃的时候,最大化地提高学生能力。
活动注意事项:在证明过程中,对于重点步骤,应该要求学生写明理由,同时,还要关注学生的证明过程是否严谨清晰。
第五环节:反馈练习,注重参与活动内容:1.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD是矩形.C2. 已知:如图,菱形ABCD中,对角线AC和BD相较于点O,CM∥BD,DM∥AC.求证:四边形OCMD是矩形.MBC活动目的:通过2道练习题进一步巩固矩形的判定定理,提高学生的逻辑推理能力。
活动注意事项:通过学生的板书,查看存在问题,查漏补缺。
鼓励学生一题多解,注重发散思维培养。
第六环节:课堂小节,作业布置活动内容:学生互相交流矩形的判定定理,何时选择判定定理,矩形与平行四边形的关系,遇到矩形实际题目时如何分析思路,以及遇到困难时如何克服等。
活动目的:鼓励学生结合前面的准备活动畅所欲言自己的感受和收获,让学生在不知不觉中提高自己的推理论证能力,并且对于研究科学需要严谨的作风这一点有深刻的认识。
活动注意事项:鼓励学生互相补充,畅所欲言,不要由老师替学生总结,特别要关注一些在数学学习中有困难的学生,要通过这个环节来给他们树立信心,同时帮助他们发现困难以便今后更好的解决困难。
作业布置不能一概而论,对于不同层次的学生,要注意提出不同的要求。
课后习题3.4的要求较低,要求学生都能独立完成,对于有能力的同学,可以提出更高的要求,同时,对于数学学习存在困难的学生,应该要求他们在课后,把课堂上讲过的题目进行再整理,加深印象。
四、教学反思1.灵活处理教材对于本节课的知识,不能机械地照搬教材内容,而应该对教材内容进行再加工,灵活运用,使教材内容得到升华。
分层次教学对于不同层次的学生,在课堂上的要求要有所不同,一味的提高难度满足有能力的学生和降低难度适应困难学生都不是明智的做法,在教学中选择因材施教,使每个学生都有所得才是课堂教学效果的关键。
在同一题目中,通过一题多问或者一题多解等形式,可以使优生有所突破,也可以让学困生受到关注,获得解题的成就感,这就对我们的备课和选题提出了更高的要求。
2.充分给学生以时间和空间课堂是学生展示自己的一个舞台,在课堂教学中,给予学生充分的时间和空间展示自己,不仅有利于提高学生的积极性,更有利于教师发现学生的独到见解和新思维、新想法,同时还能让教师发现学生存在的问题,这对于课堂教学是非常有利的。
3.应当注意的问题几何教学有时对学生想象能力要求比较高,有些学生在这方面很有优势,而有一些学生可能要差一点,课堂教学不能过急;此外,几何教学中要合理把握学生的课堂兴奋点,合理安排时间,力图让学生在注意力最集中时完成最重要的知识内容,掌握本节课重要的学习方法;还要注意的是,不要让思维活跃的学生的回答掩盖了其他学生的疑问,应该争取关注每一个学生。