28
3、如图,△ABC是直角三角形,BC是斜边,
将△ABP绕点A逆时针旋转后,能与△ACP’重 合。如果AP=3,求PP’的长。
解:∵ △ABP绕点A逆时针旋转后, 能与△ACP’重合,
A
∴AP’=AP=3, ∠PAP’= ∠BAC=90°
P’
∴ △ PAP’为等腰直角三角形,
PP’为斜边
P
∴ PP’2=AP2+AP’2=32+32B=18
●旋转前后,两图形的大小不变、 形状不变;
● 旋转前后,两图形任意一对对应 点与旋转中心的连线所成的角都是
旋转角,旋转角相等;对应点到旋 转中心的距离相等.
1
简单的旋转作图 例1 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法 B
A
O
作法: 1. 以点O为圆心,OA长为半径画 圆;
2. 连接OA, 用量角器或三角板 (限特殊角)作出∠AOB=60°,与 圆周交于B点;
26
提高练习
1、如图所示,正方形ABCD的边长为2 ㎝ ,E是
边AB上一点(不与A、B重合),现将Rt△DAE绕
D点逆时针旋转90°得Rt△DCF.
(1)DE与DF有什么关系?简单的说明理由
(2)求四边形BFDE的面积。
A
D
解(1)DE=DF.
E
原因是对应点到旋转中心的距离相等
(2)S四边形BFDE=S四边形ABCD=2×2=4cm2 B
是(
)
A.点A是旋转中心 B. ∠DAC是一个旋转角
C .AB=AC D. △ABD≌△ACE
4.如图在等腰直角△ABC中,∠B=90°,将ABC绕顶点
A逆时针旋转60°后得到△ADE,则∠BAE等于